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Existence and multiplicity of solutions for p(x)−
Kirchhoff-type problem
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Abstract. In the present paper, by using the Mountain Pass theorem and the Fountain

theorem, we obtain the existence and multiplicity of solutions to a class of p(x)-Kirchhoff-
type problem under Dirichlet boundary condition.
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1. Introduction

In this paper, we are concerned with the following problem{
−M (A (x,∇u)) div (a (x,∇u)) = f (x, u) in Ω ,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain, p ∈ C
(
Ω
)

for any x ∈ Ω
and div(a (x,∇u)) is a p (x)−Laplace type operator. Moreover M : R+ → R+ is a
continuous function and f : Ω × R → R is a Carathéodory function, satisfying some
certain conditions.

The nonlinear problems involving the p (x)-Laplace type operator are extremely at-
tractive because they can be used to model dynamical phenomena which arise from the
study of electrorheological fluids or elastic mechanics. Problems with variable expo-
nent growth conditions also appear in the modelling of stationary thermo-rheological
viscous flows of non-Newtonian fluids and in the mathematical description of the
processes filtration of an ideal barotropic gas through a porous medium. The de-
tailed application backgrounds of the p(x)-Laplace type operators can be found in
[3, 5, 7, 10, 13, 20, 18] and references therein.

Problem (1.1) is related to the stationary version of a model, the so-called Kirchhoff
equation, introduced by Kirchhoff [15]. To be more precise, Kirchhoff established a
model given by the equation

ρ
∂2u

∂t2
−

P0

h
+

E

2L

L∫
0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

 ∂2u

∂x2
= 0, (1.2)

where ρ, P0, h, E, L are constants, which extends the classical D’Alambert’s wave
equation, by considering the effects of the changes in the length of the strings during
the vibrations. For some interesting results we refer to [4, 6, 9, 11, 14]. Moreover,
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nonlocal boundary value problems like (1.2) can be used for modelling several physical
and biological systems where u describes a process which depend on the average of
itself, such as the population density [1, 2, 8].

In the present paper, we deal a more general Kirchhoff function M , and as a
consequence the operator div (a (x,∇u)) appears in problem (1.1), a more general

operator than p (x)−Laplace operator ∆p(x)u := div(|∇u|p(x)−2∇u) where p (x) > 1.
This caused some difficulties in calculations and required more general conditions.
Moreover, thanks to the Mountain-Pass theorem and Fountain theorem, we show the
existence and multiplicity of nontrivial weak solutions in the present paper. To our
best knowledge, the present papers results are not covered in the literature.

This paper is organized as follows. In Section 2, we present some necessary pre-
liminary results. In Section 3, using the variational method, we give the existence
results of problem (1.1).

2. Preliminaries

We recall some basic properties of variable exponent Lebesgue-Sobolev spaces
Lp(x) (Ω), W 1,p(x) (Ω) (for details, see e.g., [12, 16, 17] )

Set,

C+

(
Ω
)

=
{
p; p ∈ C

(
Ω
)
, min p (x) > 1,∀x ∈ Ω

}
.

For any p (x) ∈ C+

(
Ω
)
, denote p− := min

x∈Ω
p (x) , p+ := max

x∈Ω
p (x) <∞, and define the

variable exponent Lebesgue space by

Lp(x) (Ω) =

{
u |u : Ω→ R is measurable,

∫
Ω

|u (x)|p(x)
dx <∞

}
.

We define a norm, the so-called Luxemburg norm, on this space by the formula

|u|p(x) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
,

and
(
Lp(x) (Ω) , |.|p(x)

)
becomes a Banach spaces.

Proposition 2.1 [12, 16] The conjugate space of Lp(x) (Ω) is Lp
′(x) (Ω), where 1

p′(x) +
1

p(x) = 1. For any u ∈ Lp(x) (Ω) and v ∈ Lp′(x) (Ω), we have∣∣∣∣∫
Ω

uvdx

∣∣∣∣ ≤ (
1

p−
+

1

(p−)
′ ) |u|p(x) |v|p′(x) .

