Renormalized solution for nonlinear elliptic problems with lower order terms and L^{1} data in Musielak-Orlicz spaces

Mustafa Ait Khellou and Abdelmoujib Benkirane

Abstract

We prove the existence of a renormalized solution for the nonlinear elliptic problem $$
-\operatorname{div} a(x, u, \nabla u)-\operatorname{div} \phi(u)+g(x, u, \nabla u)=f \text { in } \Omega,
$$ in the setting of Musielak-Orlicz spaces. $\phi \in \mathcal{C}^{0}\left(\mathbb{R}, \mathbb{R}^{N}\right)$, the nonlinearity g has a natural growth with respect to its third argument and satisfies the sign condition while the datum f belongs to $L^{1}(\Omega)$. No Δ_{2}-condition is assumed on the Musielak function.

Key words and phrases. Musielak-Orlicz spaces, boundary value problems, truncations, renormalized solutions.

1. Introduction

Let Ω be an open bounded subset of $\mathbb{R}^{N}(N \geq 2)$. Consider the following non-linear Dirichlet problem

$$
\left\{\begin{array}{lc}
A(u)-\operatorname{div} \phi(u)+g(x, u, \nabla u)=f & \text { in } \Omega \tag{1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where $A(u)=-\operatorname{div} a(x, u, \nabla u)$ is a Leray-Lions Operator defined on
$D(A) \subset W_{0}^{1} L_{\varphi}(\Omega) \rightarrow W^{-1} L_{\psi}(\Omega)$ with φ and ψ are two complementary MusielakOrlicz functions, $\phi \in \mathcal{C}^{0}\left(\mathbb{R}, \mathbb{R}^{N}\right)$ and g is a non-linearity which satisfies the classical sign condition: $g(x, s, \xi) s \geq 0$ and the following natural growth condition: $|g(x, s, \xi)| \leq b(|s|)\left(c^{\prime}(x)+\varphi(x,|\xi|)\right)$, where $b: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous non-decreasing function and $c^{\prime}($.$) is a non-negative function in L^{1}(\Omega)$.
The right-hand side f is assumed to belong to $L^{1}(\Omega)$.
In the usual Sobolev spaces, the concept of renormalized solutions was introduced by Diperna and Lions in [1] for the study of the Boltzmann equations, this notion of solutions was then adapted to the study of the problem (1) by Boccardo et al. in [2] when the right hand side is in $W^{-1, p^{\prime}}(\Omega)$ and in the case where the nonlinearity g depends only on x and u, this work was then studied by Rakotoson in [3] when the right hand side is in $L^{1}(\Omega)$, and finally by DalMaso et al. in [4] for the case in which the right hand side is general measure data. Some elliptic boundary value problems with L^{1} or Radon measure data or involving the p-Laplacian have been studied by Rãdulescu et al. in [5], [6] and [7].

On Orlicz-Sobolev spaces and in variational case, Benkirane and Bennouna have studied in [8] the problem (1) where the nonlinearity g depends only on x and u under the restriction that the N-function satisfies the Δ_{2}-condition, this work was then

[^0]extended in [9] by Aharouch, Bennouna and Touzani for N-function not satisfying necessarily the Δ_{2}-condition. If g depends also on ∇u, the problem (1) has been solved by Aissaoui Fqayeh, Benkirane, El Moumni and Youssfi in [10] without assuming the Δ_{2}-condition on the N-function.

In the framework of variable exponent Sobolev spaces, Bendahmane and Wittbold have treated in [11] the nonlinear elliptic equation

$$
\left\{\begin{array}{c}
-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=f \quad \text { in } \Omega \\
u=0
\end{array} \quad \text { on } \partial \Omega\right.
$$

where f is assumed in $L^{1}(\Omega)$. They proved the existence and uniqueness of a renormalized solution in Sobolev space with variable exponents $W_{0}^{1, p(x)}(\Omega)$. In [12] Azroul, Barbara, Benboubker and Ouaro have proved the existence of a renormalized solution for some elliptic problem involving the $p(x)$-Laplacian with Neumann nonhomogeneous boundary conditions in the case where the second member f is in $L^{1}(\Omega)$. Further works for nonlinear elliptic equations with variable exponent can be found in [13] and [14].

