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p (.)-parabolic capacity and decomposition of measures
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ABSTRACT. In this paper, we develop a concept of p (.) —parabolic capacity in order to give a
result of decomposition of measures(in space and time) which does not charge the sets of null
capacity.
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1. Introduction and main result

The concept of capacity play an important role in the study of solutions of partial
differential equations; it permits to see that the functions in the Sobolev spaces are
defined better than almost everywhere. In the elliptic case, the notion of capacity is
related to the Sobolev spaces (see [4]). More precisely, let 2 C RY be open bounded,
for E C Q, the Sobolev p (.)-capacity of E is defined by

Co(y (B) = inf (lu"® + [Vul"®) da, 1
o @)= it () 4 [9up) do )
where

Spy (B) = {u e WHPL) (Q) 1 w > 1in an open set containing F and u > O} . (2

In the case where S, (E) = 0, we set Cp(y (E) = oco. One of the properties of
the elliptic capacity is the following: for every u € W'P() (Q) | there exists a p(.)-
quasicontinuous function v € W) (Q) such that u = v almost everywhere in Q i.e
u = v a.e. Q and for every £ > 0, there exists an open set U. C Q with C,y (U:) <€
such that v restricted to Q \ U is continuous.

The theory of capacity is an essential tool in the study of the existence and uniqueness
of the solution of some elliptic and parabolic problems with measures data. Let’s recall
that in the context of constant exponent, the authors in [3] proved that every diffuse
measure p i.e. a measure which does not charge the sets of null p—capacity belongs
to L' (Q) + W1 (Q) with p’ the conjuguate of p, that permit them to prove the
existence and uniqueness of entropy solution for the following problem.

A(u) = in Q
{u(z)O 8 on 0f), (3)
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where A is a Leray-Lions type operator.
In the context of variable exponent, a similar approach is used in [12] for the elliptic
problem
{ V.a(z,Vu)+p(u)d>p in Q 0
u=20 on 0,
where p is a diffuse measure. In [12], the authors used the ideas of [3] to prove that
for every diffuse measure p, there exists f € L' () and g € W17 ) (Q) such that
u = f+g, that permits them to prove the existence and uniqueness of entropy solution
of (4).
The notion of parabolic capacity have been introduced firstly in the quadratic case
p = 2. The thermal capacity related to the heat equation, and its generalizations have
been studied, for example, by Lanconelli [9] and Watson [18]. In the papers [1, 6, 7],
the concept of parabolic capacities for constant exponent are defined in terms of
function spaces. Droniou, Porretta and Prignet in [6], introduced and studied the
notion of parabolic capacity associated with the initial boundary valued problem
w+Aw)=p in Q=(0,T)xQ
u = ug on {0} xQ (5)
u=0 on (0,7) x 0Q.

They worked with the space
, !/
W= {u € L? (0,T; W' (Q) N L*(Q)) ;us € LP (O,T; (WOLP (Q)NL? (Q)) >} :

to get a representation theorem for measures that are zero on subsets of @) of null
capacity, more precisely they proved the following result (see [6]).

Theorem 1.1. Let i be a bounded measure on @ which does not charge the sets of null
capacity. Then there exists g1 € LV (O,T; WLy (Q)) ,92 € L (0,T; wh?(Q) N L? Q)
and h € L* (Q) such that

T T
/ iy = / (g1, 0) dt — / (g2, o0) dt + / hodudt, (6)
Q 0 0 Q

forallp € C°([0,T] x ), where (.,.) denote the duality between (W7 () N L? (Q))/
and WP (Q) N L*(Q).

In this paper, we extend the theory developed in [6] in the case of variable exponents
(see [14, 15] for the theory of PDEs with variable exponents). The paper is organized
as follows: in Section 2, we recall some basic notations and properties of Lebesgue
and Sobolev spaces with variable exponents. In Section 3, we introduce and study
the notion of p(.) —parabolic capacity. In the last section, we show the connection
between measures defined on the o-algebra of borelians of @ and the notion of p (.) —
parabolic capacity and, we prove a theorem of decomposition of measures.

2. Preliminary

In this paper, we assume that

p(.):Q — R isa continuous function such that
1<p. < py <+oo,
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where p_ := inf p(z) and p; := sup p(x).
ze z€Q

We denote the Lebesgue space with variable exponent LP() (Q) (see [4] ) as the set of
all measurable function v : @ — R for which the convex modular

Pp() (1) ZZ/ Ju"® dz
Q

is finite.
If the exponent is bounded, i.e., if p; < 400, then the expression

[[ull ) := inf {A>0:pp) (u/X) <1}
defines a norm in LP) (), called the Luxembourg norm.
The space (Lp(') Q), H.||p(.)) is a separable Banach space. Moreover, if 1 < p_ <
p+ < 400, then LP) (Q) is uniformly convex, hence reflexive and its dual space is

/ 1

isomorphic to LP' ) (), where —— 4+ —— =1, for z € Q.

p(z) p'(x)

Finally, we have the Holder type inequality

1 1
wode| < [ — + —— | ||u vl iy, 8
[ wvda] < (54 ) Tl ol )

for all u € LPM) (Q) and v € 780 Q).
Let

w0 @)= {ue L0 () : [Vul € L' ()],
which is Banach space equiped with the following norm

[ u

10y = Nl + [ Vull, ) -

The space (Wl’p(') (), ||.H1’p(.)) is a separable and reflexive Banach space.

An important role in manipulating the generalized Lebesgue and Sobolev spaces is
played by the modular p,.y of the space ) (©) . We have the following result.

Proposition 2.1. (see [8, 21]) If un,u € e (Q) and py < oo, the following prop-
erties hold true.

() [y > 1= Il < oy () <l

(i) lull g < 1= Nl < oy () < Nl

(i11) [[ull ) <1 (respectively = 1;> 1) < pp() (u) <1 (respectively = 1;> 1);
(1) lun |l ) = 0 (respectively — +00) < pp() (un) < 1 (respectively — +00) ;
(0) ooy (u/ Nully) =1

For a measurable function u : 2 — R, we introduce the following notation.
p1pcy (W) = / ulP®) da —i—/ V[P dz.
Q Q

Proposition 2.2. (see [17,19]) Ifu € WHPL) (Q) | the following properties hold true.
() gy > 1= Tl < gt (00 <

(i) [l gy < 1 = ull2 ) < pyy (@) <l

(@40) |ully ) <1 (respectively = 1;> 1) < p1p() (u) <1 (respectively =1;>1).
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Following [2], we extend a variable exponent p : Q — [1,+00) to Q = [0,T] x Q by

setting p (t,2) = p (z) for all (t,z) € Q.
We may also consider the generalized Lebesgue space

PO (Q) = {u : Q — Rmeasurable such that// u(t,2)[P™ d(t,z) < oo}
Q

p(:c)
d(t,z)<1p,

endowed with the norm

lull Loy lnf{/\>0 //‘

which share the same properties as LP(") ().

3. Parabolic capacity and measures

3.1. Capacity. In this part, we introduce our notion of capacity, following the ap-
proach developed in [6].

Definition 3.1. Let us define V = Wol’p(') (Q) N L? (), endowed with its natural
norm ||.||W01,p(_)(m + ||l 2() and the space

Wy() (0,7) = {u e 1= (0,T:V); Vu € (1) (@)Y, w € L0 (0,1 V') |
endowed with its natural norm Hu||Wp(_)(0’T) = |ullpr- 0,70y + VUl ooy +
||utHL(p*)/(O7T;V/) .

Since WO1 #() (Q) and L? () are separables and reflexives Banach spaces, it follows

that V is a separable and reflexive Banach space. Consequently, the following result
can be proved similarly to that in [5]; thus, we omit its proof.

Theorem 3.1. The space W) (0,T) is a separable and reflexive Banach space.
We also have the following result.

Proposition 3.2. i) W, (0,T) is continuously embedded in C (0,T; L (2)) .

ii) For all 0 € C*° (R x RY) and u € Wy (0,T), 6u € Wy (0,T) and there exists
C (0) not depending on u such that ||6“HWP(‘)(0,T) <C () ||uHWp(.)(07T) .

Proof. i) Since V < L*(Q) <= V', thanks to [5], W, (0,T) is continuously embed-
ded in C (O,T; L? (Q)) i.e. there exists C' > 0 such that, for all u € W),y (0,7,

ulleo,rizz@y < Cllullw, o) -

1) The fact that 6 is a smooth function implies that 6u € LP- (0,73 V) and there
exists C'(0) > 0 such that [|full o- 1.1y < C(0)lulle- 7,y We know that
V (0u) = uVO + 0Vu. Since 6 is a smooth function, there exists C () > 0 such
that ||9Vu||(Lp()(Q))N < C(b )HVUH(L;’(.)(Q))N; moreover, using Poincaré type in-

equality, one shows that ||uV0||(Lp() )" < C(0 )||Vu||(Lp() @) - Therefore, we

po@)® = GOVl g0 @)~
distributions, (6u), = uf; + Ou,. The second term belongs to L®-)(0,T; V') and

can write HV(uQ)H( . We have, in the sense of
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||0ut||L(p—)/(0,T;V’) <C (0) ”ut”L(p—)l(O,T;V’) . Since Wp() (OvT) = C (OaT7 L? (Q)) —
L(pi) (O7TaL2 (Q))7 then uet € L(pi) (03T7L2 (Q)) and ||uet||L(p*)l(O,T;L2(Q)) <

C(0) llullyy, (0,1 - We know that L* (@) = V/,s0 L2 (0, T; L* (Q)) = L*-) (0,75 V"),
which implies that

uby € LP-)(0,T; V') and [wb:ll o> (o 1y < CO) [l 0,1) u

Remark 3.1. Since L) (0,T; V') = (LP~ (0,T;V))’ (since V is a separable reflex-
ive space), and since LP- (0,T;V) = LP- <O,T; Wol’p(') (Q)) NLP=(0,T;L% (Q)) =
ENF, with ENF being dense both in E and F, we have L= (0,T;V') = E'+ F' =
Lw-) (O,T; W' (Q)) + L= (O,T;L2 (Q)) and the norms of these spaces are

equivalent.