Proposition 2.2 [12, 16]Denote ρ (u) =
∫

Ω
|u (x)|p(x)

dx,∀u, un ∈ Lp(x)(Ω), then

(i) |u|p(x) > 1 =⇒ |u|p
−

p(x) ≤ ρ (u) ≤ |u|p
+

p(x);

(ii) |u|p(x) < 1 =⇒ |u|p
+

p(x) ≤ ρ (u) ≤ |u|p
−

p(x);

(iii) lim
n→∞

|un|p(x),Ω = 0⇔ lim
n→∞

ρ(un) = 0;

(iv) lim
n→∞

|un|p(x),Ω →∞⇔ lim
n→∞

ρ(un)→∞.
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Proposition 2.3 [12, 16] If u, un ∈ Lp(x) (Ω), then the following statements are
equivalent:

(i) lim
n→∞

|un − u|p(x) = 0; (ii) lim
n→∞

ρ(un − u) = 0;

(iii) un → u measure in Ω and lim
n→∞

ρ(un) = ρ (u) .

The variable exponent Sobolev space W 1,p(x) (Ω) is defined by

W 1,p(x) (Ω) =
{
u ∈ Lp(x) (Ω) | |∇u| ∈ Lp(x) (Ω)

}
,

with the norm ‖u‖1,p(x) = |u|p(x) + |∇u|p(x),∀u ∈W 1,p(x) (Ω) . The space W
1,p(x)
0 (Ω)

is denoted by the closure of C∞0 (Ω) in W 1,p(x) (Ω) with respect to the norm ‖u‖1,p(x).

We can define an equivalent norm ‖u‖ = |∇u|p(x), since Poincaré inequality holds
[13], i.e. there exists a positive constant C > 0 such that

|u|p(x) ≤ C|∇u|p(x), for all u ∈W 1,p(x)
0 (Ω) .

Proposition 2.4 [12, 16](i) If 1 < p− ≤ p+ < ∞, then the spaces Lp(x) (Ω),

W 1,p(x) (Ω) and W
1,p(x)
0 (Ω) are separable and reflexive Banach spaces,

(ii) If q ∈ C+

(
Ω
)

and q (x) < p∗ (x) , for all x ∈ Ω, then the embedding

W
1,p(x)
0 (Ω) ↪→ Lq(x) (Ω) is compact and continuous, where

p∗(x) :=

{
Np(x)
N−p(x) , if p (x) < N,

∞, if N ≤ p (x) .

3. The main results

Let X denote the variable exponent Sobolev space W
1,p(x)
0 (Ω) .

We say that u ∈ X is a weak solution of (1.1) if

M

(∫
Ω

A (x,∇u)

)∫
Ω

a (x,∇u)∇ϕdx =

∫
Ω

f (x, u)ϕdx,

for all ϕ ∈ X.
Define the energy functional I : X → R associated with (1.1) by

I (u) = M̂

(∫
Ω

A (x,∇u) dx

)
−
∫

Ω

F (x, u) dx := M̂ (Λ (u))− J (u) ,

where Λ (u) =
∫

Ω
A (x,∇u) dx and J (u) =

∫
Ω
F (x, u) dx. Moreover,

M̂ (t) =
∫ t

0
M (s) ds and F (x, u) =

∫ u
0
f (x, t) dt.

It is well known that standart arguments imply that J ∈ C1(X,R) and the derivate
of J is

〈J ′ (u) , υ〉 =

∫
Ω

f (x, u) υdx, for all u, υ ∈ X.