In the variational case of Musielak-Orlicz spaces and in the case where $g \equiv 0$ and $\phi \equiv 0$, an existence result for (1) has been proved by Benkirane and Sidi El Vally in [15] and then in [16] when the non-linearity g depends only on x and u. If g depends also on ∇u, the problem (1) has recently been solved by Ait Khellou, Benkirane and Douiri in [17] and then in [20] when the right hand side is in $L^{1}(\Omega)$.

Our main goal, in this paper, is to prove the existence of a renormalized solution for the problem (1) in Musielak-Orlicz space $W^{1} L_{\varphi}(\Omega)$ by assuming that the Musielak function φ depends only on $N-1$ coordinates of the spatial variable x. This assumption allow us to use a Poincaré inequality in Musielak-Orlicz spaces (see Lemma 2.9).

2. Preliminaries

Musielak-Orlicz function. Let Ω be an open subset of \mathbb{R}^{N} and let φ be a real-valued function defined in $\Omega \times \mathbb{R}_{+}$and satisfying the following conditions:
(a): $\varphi(x,$.$) is an N$-function for all $x \in \Omega$ (i.e. convex, nondecreasing, continuous, $\varphi(x, 0)=0, \varphi(x, t)>0$ for all $t>0, \lim _{t \rightarrow 0} \sup _{x \in \Omega} \frac{\varphi(x, t)}{t}=0$ and $\lim _{t \rightarrow \infty} \inf _{x \in \Omega} \frac{\varphi(x, t)}{t}=$ $\infty)$;
(b): $\varphi(., t)$ is a measurable function for all $t \geq 0$.

A function φ which satisfies the conditions (a) and (b) is called a Musielak-Orlicz function.

For a Musielak-Orlicz function φ we put $\varphi_{x}(t)=\varphi(x, t)$ and we associate its nonnegative reciprocal function φ_{x}^{-1}, with respect to t, that is

$$
\varphi_{x}^{-1}(\varphi(x, t))=\varphi\left(x, \varphi_{x}^{-1}(t)\right)=t
$$

The Musielak-Orlicz function φ is said to satisfy the Δ_{2}-condition if for some $k>0$, and a non negative function h, integrable in Ω, we have

$$
\begin{equation*}
\varphi(x, 2 t) \leq k \varphi(x, t)+h(x) \text { for all } x \in \Omega \text { and all } t \geq 0 \tag{2}
\end{equation*}
$$

When (2) holds only for $t \geq t_{0}>0$, then φ is said to satisfy the Δ_{2}-condition near infinity.

Let φ and γ be two Musielak-Orlicz functions, we say that φ dominate γ, and we write $\gamma \prec \varphi$, near infinity (resp. globally) if there exists two positive constants c and t_{0} such that for almost all $x \in \Omega$:

$$
\gamma(x, t) \leq \varphi(x, c t) \text { for all } t \geq t_{0} \quad\left(\text { resp. for all } t \geq 0 \text { i.e. } t_{0}=0\right)
$$

We say that γ grows essentially less rapidly than φ at 0 (resp. near infinity), and we write $\gamma \prec \prec \varphi$, If for every positive constant c we have

$$
\left.\lim _{t \rightarrow 0}\left(\sup _{x \in \Omega} \frac{\gamma(x, c t)}{\varphi(x, t)}\right)=0 \quad \text { (resp. } \lim _{t \rightarrow \infty}\left(\sup _{x \in \Omega} \frac{\gamma(x, c t)}{\varphi(x, t)}\right)=0\right)
$$

Remark 2.1. [16] If $\gamma \prec \prec \varphi$ near infinity, then $\forall \varepsilon>0$ there exist $k(\varepsilon)>0$ such that for almost all $x \in \Omega$ we have

$$
\gamma(x, t) \leq k(\varepsilon) \varphi(x, \varepsilon t) \text { for all } t \geq 0
$$