We introduce the space ﬁ//p(,) (0,T) by

N

Wy (0,T) = {u e = (0.1 Wy (@) N L* (0,7 12 (@) s Vu € (170(Q))

w e L0 (0T w10 ()}
Remark 3.2. W7 () (Q) < V'  then Wp(,) (0,T) is continuously embedded in
Wpy (0,T).
Now, we give the definition and some properties of capacity.
Definition 3.2. If U C @ is an open set, we define the parabolic capacity of U as
Cap,,( ) (U) = inf {||uHWp(‘)(O7T) cu € Wyy (0,T),u > xy almost everywhere in Q} .
(9)

Remark 3.3. We will use the convention that inf() = +o0o and for any borelian
subset B C @ the definition of capacity is extended by setting

Cap,,(y (B) = inf {Capp(v) (U), U open subset of @, B C U} . (10)
Proposition 3.3. The set function E — Cap, (E) has the following properties.
Z) If Eq1 C Es, then
Capy, .y (E1) < Capy, (E2) . (11)
i) For E; C Q, i € N, we have

Capy(. <U Ez) < Z Capy, (Ei) - (12)

i=1

Proof. 1) Firstly, we consider the case where F; and Fy are open sets of Q.
Since Fy C E5, we have

{u € Wpy (0,T) ,u > xg, ae. Q} D {u € Wyy (0,T),u > xp, ae. Q} )



p(.) DECOMPOSITION OF MEASURES 35

Hence,

Capy) (E1)

inf {HuHWP(_)(O,T) cu € Wy (0,T),u > xg, ae. Q}

inf {HuHWP(_)(O’T) cu € Wyy(0,T),u > xp, ae. Q}
< C’app(,) (E2). (13)

Now, we suppose that E; and Es are two borelians subsets of Q such that E; C Es,
then we have

{U open set of Q/E; C U} C {U open set of Q/E; C U}
Then, it follows that
Cappy (E1) = inf{U open set of Q/E; C U}
inf {U open set of Q/E, C U}
Capy) (B2) . (14)

IN

<
<

i) If Z Capy(y (E;) = +00, then we have
i=1

Capy() <U Ez) = Capy(, (U {E;/E; # @}) < 400 = Z Cappy (B;).  (15)
i=1 i=1 i=1

Assuming that ZCapp(.) (E;) < oo. Let U; be open set containing E; such that
i=1

Capp(y (Us) < Capyy (E;) + ; and wu; be such that u; > xy, a.e. in @ with

£
||Ui‘|wp(_)(o,T) < Capyy (Ui) + i Then,

n
D

i=1

< Z ”uiHWp(_)(O,T) < Z Capy(.) (E;) + &
Wp(_)(O,T) =1 =1

ie. Z u; converges strongly in W) (0,7').
i=1

o0 oo
Let’s now consider u = Zui; we have u > xy a.e. in @, where U = U U, so that,

i=1 i=1
U being open,
Capy(y (U) < lullw, oy < 3 il oy € 3 Cappey B+ (16)
i=1 i=1
oo
Since U E; C U, from (16) we get (12). O

i=1

The notion of capacity can be defined alternatively using compact sets of Q). Before
that, we introduce the following density result(for the proof, we refer the reader to
the proof of Theorem 2.11 in [6]).
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Lemma 3.4. Let Q be a bounded subset of RN and 1 < p_ < py < oo. Then,
CZ ([0, T] x Q) ids dense in Wy (0,T).

Definition 3.3. Let K be a compact subset of (). The capacity of K is defined as

cap (K) = inf {Huuwp(_)(oj) cueC([0,T] x Q), u> XK}.

The capacity of any open subset U of @ is then defined by
cap (U) = sup {cap (K) , Kcompact, K C U}
and the capacity of any Borelian set B C @ by
cap (B) = inf {cap (U) ,Uopen subset of Q, B C U}.
We have the following result.

Proposition 3.5. i) The capacity cap satisfies the subadditivity property.
it) Let B be a borelian subset of Q. Then, cap (B) = 0 if and only if Cap,.y (B) = 0.

Proof. The proof is similar to the proofs of Proposition 2.13 and 2.14 in [6]. O

Now, we give a characterization of null capacity.

Theorem 3.6. Let B be a borelian set in Q . Let tg € (0,T) fized. One has
Cap,y ({to} x B) = 0 if and only if meas (B) = 0.

Proof. Assume first that Capp) ({to} x B) = 0 and let K be any compact set con-
tained in B, so that Capy,)({to} x K) = 0. Since, by Proposition 3.5, we also
have that cap ({toc} x B) = 0, then, for all & > 0, there exists a function . €
C° ([0, T] x Q) such that ||¢8HWP<,>(0,T) < e and 9. (to) > 1 on K. Since Wy (0,7)

is embedded in C ([0,77]; L* (2)) , ones has then

2 2 2
meas (K) < [ 10 () do < el sy < il o.m) < O

So, we deduce that meas (K) < Ce?, and from the arbitrariness of €, we get that
meas (K) = 0. Since this is true for any compact subset contained in B, by regularity
of the Lebesgue measure we conclude that meas (B) = 0.

Conversely, if meas (B) = 0, then there exists, for all € > 0, an open set A, such that
B C A, and meas (A;) < e.

Let us consider an £ > 0 fixed in what follows and, let K,, be a sequence of compact

sets contained in A, such that K,, C K, 41, for all n > 1 and U K, = A..
n=1

Let ¢, € C.(A.) (the space of continuous functions with compact support in A.)
be such that 0 < ¢, < 1, ¢, =1 on K, and ¢, < p,+1. Then, we consider for
to € [0,7], the problem

(Wn)e — div (|vwn|”<”0)*2 v¢n) =0 in (to,T) xQ

Vo (to) = ¢n in Q (17)

U, =0 on (tg,T) x 09,

which admits (see [20]) a unique weak solution

b € L= (10, T;Wo P (@) N C (Ito, T); 2 ()
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’ / N
and (¢,), € L®-) (to,T;W*LP ) (Q)) with Vi), € (Lp(') ((to, T) x Q)) such that
for all v € C' ([to, T] x Q) with v (.,T) =0,

T T
- / on (2) v (t, ) dz — / / Pnvydadt + / / IV, [P 72 Ve, Vodadt = 0
9] to Q to Q

(18)
holds true.
It’s not difficult to see that v, € LP~ (to,T; V) and by Remark 3.1 we have (¢,), €

L®=)" (o, T; V') hence, 1, € W) (to, T) . We know that (¢, (s),v(s)) € V? for all
s € [to,T] and V « L? (Q) < V', then thanks to [6] we have

T T T
/ / {ll)nvdxdt == / <'l/]n, U>L2(Q),L2(Q) dt = / <wn7 /U>Vl,V dt. (19)
to Q to tO

Moreover, (¢, v) satisfies the following integration by part formula

T
/ (ve, Yn)dt = (n (T),v (T)>L2(Q),L2(sz) — (¢n (to) v (t0)>L2(Q),L2(Q)

to

T
[ ) g 20)

to

Therefore, using (19), (20) and the fact that v (.,T) = 0, we can rewrite (18) as
follows.

T T
/ (¢n), vdxdt + / (Ve [P 2 W, . Vudadt = 0. (21)

to to

Since CF° ([to, T'] x ) is dense in W, (to,T'), we can choose 9, as a test function

in (21) to obtain
T T
/ /z/)n (wn)t+/ /|wn\p(“ dadt =0, (22)
to Q to Q

which is equivalent to

1 T 1
o [t [ [ [0l duit =3 [ e (23)
2 Jo to JQ 2 Jo
So,
T 1
/ / IV, [P dwdt < 3 / 2 da. (24)
to JQ Q

Therefore, using Proposition 2.1 we obtain

T P (T o
||vw||(LP(v)((t0,T)><Q)) < max (/t Vi [ dacdt) , (/t |V, [P dxdt)

0/ o/

< max {(; /Q @idx> p%, (; /Q <p,%da:> pl*} (25)
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and
T o
/ Ivels dt < /max{/ Ve [P d, </ wm(m)dx) }dt
to Q Q
T o T o
< / / Vb [P davdt + T~ 7% ( / / Ve, [P d:cdt) (26)
to Ja to JQ

then it follows that

g - 1 2 1-7= (1 2 ‘%
: ||wn||W01,p(-)(Q) dt S 5 o Qondx + T P+ 5 o Spnd'r . (27)
0
Hence,

1 2 172—_ 1 2 Zi =

In (21), we take v = YnX(z,,+) as a test function, where x, s is defined as the
characteristic function of (¢, t), t € [to, T] then, using the integration by part formula,
we get

T
1
L gt d / Vi dodt = 5 [ e, (29)
Q to JQ 2 Jo
which implies that
3 [ onCnrar< s [ e (30)
Consequently,
3
nlimorsmcon < ([ #2e) (31)

Let v € LP~ (0, T3 V) such that |[v|[ e 7,y < 1, for every k > 1,
Ay ={t€[0,T]:|jv||,, >k} and A= U Apg.