In this article, we assume that a(x, ξ) : Ω×RN → RN is the continuous derivative with
respect to ξ of the mapping A : Ω × RN → R, A = A(x, ξ), i.e. a(x, ξ) = ∇ξA(x, ξ).
Suppose that the following hypotheses:

(A1) For all x ∈ Ω and ξ ∈ RN , |a(x, ξ)| ≤ c0(h0 (x) + |ξ|p(x)−1
), where h0 (x) ∈

Lp
′(x) (Ω) is a nonnegative measurable function.
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(A2) A is p(x)-uniformly convex: There exists a constant k > 0 such that

A(x, ξ+ψ2 ) ≤ 1
2A(x, ξ) + 1

2A(x, ψ)− k |ξ − ψ|p(x)
, for all x ∈ Ω and ξ, ψ ∈ RN .

(A3) For all x ∈ Ω and ξ ∈ RN , |ξ|p(x) ≤ a(x, ξ) · ξ ≤ p (x)A(x, ξ).
(A4) A (x, 0) = 0, for all x ∈ Ω.
(A5) A(x,−ξ) = A(x, ξ), for all x ∈ Ω and ξ ∈ RN .

Lemma 3.1. [17]

(i) A verifies the growth condition; |A (x, ξ)| ≤ c0(h0 (x) |ξ|+ |ξ|p(x)
), for all x ∈ Ω

and ξ ∈ RN ;
(ii) A is p(x)−homogeneous; A (x, zξ) ≤ A (x, ξ) zp(x), for all z ≥ 1, ξ ∈ RN and

x ∈ Ω.

Lemma 3.2. (i) The functional Λ is well-defined on X;
(ii) The functional Λ is of class C1 (X,R) and

〈Λ′ (u) , v〉 =

∫
Ω

a (x,∇u) · ∇vdx, for all u, v ∈ X;

(iii) The functional Λ is weakly lower semi-continuos on X;
(iv) For all u, υ ∈ X

Λ(
u+ υ

2
) ≤ 1

2
Λ (u) +

1

2
Λ (υ)− k ‖u− υ‖p

−
;

(v) For all u, υ ∈ X

Λ (u)− Λ (υ) ≥ 〈Λ′ (υ) , u− υ〉 ;

(vi) I is weakly lower semi-continuos on X;
(vii)I is well-defined on X and of class C1(X,R), and its derivative given by

〈I ′ (u) , v〉 = M

(∫
Ω

A (x,∇u) dx

)∫
Ω

a (x,∇u)∇vdx−
∫

Ω

f (x, u) vdx;

for all u, υ ∈ X.

Since the proof of Lemma 3.2 is very similar to the proof of Lemma 2.2 and Lemma
2.7 given in [17], we omit it.

Theorem 3.3. Assume that (A3) and the following conditions hold:
(M1) M : R+ → R+ is a continuos function and satisfies the condition

m0s
α−1 ≤M(s) ≤ m1s

α−1,

for all s > 0 and m0,m1 real numbers such that 0 < m0 ≤ m1 and α ≥ 1.
(f1) f : Ω× R→ R is a Carathéodory condition and satisfies the growth condition

|f(x, t)| ≤ c0
(

1 + |t|δ(x)−1
)
, ∀ (x, t) ∈ Ω× R,

where c0 is positive constant and δ(x) ∈ C+

(
Ω
)

such that δ+ < αp− < p∗ (x) for all
x ∈ Ω.

Then problem (1.1) has a weak solution.
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Proof. Let ‖u‖ > 1. By (M1) , (f1) , (A3) and Proposition 2.2 (i), we get

I (u) ≥ m0

α

(∫
Ω

A (x,∇u) dx

)α
− c0

∫
Ω

|u|δ(x)
dx− c0

∫
Ω

|u| dx

≥ m0

α (p+)
α ‖u‖

αp− − c1 ‖u‖δ
+

− c2 ‖u‖ → +∞, as ‖u‖ → +∞,

Thus, I is coercive. Since I is weakly lower semi-continuous, I has a minimum point
u in X, and u is a weak solution of problem (1.1) . The proof is completed. �

Theorem 3.4. Assume that (M1) and the following conditions hold:
(f2) f : Ω×R→ R is a Carathéodory condition and satisfies the growth condition;

|f(x, t)| ≤ c
(

1 + |t|η(x)−1
)
,∀ (x, t) ∈ Ω× R,

(f3) f(x, t) = o
(
|t|αp

+−1
)
, t→ 0, for x ∈ Ω uniformly,

where c is positive constant and η(x) ∈ C+

(
Ω
)

such that αp+ < η− ≤ η+ < p∗ (x)
for all x ∈ Ω,

(AR) : ∃t∗ > 0, θ > m1

m0
αp+ such that

0 < θF (x, t) ≤ f(x, t)t, |t| ≥ t∗, a.e. x ∈ Ω.

Then problem (1.1) has a nontrivial weak solution.

Definition 3.1. We say that I satisfies Palais-Smale condition in X ((PS) condition
for short) if if any sequence {un} in X such that {I (un)} is bounded and I ′ (un)→ 0
as n→∞, has a convergent subsequence.

Lemma 3.5. Suppose (M1) , (f1) , (A3) and (AR) hold. Then, I satisfies (PS) con-
dition.

Proof. Let assume that there exists a sequence {un} ⊂ X such that

|I(un)| ≤ c and I ′(un)→ 0 as n→∞. (3.1)

Then, by (M1) , (A3) and (AR), we have

c+ ‖un‖ ≥ I(un)− 1

θ
〈I ′(un), un〉

≥ m0

α

(∫
Ω

A (x,∇un) dx

)α
−m1p

+

θ

(∫
Ω

A (x,∇un) dx

)α−1∫
Ω

A (x,∇un) dx

≥
(
m0

α
− m1p

+

θ

)(∫
Ω

A (x,∇un) dx

)α
By (A3) and Proposition 2.2 (ii), we can write

c+ ‖un‖ ≥
(
m0

α
− m1p

+

θ

)
‖un‖αp

−
.

Since αp− > 1, {un} is bounded in X. Therefore, there exists u ∈ X, up to a
subsequence, such that un ⇀ u in X.

Moreover, since we have the compact embedding X ↪→ Lη(x) (Ω) , we get

un → u in Lη(x) (Ω) and un → u a.e in Ω (3.2)
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By (3.1) , we have

〈I ′(un), un − u〉 = M

(∫
Ω

A (x,∇un) dx

)∫
Ω

a (x,∇un) (∇un −∇u) dx

−
∫

Ω

f (x, un) (un − u) dx→ 0.

By using (f1) and Proposition 2.1, it follows∣∣∣∣∫
Ω

f (x, un) (un − u) dx

∣∣∣∣ ≤ c3 ∣∣∣|un|η(x)−1
∣∣∣
η′(x)

|un − u|η(x) .

If we consider the relations given in (3.2), we get
∫

Ω
f (x, un) (un − u) dx→ 0. Then,

we have

M

(∫
Ω

A (x,∇un) dx

)∫
Ω

a (x,∇un) (∇un −∇u) dx→ 0.

From (M1) , it follows ∫
Ω

a (x,∇un) (∇un −∇u) dx→ 0.

that is, lim
n→∞

〈Λ′ (un) , un − u〉 = 0. By using Lemma 3.2 (v), we get

0 = lim
n→∞

〈Λ′ (un) , u− un〉 ≤ lim
n→∞

(Λ (u)− Λ (un)) = Λ (u)− lim
n→∞

Λ (un)

or lim
n→∞

Λ (un) ≤ Λ (u) . This fact and from Lemma 3.2 (iii) imply lim
n→∞

Λ (un) = Λ (u) .

Now, we assume by contradiction that {un} does not converge strongly to u in
X.Then, there exists ε > 0 and a subsequence {unm} of {un} such that ‖unm − u‖ ≥ ε.
On the other hand, by from Lemma 3.2 (iv), we have

1

2
Λ (u) +

1

2
Λ (unm)− Λ(

unm + u

2
) ≥ k ‖unm − u‖

p− ≥ kεp
−
.