Musielak-Orlicz space. For a Musielak-Orlicz function φ and a measurable function $u: \Omega \rightarrow \mathbb{R}$ we define the functional

$$
\varrho_{\varphi, \Omega}(u)=\int_{\Omega} \varphi(x,|u(x)|) d x
$$

The set $K_{\varphi}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R}\right.$ measurable $\left.: \varrho_{\varphi, \Omega}(u)<\infty\right\}$ is called the MusielakOrlicz class (or generalized Orlicz class). The Musielak-Orlicz space (or generalized Orlicz space) $L_{\varphi}(\Omega)$ is the vector space generated by $K_{\varphi}(\Omega)$, that is, $L_{\varphi}(\Omega)$ is the smallest linear space containing the set $K_{\varphi}(\Omega)$. Equivalently:

$$
L_{\varphi}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} \text { measurable }: \varrho_{\varphi, \Omega}\left(\frac{u}{\lambda}\right)<\infty \text { for some } \lambda>0\right\}
$$

For a Musielak-Orlicz function φ we put

$$
\psi(x, s)=\sup _{t \geq 0}(s t-\varphi(x, t))
$$

ψ is called the Musielak-Orlicz function complementary (or conjugate) to φ in the sense of Young with respect to s.

We say that a sequence of functions $u_{n} \subset L_{\varphi}(\Omega)$ is modular convergent to $u \in$ $L_{\varphi}(\Omega)$ if there exists a constant $\lambda>0$ such that

$$
\lim _{n \rightarrow \infty} \varrho_{\varphi, \Omega}\left(\frac{u_{n}-u}{\lambda}\right)=0
$$

This implies convergence for $\sigma\left(\Pi L_{\varphi}, \Pi L_{\psi}\right)$ (Lemma 4.7 of [16]).
In the space $L_{\varphi}(\Omega)$ we define the following two norms:

$$
\|u\|_{\varphi, \Omega}=\inf \left\{\lambda>0: \int_{\Omega} \varphi\left(x, \frac{|u(x)|}{\lambda}\right) d x \leq 1\right\}
$$

which is called the Luxemburg norm, and the so-called Orlicz norm by

$$
\left|\|u\|_{\varphi, \Omega}=\sup _{\|v\|_{\psi} \leq 1} \int_{\Omega}\right| u(x) v(x) \mid d x
$$

where ψ is the Musielak-Orlicz function complementary to φ. These two norms are equivalent [21]. $K_{\varphi}(\Omega)$ is a convex subset of $L_{\varphi}(\Omega)$.

The closure in $L_{\varphi}(\Omega)$ of the set of bounded measurable functions with compact support in $\bar{\Omega}$ is denoted by $E_{\varphi}(\Omega)$. It is a separable space and $\left(E_{\psi}(\Omega)\right)^{*}=L_{\varphi}(\Omega)$ [21]. We have $E_{\varphi}(\Omega)=K_{\varphi}(\Omega)$ if and only if $K_{\varphi}(\Omega)=L_{\varphi}(\Omega)$ if and only if φ satisfy the Δ_{2}-condition (2) for large values of t or for all values of t, according to whether Ω has finite measure or not.
We define

$$
\begin{aligned}
& W^{1} L_{\varphi}(\Omega)=\left\{u \in L_{\varphi}(\Omega): D^{\alpha} u \in L_{\varphi}(\Omega), \quad \forall|\alpha| \leq 1\right\} \\
& W^{1} E_{\varphi}(\Omega)=\left\{u \in E_{\varphi}(\Omega): D^{\alpha} u \in E_{\varphi}(\Omega), \quad \forall|\alpha| \leq 1\right\},
\end{aligned}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right),|\alpha|=\left|\alpha_{1}\right|+\cdots+\left|\alpha_{N}\right|$ and $D^{\alpha} u$ denote the distributional derivatives. The space $W^{1} L_{\varphi}(\Omega)$ is called the Musielak-Orlicz-Sobolev space. Let
$\bar{\varrho}_{\varphi, \Omega}(u)=\sum_{|\alpha| \leq 1} \varrho_{\varphi, \Omega}\left(D^{\alpha} u\right)$ and $\|u\|_{\varphi, \Omega}^{1}=\inf \left\{\lambda>0: \bar{\varrho}_{\varphi, \Omega}\left(\frac{u}{\lambda}\right) \leq 1\right\}$ for $u \in W^{1} L_{\varphi}(\Omega)$.
These functionals are convex modular and a norm on $W^{1} L_{\varphi}(\Omega)$ respectively. The pair $\left\langle W^{1} L_{\varphi}(\Omega),\|u\|_{\varphi, \Omega}^{1}\right\rangle$ is a Banach space if φ satisfies the following condition [21]:

$$
\begin{equation*}
\text { there exists a constant } c_{0}>0 \text { such that } \inf _{x \in \Omega} \varphi(x, 1) \geq c_{0} \text {. } \tag{3}
\end{equation*}
$$