E>1
We have
meas (4) = /kdt< /||vHth< /||va dt
1 1
< 1 Il s 2l iy < 5 (32)

Hence, we deduce by letting k& — oo that meas (A) = 0.
We use (22) and the Holder type inequality to get

T
’<(¢n)t7 > (r— )(thV)L” (to,TV)’ = / <(7/}n)tav>v/7vdt

to

T
vdzdt| < Vb [P =2 Vi, . Vodadt
t
to Q

to Q
g ()-1 g ()1
N (T N R A [
A |Viby| O Vol \ |V | O

el - (33)

IN
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Since meas (A) = 0, we deduce that
T
[ Iwear=] el
to ()

[ b e+ [
A () ([to, T\ A1]

[ v elas [
A p'(.) [[to,T]\A1]

/[[to,T]\Aﬂ

which implies that

‘<(¢n)t 7U>L(p’)/(t0,T;V')>Lp’ (7507T;V)‘ = /

[[to, T\ A1]
</
([to, TT\Ax1]

T

0
1— /1 T
<(T—to) @)= /
to

96Ot < /
() ¢
Hence, we get

/ e
w7 a)
P ()
1_(/1) T
6oy i €T O (
0

Consequently, we use Proposition 2.1 to get

190aPO7H| ol at
P ()

IN

190 POH| ol at
()

IN

I N 2 (34)
()

[IwwaPO7 el at
P’ ()

‘|v¢n\p(')‘1 Hp/(() dt (35)

198707

/ i
®) dt) . (36)
()

T ( ’) T &
NN
/ H|V¢|p('>*1H ’ ’dtg/ max /\an|p($)d:v, (/ V4| )dac> £ % at
to p'(-) to Q Q
@)

T ISRy Com
< / / IV [P dadt + (T —tg) ¢+ / / IV |P) dadt . (37)
to Q to Q

Thus, we have

|| (,l/}n)t ||L(P_)/ (to,T;V")

)\ @
1 T (»")_ T o) (»")_
oo =, (@) .
<t O | [ @ dsar 7O (] 90,0 dade
tos 2 tod Q
: )\ @I-
(»")_ w)-
e 1 -5~ (1 )
<7 - §/¢id:¢+T N (2/90de>( " . (38)
Q Q
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Finally, combining (25), (26), (31) and (38), we conclude that

”an||LP(~)((tO,T)xQ)"_”wnHLPf(tO,T;WS’PU(Q))"_”wn||L°°(t0,t;L2(Q))+||(wn)tHL(pf)/(tmT;V/)
1
1 1 P— P
1 — (/1 Py 1 _r= /1 Py
< f/ oldx | + f/ o2da +—l— f/ @idm—&-Tl Py 7/ oldx '
2/ 2/ 2/ 2/a
, o)\ WI-
1 (»")_
2 -~ (1 1-7 1 v’
+</ gaidx) +7 - f/goidx—i-T )4 (/ gaidx)( = (39)
Q 2 Jo 2 Ja

Let us now construct a function 1, defined on [0, T] by setting

U = 1y in Jto, T] x ©
T (T— t(Tt_tO)> in  [0,t] x Q.
0

By (39), we have

fos

o ) ey
(LPO) ((t0,T) x ) v v )t (=) (t0,7;v7)

LP— (to,T; Wy P () H HLOO(tO,t,L2 Q)
_1

1 p_
1 2 P 2 7 -= (1 2 "
< (5o )+ (honlioy) ™ ( leallscayt T (5 ol )

o LG RNCE
T 2 G 2 v
Hloalirey + T O Glenllaa + T 7 (Flealiae) 7 | (0

-+

Since ¢, € C.(A:) and 0 < @, < 1, we deduce that ||<Pn||L2(Q) < meas (Ae) < e,
then, it follows that

+ ||¥n

(LPO((to,T)x)) ‘

fos.

)+ ]
SRR ¥n L= (to,t:L2(2))

1 P— p_
~ 1 \7- 1 1 1_P= /1 \ Pt
+H( n) H ! S 2° + et + 78+T p+ 2° +€
v tlL =) (0, 1;v7) 2 () 2 2

1
, )\ &
() SRS

1——A— 1 1—7— 1 p’
+7 - ge+ T 4 <2s>( s . (41)

Nl=

The fact that v, belongs to C ([to, T], L* (Q))7 implies that 1, € C ([to,T] x ),
~ 1
then it follows that v, € C ([to, T] x Q). Therefore, the set U,, = {wn > 2} is open.
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Since U, is open and 21;,I > xv,, we have

Capy(y (Un) < 2H¢n||wp(v)(o,T) (42)
1\ 1 1\ )\
< <2€> () + <2€—|—T1_”+ <2s> +> te?
1
, @)\ o
T 2 B NGl
+7 - 5o+ T Cn (25) : (43)

Since the sequence ¢,, is nondecreasing, we have that the sequence 1;” is nondecreasing
as well, hence U,, C Uy 41, Capy.) (Uy) is also a nondecreasing sequence and bounded
too. Let’s show that

Capy(y (Uso) = lim Capp() (Un), (44)

n— oo

where Uy, = U U,.
n=1
In fact, we have U,, C Uy, then

lim Capy) (Un) < Capp() (Uss) - (45)

n—oo

Now, we take (u,),cn € Wy (0,T) such that

. 1
Un > Xu, a-e.in @ and ||“n||wp(_)(07T) < Cappy (Un) + e

Thanks to (42) , (uy),,cy is bounded in W),y (0,T) , then we can extract a subsequence
still denoted by (uy),,cy such that u, — u weakly in W,y (0,T) and a.e. in Q. Since
U, is nondecreasing and (uy),,cy converges almost everywhere to u, we deduce that
u > v, a.e. in @, hence it follows that

Capy() (Uso) < ||UHWP(,)(0,T) < linrgior.}f ||Un||wp(_)(o,T) < HILH;O Capy() (Un) . (46)

Combining (45) and (46) , we obtain (44).
Since ¢, = 1 on K, for each n and {tg} X Ac D {to} x B then, we conclude from (44)
and (45) that

Capp(.) ({to} xB) < Capp(A) (Uss) = lﬁg C'app(_) (Un)

1
1 P_
1 \7»— 1 1 _P— /1 \ Pt
(25> ”6)””(25”1 " (2>> el

+7 - §5+T COn <2(>3>p+ . (47)

IN

Hence, letting ¢ — 0 in (47), we deduce that Cap,) ({to} x B) =0 O
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2. Quasicontinuous function.

Definition 3.4. A claim is said to hold Capy)-quasi everywhere if it holds ev-
erywhere except on a set of zero p(.)-capacity. A function u : @ — R is said to
be Cap,-quasi continuous if for every € > 0, there exists an open set U. with
Capy.) (Uc) < € such that u restricted to @ \ Uc is continuous.

In this section, we prove that every element of W),y (0, T") admits cap-quasi continuous
representative. We recall that the approach developed in elliptic case (see [4]) cannot
extend in our situation since if u € W,y (0,T), one may have |u| & W,y (0,T) (see

[6])-

Lemma 3.7. (i) Let u belongs to Wy (0,T); then there exists a function z in
Wp(i) (0,T) such that |u| < z and

1 o oy FOm Ty
I2lls%, 0. <€ ([U]f ol (o (7] A (7 o Y] A I (48)
where
2 2 (p-)
[u]* = pp() (|vu|) + ||ut||L(p*),(0,T;V’) + ||UHL°°(0,t;L2(Q)) + ||Ut||£)(p_),(0,T;V/)
el iy + el ooy oy Il e 51200 - (49)

(49) If u belongs to LP—(0, T’ W&’p(')(ﬂ))ﬂL“(Q) and uy in LP=)(0,T; W10 (Q))+
LY(Q), then there exists z € Wy (0,T) such that |u| < z and

[ <C ([u]** TN o L 1 ’+> 7 (50)
where
[ = Pp) (V) + [0l e .12 (02)) + \\Ut\|L<p (0,7 W10 ()4 L1 (Q) (51)

+ ”utHL(zsf)’(OVT;W—l,p’(.)(Q)>+L1(Q) + ||ut||L(T)7)/(O’T;W—l,pl(.)(Q))+Ll(Q) HUHLOO(Q)

and

_ 2
[2] = ||Z\|ip7( ) + | t|| 1200 0,752 + 1Vl - (52)

0,7, WP () L(" )/(0 V)

Proof. We divide the proof in two steps.
Step 1. Let us consider the penalized problem

(ue)t — Ap(yue = ! (ue —u)” in (0,7)xQ

o) (53)
u: (0) = u™ (0) on
ue =0 on (0,7) x 0.

According to [11], we can prove that this problem admits a nonnegative solution u.
in € ([0,7]; L% (Q)) N LP- (o,T; wlre) (Q)) .
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Taking u. — u as a test function in (53) then, for every ¢ in [0, 7] we have

/Ot<(u5—u)t,u€— d8+//|Vu5|p dzds = = // e —u) (ue —u)dzds

/ / |Vu. |p(r) ? Vu..Vudzds —/ (ug, ue — u) dds.