Letting m→∞ in the above inequality, we obtain

lim sup
n→∞

Λ(
unm + u

2
) ≤ Λ (u)− kεp

−
.

Moreover, we have {unm + u

2
} converges weakly to u in X. Using Lemma 3.2 (iii),

we obtain

Λ (u) ≤ lim inf
n→∞

Λ(
unm + u

2
),

which is a contradiction. Therefore, it follows that {un} converges strongly to u in
X. The proof of Lemma 3.5 is complete. �

Lemma 3.6. Suppose (M1) , (f1) , (f3) , (A3)and (AR) hold. Then the following state-
ments hold:

(i) There exist two positive real numbers γ and a such that I (u) ≥ a > 0, u ∈ X
with ‖u‖ = γ.

(ii) There exists u ∈ X such that ‖u‖ > γ, I (u) < 0.

Proof. (i) Let ‖u‖ < 1. Then by (M1), we have

I (u) ≥ m0

α (p+)
α ‖u‖

αp+ −
∫

Ω

F (x, u)dx.
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Using the continuous embeddings X ↪→ Lαp
+

(Ω) and X ↪→ Lη(x) (Ω), there exist
positive constants c4 and c5 such that

|u|η(x) ≤ c4 ‖u‖ and |u|αp+ ≤ c5 ‖u‖ , ∀ u ∈ X.

Let ε > 0 be small enough such that εcαp
+

4 ≤ m0

2α(p+)α . By (f1) and (f3), we get

F (x, t) ≤ ε |t|αp
+

+ cε |t|η(x)
,∀ (x, t) ∈ Ω×R. Therefore, Proposition 2.2 (ii), we have

I (u) ≥ m0

α (p+)
α ‖u‖

αp+ − ε
∫

Ω

|u|αp
+

dx− cε
∫

Ω

|u|η(x)
dx

≥ m0

α (p+)
α ‖u‖

αp+ − εcαp
+

4 ‖u‖αp
+

− cεcη
−

5 ‖u‖
η−

≥ m0

2α (p+)
α ‖u‖

αp+ − cεcη
−

5 ‖u‖
η−
.

Since ‖u‖ < 1 and αp+ < η−, there exist two positive real numbers γ and a such that
I (u) ≥ a > 0, u ∈ X with ‖u‖ = γ ∈ (0, 1).

(ii) From (AR) , one easily deduces

F (x, t) ≥ c6 |t|θ , |t| ≥ t∗, a.e. x ∈ Ω.

In the other hand, when t > t∗ > 1, from (M1) we can easily obtain

M̂(t) ≤ m1

α
tα ≤ m1

α
t
m1
m0

α.

Thus, for any fixed ω ∈ X\ {0} , t > 1 and from Lemma 3.1 (ii), we have

I (tω) = M̂

(∫
Ω

A (x,∇tω) dx

)
−
∫

Ω

F (x, tω)dx

≤ m1

α

(∫
Ω

A (x,∇tω) dx

)m1
m0

α

−
∫

Ω

F (x, tω)dx

≤ m1

α (p−)
m1
m0

αp+
t
m1
m0

αp+
∫

Ω

A (x,∇ω) dx− c6tθ
∫

Ω

|ω|θ dx.

From (AR) ,it can be obtained that θ > m1

m0
αp+. Hence, I (tω)→ −∞ as t→ +∞. �

Proof of Theorem 3.3. From Lemma 3.5, Lemma 3.6, Lemma 3.2 (vii), (A4) and the
fact that I (0) = 0, I satisfies the Mountain Pass Theorem [19]. Therefore, I has at
least one nontrivial critical point, i.e., problem (1.1) has a nontrivial weak solution.
The proof of Theorem 3.3 is complete. �

Theorem 3.7. Assume that (M1) , (f1) , (AR) and the following
(f4) : f (x,−t) = −f (x, t) , for (x, t) ∈ Ω× R,

then I has a sequence of critical points {un}such that I (un) → +∞ and (1.1) has
infinite many pairs of solutions.