The space $W^{1} L_{\varphi}(\Omega)$ is identified to a subspace of the product $\Pi_{|\alpha| \leq 1} L_{\varphi}(\Omega)=\Pi L_{\varphi}$; this subspace is $\sigma\left(\Pi L_{\varphi}, \Pi E_{\psi}\right)$ closed.
We denote by $\mathfrak{D}(\Omega)$ the Schwartz space of infinitely smooth functions with compact support in Ω and by $\mathfrak{D}(\bar{\Omega})$ the restriction of $\mathfrak{D}\left(\mathbb{R}^{N}\right)$ on Ω. The space $W_{0}^{1} L_{\varphi}(\Omega)$ is defined as the $\sigma\left(\Pi L_{\varphi}, \Pi E_{\psi}\right)$ closure of $\mathfrak{D}(\Omega)$ in $W^{1} L_{\varphi}(\Omega)$ and the space $W_{0}^{1} E_{\varphi}(\Omega)$ as the (norm) closure of the Schwartz space $\mathfrak{D}(\Omega)$ in $W^{1} L_{\varphi}(\Omega)$.
For two complementary Musielak-Orlicz functions φ and ψ, we have [21]:
(i) The Young inequality: $t s \leq \varphi(x, t)+\psi(x, s)$ for all $t, s \geq 0, x \in \Omega$,
(ii) The Hölder inequality: $\left|\int_{\Omega} u(x) v(x) d x\right| \leq 2\|u\|_{\varphi, \Omega}\|v\|_{\psi, \Omega}$, for all $u \in L_{\varphi}(\Omega), v \in$ $L_{\psi}(\Omega)$.
We say that a sequence of functions u_{n} converges to u for the modular convergence in $W^{1} L_{\varphi}(\Omega)$ (respectively in $W_{0}^{1} L_{\varphi}(\Omega)$) if, for some $\lambda>0$,

$$
\lim _{n \rightarrow \infty} \bar{\varrho}_{\varphi, \Omega}\left(\frac{u_{n}-u}{\lambda}\right)=0 .
$$

The following spaces of distributions will also be used:

$$
\begin{aligned}
& W^{-1} L_{\psi}(\Omega)=\left\{f \in \mathfrak{D}^{\prime}(\Omega): f=\sum_{|\alpha| \leq 1}(-1)^{|\alpha|} D^{\alpha} f_{\alpha} \text { where } f_{\alpha} \in L_{\psi}(\Omega)\right\} \\
& W^{-1} E_{\psi}(\Omega)=\left\{f \in \mathfrak{D}^{\prime}(\Omega): f=\sum_{|\alpha| \leq 1}(-1)^{|\alpha|} D^{\alpha} f_{\alpha} \text { where } f_{\alpha} \in E_{\psi}(\Omega)\right\}
\end{aligned}
$$

Lemma 2.1. [22] Let Ω be a bounded Lipschitz domain in \mathbb{R}^{N} and let φ and ψ be two complementary Musielak-Orlicz functions which satisfy the following conditions:
(i) There exists a constant $c_{0}>0$ such that $\inf _{x \in \Omega} \varphi(x, 1) \geq c_{0} ; \quad[(2.2)]$
(ii) There exists a constant $A>0$ such that for all $x, y \in \Omega$ with $|x-y| \leq \frac{1}{2}$

$$
\begin{equation*}
\text { we have } \quad \frac{\varphi(x, t)}{\varphi(y, t)} \leq t^{\left(\frac{A}{\log \left(\frac{1}{|x-y|}\right)}\right)} \text { for all } t \geq 1 \tag{4}
\end{equation*}
$$

(iii) $\quad \int_{\Omega} \varphi(x, 1) d x<\infty$;
(iv) There exists a constant $c_{1}>0$ such that $\psi(x, 1) \leq c_{1}$ a.e in Ω.