0

By integration by parts formula and the fact that (ue —u)  (ue —u) <0, we deduce

that
1 t t
f/ [ (t)dx—i—/ /|Vu5|p(w) dﬂcdsg/ /|Vu5\p($)_2VuE.Vudxds
2 Ja 0 Jo 0 Jo

1 t
+7/ |uc (0) fu(0)|2dx7/ (ug, ue — u) dzds;
2 Ja 0

which implies that

1 ¢ ¢ _
§/Q|u5|2 (t)dx—i—/o /Q|vu5|1’<w> dxdsg/o /Q|Vu€|p(75) 1|Vl deds
1 5 ¢
+§ |u(0)|” dx + lue ()] |u(t)] de — (ug, ue —u) ds.
Q Q 0

Now, we use the Young inequality to obtain

t 1 t
/ / |Vu5|p(ac)fl |Vu|dedt < or" / |Vu|17(:v) dzdt + 5/ / |Vu€|p(ac) dzds
0 Ja Q 0 Ja

and
1 2 2
[ tutolde < § [ uoP dos2 [ o) s

/ lue|? (t) do + = / / V") dads < 2P+/ \Vul"™ deds  (54)

t
2
+§ ||U||Loo(o,T;L2(Q)) _/o (g, ue — u) ds.

Thus,

If we are in case i), u is in W) (0,7) and we have

t t
[ el < [l e - ul a
0 0
t t
g/ sl e = w0 dt+/ ol e — e (55)
0 0 0

< ||ut||L(p*)/(O,t;V/) Hue - ’LLHLP_ (O,t;Wol’p(‘>(Q)) + Hut”Ll(O,t;V’) ”uE - UHLOC(O,I‘,;L2(Q))

< ||ut||L(pf>/(O7T;V’)||u5 - U”Lp, (07t;W01’p(’>(Q)) +C ”ut||L(p7)’(O,T;V/)HUHLOO(O,t;Lz(Q)) '
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Thanks to Proposition 2.1 and Holder inequality, we have

P
[|ue — ull . (O t.Wl,p(,)(Q))

§/ max{/ IV (ue — u)[P™ dz, (/ [V (u —u)pz)dm) }ds (56)

p—

t ' 2
< / / IV (ue — u)[P®) dads + ¢1—@=/P+) (/ / IV (ue — )P dccds) "
0 Jo 0 Jo

t
Hence, if/ / IV (ue — u)[P™) dads > 1, we deduce that
0 Jo

— p7
[|ue UHLL (0 t_W1,p(.)(Q))

//|V ue — )P dads + TP~ /’”)//\V w) [P dads

< (Lert i) //(|w€|+|vu|)1’<w>dxds
0 Q

t
< (1+T1*(”*/p+)>/ /2p+*1 (1IVueP) 4 |9u”™) dads
0 JQ

t t
< (1 +T1‘(p*/”+)) 2P+ (/ / V[P d;vds—i—/ / V"™ dxds) (57)
0 Q 0 Q

Since from the Young inequality, we have

||utHL(:Df)/(07T;V/) HUE - u”LP_ (O,t;Wol’p(')(Q)> (58)

py+2 ||’U,5 - ’U’HLIL (0 t'Wl’p(')(Q))

—9 (1 4+ 71 /P+)>

||ut||L(P )/(OTV/) p++2
27 p- (1+T1 (p- /p+))

’ ||p7 1

(p_) (P4 +2) LP— (O,t;W vp(')(Q))

<9 1—(p- /m)) o ) 0
=2 (1 +T Hu HL“’ ' (0,15v7) * 20++2 (1 4 T1=(p-/p+))

flue —

t
Then, if / / IV (ue — u)|P™) dads > 1, by (57) and (58) we deduce that
0 JQ

||utHL(p*)’(O,T;V’) HUE - Iu’”Lp, (O,t;Wol’p(')(Q)) (59)
(r_) (r4+2) o o) ()
P_ p-/p+
<2 (147 )7 el o
1 p() 1 p()
+- |Vu |7 deds + — [ |Vu " dads.
4 Jo Ja 4 o
¢
If/ / IV (ue — u)|P™) dads < 1, from (56) we get
0o Ja
lite = ull o o g ey S (1 L /m))p, ; (60)
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which implies that
1

HutHL“"—),(O,T;V’) Hua - U”Lp (0 t; Wl p( )(Q)) (1 + Tl (p- /p+)> " ”ut”L(p—)/(O,T;V’) .

(61)
Therefore, using (59) — (61), we deduce that
||ut||L(p*)/(O,T;V' ||’Z,L5 - UHLP7 (O t-Wl’p(')(Q))
(p_) (P4 +2)
<2 (1T /p*)) e (62)

L“’ >’(0 V')
- 1
1 Tlf(P—/:DJr) P oy - v p(x) dxd =l v/ p(z) dxds.
+( + ) ||ut||L( =) (O,T;V’)+ 4 0 Q| 'U,5| €z S+ 4 Q| 'LL€| ras
Note also that, from the Young inequality, we have
C ||Ut||L(p_)/(O,T;V/) ||u — Ue HLOC (0,t;L2 (Q))

1
<C ||Ut||L(p,)’(07T;V/) ||U||Loo(o,t;L2(Q))+ 4C ||Ut||L(p,)’(o7T;V/)+ 1 ||UsHLoo(o,t;L2(Q))

2 1 2
<C ||U’t||L(p (O,T;V’) ||u||L°°(O,t;L2(Q))+ 16C* ||utHL(p*),(O,T;V’)+ TG ||u5HL°°(O7t;L2(Q))
2 1 2
< C IlutHL(:ﬂ (O,T;V/) ||’U’||L°°(O,T;L2(Q))+ 1602 ||Ut||L(p7),(O,T;V/)+ g ||u5||L°°(O,t;L2(Q)) :
Consequently,

/

(p_) (P4 +2)

: (p— ,
/0<ut,u5—u>dt’ < 2 P (1—1—T1 (p- /’”)) ” ||Ut||(Lp<;z>’(0’T;V/)

N 1 [ v
T (1 + 71=(—/p+) ) - H“tHL@—V(o vyt Z/ / |Vu€|1’( ) dads
o 0 Jo

1 z
+Z/ \Vu|P® dads + C luell ooy .y 1l oo 0,22 ()

1 2
+16C ||UtH (P ) (0,T;V") g ||u5HL°°(O,t;L2(Q)) : (63>
Combining(54) and (63), we obtain

1 2 1 2 1 [t "

£l @ e = ooy + 5 [ 190 ot
<c( [ 1vul'™ dedt + Jus|? oy + [lu? + | %2
Ve ML= 0,1v) L=(0,1522(2) TN Loy o 1ovy

Hluell gy o oy + Hut”L(P—)/(O,T;V’) ”“”LM(O,T;LZ(Q))) ’ (64)

which implies that

2 _
el oo 0,6:L2(2) T+ HUeHip,O’T;WLp(.)(Q)
<C (/Q |Vu|p(w drdt + ||Ut||L(p ) (0,757 + ||U||Loo 0,1502()) T ||ut||L(p ) (0,T5V7)

+ HutHL(P—)'(O’T;V/) + HutHL(pf)’(O,T;V/) ||u||L°°(0,T;L2(Q))> : (65)



46 S. OUARO AND U. TRAORE

Now, we are in the case i7) and we prove an L™ estimate on u.. Let Gy be defined
on R by G (r) = (r — k)", where k = [ull oo () - We take G (ue) = (ue — k)t asa

test function in (53), and using the fact that G4 = (G})""), u. > 0, we obtain

1 _
/ VG (u)[P™) dadt = / G, (ue) [ Vue "™ dadt < / = (ue —u)” Gy (ue) dadt
Q Q Q¢
and since (ue — u) Gy (ue) = 0 for k = [Juf| () , then it follows that

lucll Lo (@) < Nl Ly -

Thus, writing u; = uy + u7, with u; € - (O,T;W_l’p/(') (Q)) and uf € L' (Q)

1
such that Hut HL(T,/)_ (0,75 120 (2)) +Hut HLI(Q) <2 HUtHL(L)’(O,T;W—l,p/<-)(9))+L1(Q) ’
one has
t t
2
/0<Ut7 ue —u) ds| < /OHU% ||W—1,p'(.)(Q)HU - UEHWOLP(-)(Q)dt + Hut ||L1(Q)Hu - UEHLOO(Q)
1 2
< HL("'L (0,65W 12" O () 1w = well 1o (O,t;W()l’p<'>(Q)) +2 | ||L1(Q) lull L= (@)
2
< ellon- oz sy 14 = Uellio- (ompro @) + 2 1ellzr @) Il
< 2 ||ut||L(:ﬂ (0 T;W_l’Pl(-)(Q))+L1(Q) Hu - uEHLPf (O,t;Wol’p(')(Q)>
+4 ||ufHL(p (O,T;W‘1=p/(')(ﬂ))+Ll(Q) ”uHLOO(Q) . (66)
From (62), we get
2 ||ut||L(p*)/(O,T;W‘lvp,(')(ﬂ))+L1(Q) ||u€ - U||Lp7 (O,t;Wol"P(')(Q)>
’ (p—)/
(p_) (P +2)
T — 1=(p-/p+)) P-
<2 (1 4T - ) 2%, (0w () +2(@)
+ (1 + Tli(pi/er)) - ||2utHL(p*)I(O,T;W_l*pl(')(ﬂ))-‘rLl(Q)
1/t 1 -
+ Vue P dads + ~ [ V"™ dads. (67)
4 4
0 JQ Q
Therefore, using (54) and (66)-(67), we obtain
1
i lue|® (t) da + = / / |Vue[P™) dadt (68)
Q