In order to prove Theorem 3.7, we need Lemma 3.8.
Since X be a reflexive and separable Banach space, then there are {ej} ⊂ X and

{e∗j} ⊂ X∗ such that

X = span {ej | j = 1, 2, ...}, X∗ = span
{
e∗j | j = 1, 2, ...

}
,



28 Z. YÜCEDAG

and

〈e∗i , ej〉 =

{
1, i = j,
0, i 6= j,

For convenience, we write Xj = span {ej} , Yk = ⊕kj=1Xj , Zk = ⊕∞j=kXj .

Lemma 3.8. If η(x) ∈ C+

(
Ω
)
, η(x) < p∗ (x) for any x ∈ Ω, denote

βk = sup
{
|u|η(x) : ‖u‖ = 1, u ∈ Zk

}
.

Then limk→∞ βk = 0.

Since the proof of Lemma 3.8 is similar to that of Lemma 4.9 in [13], we omit it.

Proof of Theorem 3.7. According to (M1) , (f4) and (AR) , I satisfies (PS) condition
and from (A5) it is an even functional. We only need to prove that if k is large
enough, then there exist ρk > γk > 0 such that

(A6) bk := inf {I (u) | u ∈ Zk, ‖u‖ = γk } → ∞ as k →∞;
(A7) ak := max {I (u) | u ∈ Yk, ‖u‖ = ρk } ≤ 0.
Thus, the conclusion of Theorem 3.7 can be obtained by Fountain Theorem [19].

(A6) For any u ∈ Zk, ‖u‖ = γk =
(
c8η

+βη
+

k m−1
0

) 1

αp−−η+ , we have

I (u) ≥ m0

α

(∫
Ω

A (x,∇u) dx

)α
− c0

∫
Ω

|u|η(x)
dx− c0

∫
Ω

|u| dx

≥ m0

α (p+)
α ‖u‖

αp− − c0 |u|η(ζ)
η(x) − c0 ‖u‖ , where ζ ∈ Ω

≥

{
m0

α(p+)α ‖u‖
αp− − c0 − c0 ‖u‖ , if |u|η(x) ≤ 1

m0

α(p+)α ‖u‖
αp− − c0βη

+

k ‖u‖
η+ − c0 ‖u‖ , if |u|η(x) > 1

≥ m0

α (p+)
α ‖u‖

αp− − c0βη
+

k ‖u‖
η+ − c0 ‖u‖ − c7

=
m0

α (p+)
α

(
c8η

+βη
+

k m−1
0

) αp−

αp−−η+− c0βη
+

k

(
c8η

+βη
+

k m−1
0

) η+

αp−−η+− c0 ‖u‖ − c7

≥ m0

(p+)
α

(
1

α
− 1

η+

)(
c8η

+βη
+

k m−1
0

) αp−

αp−−η+− c0
(
c8η

+βη
+

k m−1
0

) 1

αp−−η+ − c7

Because βk → 0 and α < αp− < η+, we have I (u)→∞ as k →∞
(A7) From (AR) ,we get F (x, t) ≥ c9 |t|θ − c10. Therefore, for any w ∈ Yk with

‖w‖ = 1 and 1 < t = ρk, we have

I (tω) ≤ m1

α

(∫
Ω

A (x,∇tω) dx

)m1
m0

α

− c9tθ
∫

Ω

|ω|θ dx− c10

≤ m1

α (p−)
m1
m0

αp+
t
m1
m0

αp+
∫

Ω

A (x,∇ω) dx− c9tθ
∫

Ω

|ω|θ dx− c10.

By θ > m1

m0
αp+ and dimYk = k, it is easy see that I (tω) → −∞ as t → +∞ for

u ∈ Yk. �
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