Under these assumptions, $\mathfrak{D}(\Omega)$ is dense in $L_{\varphi}(\Omega), \mathfrak{D}(\Omega)$ is dense in $W_{0}^{1} L_{\varphi}(\Omega)$ and $\mathfrak{D}(\bar{\Omega})$ is dense in $W^{1} L_{\varphi}(\Omega)$ for the modular convergence.

Lemma 2.2. [16] Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly Lipschitzian, with $F(0)=0$. Let φ be an Musielak-Orlicz function and let $u \in W_{0}^{1} L_{\varphi}(\Omega)$. Then $F(u) \in W_{0}^{1} L_{\varphi}(\Omega)$. Moreover, if the set D of discontinuity points of F^{\prime} is finite, we have

$$
\frac{\partial}{\partial x_{i}} F(u)=\left\{\begin{array}{cll}
F^{\prime}(u) \frac{\partial u}{\partial x_{i}} & \text { a.e in } & \{x \in \Omega: u(x) \notin D\} \\
0 & \text { a.e in } & \{x \in \Omega: u(x) \in D\} .
\end{array}\right.
$$

Lemma 2.3. [16] Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly Lipschitzian, with $F(0)=0$. Let φ be a Musielak-Orlicz function, then the mapping $T_{F}: W^{1} L_{\varphi}(\Omega) \rightarrow W^{1} L_{\varphi}(\Omega)$ defined by $T_{F}(u)=F(u)$ is sequentially continuous with respect to the weak* topology $\sigma\left(\Pi L_{\varphi}, \Pi E_{\psi}\right)$.

Lemma 2.4. Let $f_{n}, f \in L^{1}(\Omega)$ such that
i) $f_{n} \geq 0$ a.e in Ω;
ii) $f_{n} \rightarrow f$ a.e in Ω;
iii) $\int_{\Omega} f_{n}(x) d x \rightarrow \int_{\Omega} f(x) d x$.

Then $f_{n} \rightarrow f$ strongly in $L^{1}(\Omega)$.
Recall now the following result which is proved in [17]
Lemma 2.5. (The Nemytskii operator) Let Ω be an open susbset of \mathbb{R}^{N} with finite measure and let φ and ψ be two Musielak-Orlicz functions. Let $f: \Omega \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ be a Carathéodory function such that for a.e. $x \in \Omega$ and all $s \in \mathbb{R}^{p}$

$$
|f(x, s)| \leq c(x)+\alpha_{1} \psi_{x}^{-1} \varphi\left(x, \alpha_{2}|s|\right)
$$

where α_{1}, α_{2} are real positive constants and $c \in E_{\psi}(\Omega)$.
Then the Nemytskii operator N_{f} defined by $N_{f}(u)(x)=f(x, u(x))$, is continuous from $\left(\mathcal{P}\left(E_{\varphi}(\Omega), \frac{1}{\alpha_{2}}\right)\right)^{p}=\Pi\left\{u \in L_{\varphi}(\Omega): d\left(u, E_{\varphi}(\Omega)\right)<\frac{1}{\alpha_{2}}\right\}$ into $\left(L_{\psi}(\Omega)\right)^{q}$ for the modular convergence. Furthermore if $c \in E_{\gamma}(\Omega)$ and $\gamma \prec \prec \psi$ then N_{f} is strongly continuous from $\left(\mathcal{P}\left(E_{\varphi}(\Omega), \frac{1}{\alpha_{2}}\right)\right)^{p}$ into $\left(E_{\gamma}(\Omega)\right)^{q}$.

We will use the following Lemma whose proof is straightforward.