(x)
=¢ (/ [Vul"™ ddt + ullz o 2o + H“t”m ' (0,15W =12 O(2))+L1(Q)

+ ||ut||L(P—)'(O’T;Wfl,p'(-)(Q))JrLl(Q) + ”ut”L(p*),(O,T;W*l’p/(')(ﬂ))%»Ll(Q) ”u”LOO(Q)) )
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which implies that

2 _
el 00 0,7 L2(2) + ||Ua||lzp_ (0w (@) (69)
=C (/ VulP"™® dedt + Jull o 7220y + Hut”ﬂp ' (0,7W =10 ((2))+L1(Q)

+ ”“t”L“’J(o,T;W—1>P’<->(Q))+L1(Q) + ”“t”L(P—)'(o,T;W—Lp’<->(Q))+L1(Q) ”“”L‘”(Q)) :

Using estimates (65) or (68), we deduce that the sequence (u.) is bounded in
L>(0,T; L?(2)) and in LP- (O,T; Wol’p(')(Q)) . This implies the existence of a sub-

sequence of (ug) converging to an element w weakly in LP- (O,T; WO1 P “(Q)) and

weakly—x in L (0,T;L?(2)). As in [6], ones shows that if ¢ < n then, uc > u,.
Therefore, we conclude that (u.),. is a nonnegative decreasing bounded sequence in
L' (Q) . Consequently, from the monotone convergence theorem, u. converges to w in
L' (Q) and almost everywhere in Q.

Taking (u. —u)~ as a test function in (53), we obtain

T T 1 9
/ <(u5)t  (ue — u)7> dt+/ VP "N,V (ue — u) “dedt = f/ ‘(ue — u)f‘ dxdt,
0 0 €@

which implies that

/’ —u) ‘dmdt—&— /’ —u)" | (T)dx

:/0 <(us)t,(uE u)~ >dt+/ (Ve P2V, V (ue —u)~ dadt.

Hence, by (65) in case i) or (68) and L*-estimates in case i), we deduce that
1 2
f/ ‘(ue—u) ‘ dzdt < M,

which implies, by Fatou’s lemma that w > u and w > um since w > 0.
Step 2: In this step, one gives some estimates in Wp(,) (0,T). Thanks to [10], there
exists a unique variational solution z° € L (0, T L* (€2)) N LP~ (0, T; Wyt (Q)) of
the problem
—Zf — Ap(l)za = —QAP(.)ug in (O,T) x
25(T) = u. (T) on Q (70)
2 =0 on (0,7) x 0.
Note that —2A,yu. > (ue), — Ap()ue in the distributional sense, which implies that
25 > u,.
Taking 2° as a test function in (70) and integrating between ¢ and T and using the
Young inequality, we obtain

1 1
/(zf (t))de+f/ V2 P de < =
Q 2 Jg 2
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which implies that

2 — x 2
HZ€||L°°(O,T;L2(Q))+||ZEHI;IL (0 T'W()l’p(‘)(ﬂ))g C(/Q|VUs|p( dadt + ”uE”LOO(O,T;Lz(Q))) :

(71)
By Proposition 2.1, we have

V28| (Lo )y < max { (/ |V 2 [P dac) " , </ |V 2 [P®) da:) " } . (72)
Q Q

Hence, using (71) if we are in the case (i) i.e u € W) (0,T), then we deduce from
(64) — (65) the following estimate.

°|I? e|P- p(x)
1251 Lo 0, 7522 (0)) T 112 ||Lp_ (o.msw " @) <C (/Q [VulP dzdt
2 2 ()’
+ ”ut”L(LY(o,T;V/) el e () + ”“tHLp@,)'(O’T;V,) +lluell Looy o vy

el ooy o gy 1l o 020627 (73)

and in the case (i7) , we get from (69) the following estimate.

2 - , 2
12 Wz 0 sz ey + 127117, (013w () = </Q [Vl dedt + [l 0,7,z @

(r-)

+ HutHL(p*)'(O,T;W—lwp'(-)(ﬂ))+L1(Q) + HutHL(P_)/(O’T;W71,pl(_)(g))+L1(Q)

+ [ (74)

(=) (O,T;W*I:P'U(Q))JrLl(Q) ||u||L°°(Q)> )

For reasons of simplicity one puts

_ z 2 2 (r-)
_ /Q (V[P dwdt + ||utHL(p,)’(O)T;V,) F [l o 0,502 + ||Ut||Lp<p_y(0’T;V,)
+ ||ut||L(P—)/(07T;V/) + ||Ut||L(p_)/(O,T;V/) ||u||L°°(07t7L2(Q)) (75)
and

/ [Vl dwdt + [l e o gy + 1l (76)

L“’ ) (o,T;W—lvP'<->(Q))+L1<Q)
+ HutHL(P—) (07T;W—1,p’(-)(Q))+L1 + Hut”L(p (07T;W—1,p/(.)(9))+L1(Q) ||u||L°°(Q) :

We take ve LP~ (0,T;V) as a test function in (70), to obtain

/0T<(zf)t,v> dt

T T
§2/ H VZE”W”H Vo dt+4/ HquPW”H Vol dt
[ wsr | 190l desa [ i9up@ 19l

T
<a [ ([ Y e (77)
0 p'(-) P'()

< ’/ \VZE\p(m)_2 VZE.V’Ud:L'dt‘ + ‘2/ |Vue\p(m_2) Vu.. Vodzdt
Q Q
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Therefore, by the same method as in the proof of (38), it follows that

154
|| (Z )tHL(p*),(to,T;V,)

N\ T
p ) p’
. N

- o)
<a4p' @) / / V2 POdpdt + T s ( / stp(x)dxdt> 1)
0JQ
(»)_

11 T 1— (»") 1
+4T W(// V[ Pdedt + T ¢+ (// |V |p(xdxdt> <P9+> -
0JQ

We can rewrite (78) as follow.

H (ZE)tHL(Pf)/(tO/I';V/)

7

T (»")_ T (pl)+
<C / / (V2 [P dadt + / / (V2 [P dadt
o Jo 0o Ja
T (»")_ T ()4
+ / |Vu5\p(x) dxdt + / / |Vu5|p(x) dxdt
o Jo 0o Jo

Finally, in the case (i), i.e u € Wy (0,T), we deduce that

e (»")_ (")
n@nu@hmmmsc<w* + [u)! +>. (50)

Hence combining (72) — (73) and (80), we obtain

A
~
©

N/

L L o 3
IfM%mm<C<M§+Mf+MM*+MY)+wﬁ”> (81)
and since Wp(_) (0,T) < Wy (0,T), then
P ) @)
|wmamn30@%+wf+m&+mu-+u +> (82)

For the second case, i.e u € LP- (O, T; Wol’p(') (Q)) N L= (Q), we have

1 1
() (*')
||(ZE)tHL(P7)/(tO7T;V/) S C <[U]** + [u]** +> . (83)
Then, from ( 72), ( 74) and ( 83), it follows that

[2°] = ||=* HLoc(o ri2 ) T2 || )JF 1 e- 0.1v) + IVZl Lo )

(OTW1 QN
<cC ([u]** D+ )P [u]ii'T n [u]("})+> . (84)

According to (81), 2° is bounded in Wp(_) (0,T). Hence, there exists a subsequence,
still denoted by z® such that z® converges weakly to z in LP- (O,T; Wol’p(') (Q))
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, N
and weakly= in L (0,T;L* (Q)), Vz° converges weakly to ¢ in (L” ) (Q)) and
z; converges to Z in L) (O,T;W*I’p'(') (Q)) . Then, it follows that z; = z and

& = Vz. Therefore, z € Wp(_) (0,T) . Hence, from [16], we deduce that z° is compact
in L! (Q) . Consequently, z° — z a.e. in Q. Moreover, we have z° > u.. Then, letting
e — 0, we get

Z2>w>u" ae. in Q. (85)
Therefore, if u € W,y (0,T), we deduce from (81) that

1

c 1 o P (N @)
[E IIWP(_)«LT)SC([UEHU]* S Fa S (7] R S (T +> (86)

which implies that

1 P by ﬁ (v’l)
IIZIIWP(,)(om<C<[u}f+[u]* + [l + [uls T+ [ul *) (87)

and if u € LP- (o, T, W) (Q)) AL (Q), u € LP- (O,T; w1 () (Q)) T LYQ),
we deduce from (84) that

2] <C ([u]** + [l + [u]f:? + [u]ﬂfiT + [u]ff”) : (88)

Since we can obtain a similar result for the negative part u~, we end the proof of the
lemma by writing v = u™ + u~ O
As a consequence of the Lemma 3.7 we have the following.

Corollary 3.8. For all u € Wy (0,T),

[ul, < Cmaz{Jlullyy oz Nl o }- (89)
Moreover, there ezists z € Wp(_) (0,T) such that |u| < z and
7(:,5 (o)
el oy < Cmazd ) o2 Tulhel 0 (90)
Proof. Let’s recall that
. = by (V) + el oyt Bl ozt Nl %
+ ||ut||L(p*)/(O,T;V’) + ||ut||L(p—)/(O,T;V’) HUHL‘X’(O,t;LZ(Q)) :
We have
||ut||L(p—)l(O,T;V’) S HU’HWP(_)(O,T) (91)
and by Proposition 2.1, we deduce that
ooty (V) < max {1Vl gy 90l o)}
<l o + I - (92)

Using Proposition 3.2, we get

[ull oo 0,220y < € llullw,0.1) - (93)
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Hence, by (91)-(93), we obtain
[ul, < € (Jlul + Nl 1l oy + Nl o + Il o1
* — Wp()(O,T) Wp( )(0 T) Wp(_)(o T 144 p(. ) 0 T Wp(_)(O,T)
< cmax {[lullly oy el 0 ) - (94)

Thanks to Lemma 3.7, there exists z € Wp(i) (0,T) such that |u| < z and

1

I=lw, 0.y < C ([u]é i 4+ ™ 4 ”) ,

which implies that

1 1
o () _
Hz||Wp<.)(07T) < C'max <[u]* ul” ) .

Therefore, from (94) we obtain

P ()
E ||W<)(0T)<Cmax{||u|wmm),|| |WU<OT)} (95)

Then, we can prove the following result which gives the connection between the no-
tions of capacity and continuity.

Proposition 3.9. If u is cap-quasi continuous and belongs to W,y (0,T), then for
allt > 0,

”* (»-)
C
capyy ({Ju] > }) < Zma {nun P 1 I (96)

Proof. We consider in the first step, the case where u belongs to C. ([0,T] x Q), this
step is motivated by the fact that C. ([0,T] x Q) is dense in W),y (0,T") . Thanks to

Corollary 3.8, there exists z € W,y (0,T') such that |u| < z holds true; then, since
Wp(i) (0,T) is continuously embedding in W), (0,T") and % > 1 on the set {|u| > t},

we have

(r-)’
z C
camy (> < 7], < tmax{mnw()m el o, T>}

For the second step, we suppose only that u € W,y (0, T) and is capy,()—quasi continu-
ous. Let ¢ > 0 be fixed, then there exists an open set A, such that cap, ) (A:) < € and
| (Q\A.) is continuous, which implies that {u|\4.) >t} N(Q \ Ac) is an open set in
Q\ A.. Then, there exists an open set U C R such that {u| (Q\A.) > t} NQ\ A:) =
UN(Q\ A:). Consequently,

{lul >t} UAc = ({4, >t} N(Q\A)) UA = (UUA)NQ

is an open set.
Now, we consider the function z given by Corollary 3.8. Let w € W),y (0,T) be such
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that w > x4, and ||w||Wp(v)(0,T) < capy() (Ac) + € < 2e. Since w +§ > 1 ae. in
{Ju| >t} U A., we have

z
capp(y (Il > 1) < eapyy (lul > yu A < [ws 7|
p()\Y
1 1
< HU’HWP(,)(O,T) + n HZHWPM(O,T) <2+ n ||Z||WP(.)(O,T) (97)

Since € > 0 is arbitrary, then, we deduce that

P (p_)
c ) =
Capp(.) ({|u| > t}) < tmaX{||U|Wp<‘)(o7T) s |u||Wp(_)(O,T)} o

As in elliptic case, we have the following result of quasicontinuity.

Lemma 3.10. Any elementv of W,y (0,T') has a cap-quasi continuous representative
v which is cap-quasi everywhere unique, in the sense that two cap-quasi continuous
representatives of v are equal except on a set of null capacity.

Proof. We adapt the proof given in [6]. Since C. ([0,T] x ) is dense in W),y (0,T),
there exists a sequence (v™) C C. ([0,T] x Q) such that v™ converges to vin W,y (0,T),
as m — oo. Moreover, we have

) % (p_)'
p')_ o
> meaX{HUm“ =" lw, S0 107 - Umep(,)(o,T)} < o0.

m=1

We introduce the following subsets
wm:{’vm—&-l_vm’ >2—m}7 O — U w™.
m>r

Using the fact that v™*! — v™ is continuous and belongs to Wy (0,T), we apply
Proposition 3.9 to obtain

P ()
1 m m|| (P i i -
capy() (w™) < C2mmaX{Hv v HWP(,)(O,T) [0~ ”mep(_)(o,T)} :

By subadditivity, we get

P ()’
m m| (P)_ _
capy() () <C Y QmmaX{HU B TR RS Gl ”mepMO’T)} 7

m>r

which implies that
Tl;rgo capp(.) (2") = 0.
For any r, we have
it (z,t) ¢Q", then VYm >r, |vm+1 - (2) <27
Hence, v™ converges uniformly on the complement of each 2" and pointwise in the
complement of ﬂ Q,.

ka
Moreover,

capy(.) <ﬂ QT> <capy(y (") =0 as 7 tends to infinity,
T
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which prove that capy.) m Q"] =0.

Therefore, the limit of v™ is defined cap-quasi everywhere and is cap-quasi continuous.
Let us call v this cap-quasi continuous representative of v and assume that there
exists another representative z of v which is cap-quasi continuous and coincides with
v almost everywhere in . Then we have, thanks to Proposition 3.9,

_P— ()’
~ 1 ~ (p/)7 ~ p_
Capp(.y ({|Z — U| > k}) < CkmaX{HZ - UHWP(‘)((),T) ) HZ - UHWP(A)(()’T)} )

since ¥ = z in W,y (0,T) . This being true for any k, we obtain that o = 2z cap-quasi
everywhere, so that the cap-quasi continuous representative of v is unique up to sets
of zero capacity O

In what follows, we need the following results.

Lemma 3.11. Let (vn),cy be a sequence in Wy (0,T) which converges to v in
Wp(y (0,T), then there exists a subsequence (On,,),en Of (Un),en which converges to
0 cap-quasi everywhere.

Proof. According to Proposition 3.9 and Lemma 3.10, the proof is similar to the proof
of Lemma 2.2.1 in [6] a

4. Measures

In this part, we establish the relation between measures in () and the notion of p (.)-

parabolic capacity. We extend the results obtained in the case of constant exponent

(see [6]) to the case of variable exponent. In the rest of the paper we denote by

M, (Q) the space of bounded measure in () and M;’ (@) the subsets of nonnegative
li

measures of My, (Q). The duality between (W, (0,T)) and W, (0,T) is denoted

by ((.,.)), (Wp() (O,T))/ N M, (Q) is the set of element v € (W, (O,T))/ such that
there exists ¢ > 0 satisfying, for all ¢ € C°(Q), [((v,¢))| < cllellp~(q)- Every

v e (Wyy (0, T))/ N M, (Q) is identified by unique linear application ¢ € C° (Q) —

©dy™*** where 7™** belongs to M, (Q) . The set of v € (W, (0, T))I NM, (Q)
Q
such that 4™*** € M (Q) is denoted by (W) (0, T))/ NM;(Q).

Definition 4.1. We define
Mo(Q)={peMy(Q): n(E)=0 forevery ECQ suchthat cap,(E)=0}.
The nonnegative measures in My (Q) will be said to belongs to Mg (Q) .

Proposition 4.1. Let pu belongs to M{ (Q). Then, there exists v € (W) (O,T))/ N
M (Q) and a nonnegative function f € L' (Q,7™®) such that u = fy™*.

Proof. Let u € Wy (0,T). Since by Lemma 3.7, v admits a cap-quasi continuous
representative denoted u which is cap-quasi everywhere unique, then we can define

the following functional F' : W) (0,7) — R by F (u) = / max {@, 0} du.
Q
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The function F is convex and lower semicontinuous on Wy, (0,7") (the lower semi-
continuity follows from Fatou’s Lemma and Lemma 3.11). Since W, (0,T') is sep-
arable, the function F' is the supremum of a countable family of continuous affine
functions. Hence, there exists a sequence (), cy in (Wp(,) (O,T))/ and a sequence
(@n)pey in R such that F' (u) = sup,ey { ((An, w)) + an} -

We have F (0) = 0, which implies that a,, < 0. Then, it follows that

F (w) < supen {{(ns )} (98)
Since for every ¢ > 0 and for every u € W),y (0,T), we have
t (A, w)) +an < F(tu) =tF (u) (99)
then, we get ((Ap,u)) < F'(u); hence, by (98) we deduce that
F () = sup,ex { ((Ans )} (100)

Now, we are going to show that A, belongs to (Wp(_) (O,T))/. Using (100) and the
definition of F, we obtain

() < /Q max {2, 0} dit < [l vpp 0 191l 1 ) (101)

for all p € C2°(Q) . Since the inequality (101) remains true for —¢, we deduce that

[({Ans o] < ||MHMb(Q) H‘PHL«:(Q) , hence A, € (Wp(.) (O,T))/ NM; (Q).
For all ¢ € C2° (Q) such that ¢ > 0, we have

= (A, 0)) = (A, —9)) S F (=) =0
which implies that

0< () = / pdATS.

Then, it follows that A7"** belongs to M, (Q), that is equivalent to say that A, €
(Wy(y (0, T))/ NM; (Q). By (100), for any nonnegative ¢ € C2° (Q) we have

/ AN = (A, 0)) < / _
Q Q

then
ALt <, (102)

moreover, we can write [ A7 v o) < M1l g, ) -
We define v € (W) (0, T))/ by

Z An . (103)

— | nH(W()(OT)) Jrl)

The serie v is absolutely convergent in (Wp
we have

0 (O,T)) , moreover for all p € C°(Q),
_ = ((Ans )
ol = 3 5, v oy T

X g0 19l 0
3 9 < Nl ey o) 191 0

n=1



p(.) DECOMPOSITION OF MEASURES 55

which implies that v € (W) (0, T)) NMp(Q).
Thanks to (103), for all ¢ € C°(Q), we have

/;2 (pdvmeas — Z nv <P>>

n:l H n||(W<) QT)) +1)
(pdAmeaS
2 Bl oy 70 e
hence,
meas )\meas ( )
v _ 104
2l w, @y 1)

and since A;'°*® > 0, v™°*® is a nonnegative measure. For every n € N, the measure
Aeas g absolutely continuous with respect to v™°*® thus, there exists a nonnegative
function f, € L' (Q, dy™*®) such that A\™°** = f,4™°?*  Then, from (100) we get

/ @dp = sup,,ey / Fnipdy™e?, (105)
Q Q

for any nonnegative ¢ € C:°(Q). Since by (102), we have f,y™¢* = A < p,
then

/ fady™* < pu(B), (106)
B
for any borelian subset B in @ and every n € N. So we can write
[ sup i for e fih e < (), (107)
B

for any borelian subset B in () and any k > 1. Letting & tends to infinity we deduce
by the monotone convergence theorem

/B fdymes < u(B), (108)
where f = sup,,cy {fn}, hence by (104) , we obtain
/ pdp = sup,, ey / fnpdy™* < / fody™* < / pdp, (109)
B Q Q Q

meas

for every nonnegative function ¢ € C2° (Q) which implies that u = f~v and from

the fact that u (Q) < +oo, we get f € L' (Q,dy™**) D

Lemma 4.2. Letg € (Wp(_) (O,T))I. Then, there exists g1 € L) (O,T; WL’ (Q)) ,
/7 N ’

g2 € LP~- (0, T;V), F € (Lp ) (Q)) and g3 € L) (0,7 L* () such that

T T
{{g,u)) z/ (g1,u) dt+/ <ut,gg>—|—/ F.Vudzdt/ gsudxdt, Yu € Wy (0,T).

0 0 Q Q
Moreover, we can choose (g1, 92, F, g3) such that

||gl||L(p7)'(O7T;W71,p’(.)(9)) + ||92||L”— (0,T5V) + |||F|HLP'(-)(Q) + Hg?’”L(p*)/(O,T;LZ(Q))

< C”gH(Wp(})(O,T)), : (11())
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Proof. We introduce the following functional space
N ’
E =1 (0,T;V) x (LP(') (Q)) x L) (0,T; V")
endowed with the norm
1,02, v5)lp = N - .z + MeallLzscon@) + sl oy o oy

and we consider the map 1" : W,y (0,7) — E by T (u) = (u, Vu, uz) .
Since

1T (Wl = l(ue, Vu,u)ll g = llull, 0.1 - (111)

Then T is isometric from W, (0,T) to E.
Setting G = T (Wp(,) (O,T)) , then T~ is defined from G to Wpy (0,T). Now, we

take g € (Wp(_) (0, T))/ and we introduce the functional ® : G — R by ® (v1, v, v3) =

<<gvT_1 ('[)1,1)2,1}3)>> .
Since ® is a continuous linear form on G then by Hahn-Banach theorem, it can
be extended to a continuous linear form on E still denoted by ® with ||®| 5 =

||g||(Wp(.)(O,T))’ :
, N
Consequently, there exists hy € (LP~ (0,T;V))' , F = (f1, fo,--- , fn) € (Lp ) (Q))
’ /
and hy € (L(p*) (0, T; V/)) such that
O (v1,v2,v3) = (hi, 'U1>(LP—(0,T;V))',LL(o,T;V) + (F, ”2>(Lp'<->(Q))N,(LP<->(Q))N
+ <h27 U3> (L(p—)l(O,T;V/))/,L(p_)l(O,T;V/) . (]‘12)
Moreover, we have
Iallr- oy +IFNEo@ + Whell ooy iy < 195 (13
Thanks to Remark 3.1, we have

(L= (0,75V)) = 20" (0,73 w70 (@) + LO)" (0,73 2 (@)

(with equivalent norms). Then, there exists g; € L®-) (0, 7; W7 ()(Q)) and g5 €
L®=)'(0,T; L*(Q)) such that

T
<h1;'U1>(Lp_ 0,T;V)) ,LP= (0,T;V) = / <91,U1> dt + Ag3vld$dt. (114)
0
, /
Since (L(P‘) (0,T; V’)) = LP~ (0,T;V), there exists go € L~ (0,7T;V) such that

T
<h2’U2>(L(P—)/(O,T;V’))/,L(”*)I(O,T;V’) :/0 (v2, go) . (115)

Therefore, we have

T T
@(vl,vg,vg):/ (gl,m)dt—l—/ (vg,g2>dt+/ FVudzdt+/ gsvidxdt
0 0 Q Q
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with
||ngL(P+)/ (O’T;W—l,p/(_)(Q)) + ||g3||L(p+)/(O,T;L2(Q)) + ||F||(Lp’(.)(Q))N + ||92HLP_ (O,T;V)

<C (”hlﬂp—)’(o,T;vq +IE Lo or gy + ||h2(L(p_)'(01T;V,)>/>

< Cllglw,,0.m) - (116)
Then it follows that for all u € W) (0,T), we have
({g:w) = (g, T (T ()))) = © (T (u))
= /OT (g1, u) dt + /OT (ut, go) dt + /Q FVu dzdt —|—/Qggu dadt ai7)

Since for all § € C°(Q), the multiplication ¢ +— 6Oy is linear continuous from
Wp(y(0,T) to Wy y(0,T'), we can define the multiplication of an element v € (W,((0,T))’

by 6 thanks to a duality method : v € (W) (0, T))/ is defined by (0v, ) = (v, 0p) .
Then, the following result can be proved similarly to that in [6].

Lemma 4.3. Let v € (W), (O,T))/ NMy(Q) and 8§ € CF(Q). We take p, as
a sequence of symmetric (i.e p, (., —) = pn (.)) regularizing kernels in R x RN and
uw=0ve (Wp(,) (O,T))/ . Then, u € (Wp(,) (O,T))/ NMy (Q), p™e = gymess | mees
has a compact support in ) and

meas

meas meas N 4
* PnHLl(Q) < v ||Mb(Q) and i *Pp = b N (Wp(.) (O,T)) .
(118)

|12

Proof. Since § € C°(Q) and v € (W, (07T))/7 then p = 6v € (W, (O,T))/.
Moreover, for all ¢ € CZ°(Q), we have [((1, )| = [{((v,00))] < C 09|~ <
Cl10ll e ) 1€l () » which implies that p € (W (O,T))/ NM, (Q)-

For all ¢ € C2° (Q), we have

/ ™ = (41, 0)) = (v, 6)) = / Bipdi e,
Q Q

meas meas

hence p = O™ and p™**® has compact support. Therefore, p % Pp,
is well defined and belongs to C°(Q) for n large enough. Moreover, we have

™% % prll gy < ™Mty () -
Since v € (Wpy(0,T))’, then by the Lemma 4.2, there exists (g1, g2, F, g3) €

L@ (0, T; W12 0(Q)) x LP-(0,T; V) x (L (Q))N x L»-)'(0,T; L2()) such that
(o)) = (v, 00))

T T
/ (g1,00) dt + / (09), ,g2) dt + / F (0p) dadt + / gubidt
0 0 Q Q

T T T
/ (g1,00) dt +/ (¢, 0g2) dt + / (Brp, g2) dt
0 0 0

+/ AV (Oap)dxdt—k/ g3bpdt,
Q Q
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for all o € W),y (0,T). Since by the proof of the second part of Proposition 3.2, the
term ;¢ belongs to Lw-) (07 T;L? (Q)) , then we have

T
/ <9t90»92>dt=/ Orpgadxdt.
0 Q

’ ’ , N
We have g; € L) (O,T; Wt (')(Q)) , then there exists G; € (Lp ) (Q)) such
that g1 = div (G1), so that

T T T
/O (091, o) dt = / (div (G1) , o) dt — / (G1V0, ) dt.

0 0

Moreover, we have

/F.V (0p) dmdt:/ F.V9<pdxdt+/ OF.V pdxdt.
Q Q Q

Thus, for all ¢ € W) (0,T), one has

({1, 0))

T T
/ (div (0G1) , ¥) dt+/ <g0t,992>dt+/ FN0pdxdt
0 0 Q
+ /9F.V<pdmdt+/ gg&pdt—/ G1V9<pdxdt+/ Ot pgodadt. (119)
Q Q Q Q

For n large enough, supp (6) Usupp (py) is included in a fixed compact K C Q. Then
it follows that supp (u"*® * p,) = supp (dv"*°** x p,,) is also contained in K. Now, we
take & € C5° (Q) be such that £ = 1 on a neighborhood of K then for n large enough,

supp (&) Usupp (pp,) is a compact subset of Q. Since C2° (Q) < (Wp(,) (0, T))/, for all
o € Wy (0,T), we have

(U™ % pp, @) = /Q QU™ x ppdadt.
Hence, for all ¢ € C2° ([0,T] x ), we have

(™ 5 pny ) = /Q §pu™ s pndadt = /Q () * pndu™*.

We suppose that n is large enough, then supp (({¢) * p) is a compact subset of Q
and since (£p) * py, belongs to C° (Q), then by (119), we get

(W% % pry ) = ({1, (§) * pn))

T T

= | (662 €0y s pa)dt+ [ (€)% o)y B2
0 0
—l—/QF.VQ(gcp)*pndxdt—I—/QHF.V(fgo)*pndscdt—i—/QggH(fgp)*pndt

—/ G1V0 (£p) * ppdxdt + / 0192 () * prdadt.
Q Q
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According to the support of § and £ we can write

T T
(e s puoil) = [ o (06« pu) &)+ [ (60, (00) = pu)

+/ (F.V0) % pp&odxdt + / OF.N (£p) * ppdxdt + / (0g3) * ppépdxdt
Q Q Q

—/ (G1V9)§g0dacdt+/ (0:g2) * pp€pdadt.
Q Q

Now, using the fact that £ = 1 on a neighborhood of supp (6) U supp (p.) , we obtain

T T
(7 % pr ) = / (div ((0G) * pu) » ) dt + / (e, (692) * pu) dt (120)

+/ (F.V0) * pnipdzdt + / OF.N ¢ * ppdxdt + / (0g3) * pnpdt
Q Q Q
—/ (G1V0) * ppdxdt + / (0:92) * pppdadt,

Q Q

for all o € CZ° ([0, 7] x Q) , but since this space is dense in W),y (0,T") and both sides
are continuous with respect to the norm of W, (0,7, equality (120) remains true
for p € Wp(') (O,T) .

, N
We have (0G1) * p, — 606G in (L” ) (Q)) , (0g2) x p — 6Ogo in LP-(0,T;V),

, N
(F.V0) % pp — F.V0 in LP' O (Q), Vo % pp — Vi in (LPU (Q)) , (093) * pn — 0g3

in L+) (O,T;L2 (Q)) , (G1V0) * p,, = G1V6 in ¥’ (Q) and (0:g2) * pp, — 0192 in
LP= (0,T;L* (), then subtracting (119) and (120), we obtain

T
[{{u™% % pn, )| = ‘/o (div ((0G1) * pn — OG1) , ) dt

T

+/ (1, (0g2) * pn — 9gz>dt+/ ((Bg3) * pn — bgs) edxdt
0 Q

+/ ((G1V0) — (G1V0) * p,,) pdzdt +/ ((B:g2) * pn — 0:92) pdxdt
Q Q

+/ ((F.V0) x p,, — F.NV0) pdxdt + / OF. (Vo * pn — Vi) dxdt
Q Q

< (H(eGl) * Pn — 9G1||(Lp’(.)(Q))N HV()OH(LP(.)(Q))N + H(992) * P — 992”[}’— (0,T;V)

X ”sDtHL(p*)/(O,T;V’) + ||(993) * Pn — 093”L(D+)/(07T;L2(Q)) ||§D||LP+(O,T;L2(Q))
+1G1VO = (G1V0) * pull oy (@) 1€l Loy (@) + 1(8292) * o — 0192l 1o (0. 7.12(02))
X ”(p”L(”*)'(O,T;L%Q)) =+ ||(FV9) * Pn — F'VQHLP/(-)(Q) HQOHLP(-)(Q)

10PN gy 199 n = Tl
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€ (106G * o0 = 6l 0, gy +11032) = 0l
1009) * P = 09310, 0 1,120y + 1F-T0) 5 b = EVO v

+ |G1VO = (G1V0) * pull 1oy () + 1(6292) * pr — 0192l 1o (o 7,12 Q))) lellw, ., 0m

+0F ~ [V * pn — Vo

L' ()(Q)) (LP(-)(Q))N )

meas

which implies that * pp, converges to u in W) (0,7) 0

Theorem 4.4. Let € Mg (Q) then there exists g € (W, (O,T))/ and h € L* (Q)
such that p = g+ h in the sense that

/gpdu— /hgodxdt (121)
Q

for all p € C° ([0, T] x Q).

Proof. Since p belongs to Mg (Q) , then by Hahn Banach decomposition of 1 we have
ph o uT € Mo (Q), so we can assume that u € M (Q) . Hence, from the Proposition
4.1, there exists v € (Wy(,) (O,T))/ N M7 (Q) and nonnegative Borel function f €
L' (Q, dy™**) such that

wu(B) :/ fdy™e*  for all Borel set B in Q.
B

Since y™*** is a regular measure and C2° (Q) is dense in L' (Q, dy™***) , then there ex-

ists a sequence (f,, )nen in C°(Q) such that f,, converges strongly to f in L*(Q, dy™e?*).

Moreover, we have Z 1fn = fr-1llp1(Q,aymeas) < 0.
n=0
Defining vy, by v, = (fn — fa-1)7y € (Wp(.) (O,T))/, then by Lemma 4.3 we get

v e Wy, (O,T))/ N M, (Q) and Zl/;"ws = Z (fn — fa—1)7™°* strongly con-
n= n=0
verges to p in My (@) . Therefore, we can consider p as compactly supported mea-
sure. Using the Lemma 4.3, we deduce that p; * v,'**® strongly converges to v,
in (Wp(,(0,T )) hence we can extract a subsequence still denoted by [ such that
1
- V”H( W) O TS

meas

oo vy

Let us rewrite now E v %% as follows
k=0

n n n

meas __ meas m€a9 meas
E Vg = E P ¥V T+ E = pu, * V). (122)
k=0 k=0 k=0

In the following, we denote respectively by m,,, h, the first and second term in (122)
n

and we define the sequence g, by g, = Z( — pi, * VL °*), so my, is a measure

k=0
with compact support, h,, is a function in C2° (Q) and g, belongs to (Wp(i) (0, T))/ .
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n
We have g, = Z (vt — pp, % v°*®) . Taking 6, in C2° (Q) be such that § = 1
k=0

n
on a neighborhood of (supp (fo) U - -+ Usupp (f,.)) Nsupp (Z ol * V,’c”eas> , then we
k=0
can write g, = 0,9n.
Since all terms in (122) has compact support, we can use p € C2° ([0,7] x Q) as test
function in (122) to obtain

/gpdmnz/ hnpdzdt + ({gn, ©)) (123)
Q Q
since
/ pdg, " = /Q Onpdgn ™ = ((gn, 0np)) = ({gn, ) -
We have

oo o0
HhHLl(Q) < Z llpu,, * Vl?wasHLl(Q) < Z ||VIZ”6“S||Mb(Q) < 09,
= k=0

which implies the existence of a subsequence of (hy,), .y converging to an element h
in L' (Q). We have

oo

meas 1
||gn||<ZHVk_plk*V H p()(OT)/ Zzik o0,
k=0 =0
hence (hy,),,cy converges strongly to an element g in (W) (O,T)) . Then it follows
that
((gn, ©) / hnpdzdt — ((g, ¢ / hodxdt, (124)

for every ¢ € C° ([0,T] x Q).

Now, we prove that pdm,, converges to / wdp. For that, we recall the following
Q

Q
linear and continuous injection

My (@ = (C(Q))
m = m defined by m(f) = [, fdm.

We know that m,, strongly converges to p in My (Q), 1y, strongly converges to m
and since ¢ € C (Q) , we have

/ dimn = i () — 17 () = / odp. (125)
Q Q

Combining (123) — (125), we get (121) O
As consequences of Theorem 4.4 and Lemma 4.2, we have the following decomposition
theorem which is the main result of this part.

Theorem 4.5. Let 1 € Mg (Q) then there exists (f, F,g1,92) such that f € L* (Q),
/ N ’ /
F e (Lp ) (Q)) , g1 € L) (O,T; w—bp'G) (Q)) ,g2 € LP= (0, T;V) such that

T T
/(pdu:/ f(dedt+/ F.Vudxdt+/ (91, %) dt—/ (¢, g2) dt,
Q Q Q 0 0
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Yo € C ([0,T] x Q). Such a triplet (f, F, g1, g2) will be called a decomposition of p.

Notice that the decomposition of u € Mg (Q) given by the previous theorem is not
unique, however as in [6] the following result can be proved.

Lemma 4.6. Let u € Mo (Q) and let (f, F,g1,92), (f,F,gl,gg) be two different
decompositions of p according to Theorem 4.5. Then we have

/OT<(92—§2)t780>dt:/Q(f_f) et | (7 F) Yotz [ 61—

(126)
forall € C ([0,T] x Q). Moreover, go—g» € C ([0, T] Lt (Q)) and (g2 — g2) (0) =
0.

Proof. We have

T T
/(pd,u:/ fgodxdt—i—/ F.V(pdmdt—i—/ (g1,¢) dt—/ (o1, g2) dt (127)
Q Q Q 0 0

and
3 ~ T T
[ vau= | Fedsat+ | PNpasitr [aodi- [ ongan  2s)
Q Q Q 0 0
for all ¢ € C2° ([0,T] x Q) , then subtracting (126) and (127), we get

| (F =) etries | (P ) Sednar | R T S

(129)
which is equivalent to say that

/Q (F 1) pdadt+ /Q (F=F) Vododes | o e = / o= ).

0
(130)
for all p € C°([0,T] x Q).

Since go — go € LP- (0, T, Wol’p(') (Q)) , applying Theorem 1.1 in [13], we deduce that

92— G2 € C ([0, T]; L' () .
Since, by the integration by part formula, we have

/OT <sot,gz—52>dt+/:<<gz—g2>t,so>dt—/ﬂso<o> (92— G2) (0) da,
for all p € C° ([0,T] x Q) , such that ¢ (T) = 0, then, from (129), we obtain
¢ @) ©d -0
Choosing ¢ = (T — )¢ with v € C (), we get
T/Q (9o — 32) (0)bdz =0 forall 4 € C(Q),

which implies that (g2 — g2) (0) = 00
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