Lemma 2.6. Let Ω be an open bounded subset of \mathbb{R}^{N} satisfying the segment property. If $u \in\left(W_{0}^{1} L_{\varphi}(\Omega)\right)^{N}$, then

$$
\int_{\Omega} \operatorname{div} u d x=0
$$

Lemma 2.7. [18] Let Ω be a bounded Lipschitz domain of R^{N} and let φ be a MusielakOrlicz function satisfying the conditions of Lemma 2.1. Assume also that the function φ depends only on $N-1$ coordinates of x. Then there exists a constant $\lambda>0$ depending only on Ω such that

$$
\int_{\Omega} \varphi(x,|v|) d x \leq \int_{\Omega} \varphi(x, \lambda|\nabla v|) d x \quad \text { for all } \quad v \in W_{0}^{1} L_{\varphi}(\Omega)
$$

Corollary 2.8. [18] (Poincaré Inequality) Let Ω be a bounded Lipchitz domain of R^{N} and let φ be a Musielak-Orlicz function satisfying the same conditions of Lemma 2.7. Then there exists a constant $C>0$ such that

$$
\|v\|_{\varphi} \leq C\|\nabla v\|_{\varphi} \quad \forall v \in W_{0}^{1} L_{\varphi}(\Omega)
$$

The following example shows that the integral form of Poincaré inequality can not, in general, hold
Example 2.1. [19] Let $p:(-2,2) \rightarrow[2,3]$ be a Lipschitz continuous exponent that equals 3 in $(-2,-1) \cup(1,2), 2$ in $\left(-\frac{1}{2}, \frac{1}{2}\right)$ and is linear elsewhere. Let u_{λ} be a Lipschitz function such that $u_{\lambda}(\pm 2)=0, u_{\lambda}=\lambda$ in $(-1,1)$ and $\left|u_{\lambda}^{\prime}\right|=\lambda$ in $(-2,-1) \cup(1,2)$. Then

$$
\frac{\bar{\varrho}_{p(.)}\left(u_{\lambda}\right)}{\bar{\varrho}_{p(.)}\left(u_{\lambda}^{\prime}\right)}=\frac{\int_{-2}^{2}\left|u_{\lambda}\right|^{p(x)} d x}{\int_{-2}^{2}\left|u_{\lambda}^{\prime}\right|^{p(x)} d x} \geq \frac{\int_{-\frac{1}{2}}^{\frac{1}{2}} \lambda^{2} d x}{2 \int_{-2}^{-1}|\lambda|^{3} d x}=\frac{1}{2 \lambda} \rightarrow \infty
$$

as $\lambda \rightarrow 0^{+}$.

3. Main result

Let Ω be a bounded Lipschitz domain in $\mathbb{R}^{N}, N \geq 2$ and let φ and γ be two Musielak-Orlicz functions such that φ and its complementary ψ satisfies the conditions of Lemma 2.2 and $\gamma \prec \prec \varphi$.
Let $A: D(A) \subset W_{0}^{1} L_{\varphi}(\Omega) \rightarrow W^{-1} L_{\psi}(\Omega)$ be a mapping given by

$$
A(u)=-\operatorname{div} a(x, u, \nabla u)
$$

where $a: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function satisfying, for a.e $x \in \Omega$ and for all $s \in \mathbb{R}$ and all $\xi, \xi_{*} \in \mathbb{R}^{N}, \xi \neq \xi_{*}$:

$$
\begin{gather*}
|a(x, s, \xi)| \leq k_{1}\left(c(x)+\psi_{x}^{-1}\left(\gamma\left(x, k_{2}|s|\right)\right)+\psi_{x}^{-1}\left(\varphi\left(x, k_{3}|\xi|\right)\right)\right) \tag{7}\\
\left(a(x, s, \xi)-a\left(x, s, \xi_{*}\right)\right)\left(\xi-\xi_{*}\right)>0 \tag{8}\\
a(x, s, \xi) \cdot \xi \geq \alpha \varphi(x,|\xi|) \tag{9}
\end{gather*}
$$

where $c($.$) belongs to E_{\psi}(\Omega), c \geq 0$ and $k_{i}>0, i=1,2,3, \alpha \in \mathbb{R}_{+}^{*}$.
Furthermore, let $g: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a Carathéodory function such that, for a.e $x \in \Omega$ and for all $s \in \mathbb{R}$

$$
\begin{gather*}
g(x, s, \xi) s \geq 0 \tag{10}\\
|g(x, s, \xi)| \leq b(|s|)\left(c^{\prime}(x)+\varphi(x,|\xi|)\right) \tag{11}
\end{gather*}
$$

where $b: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous and non-decreasing function and $c^{\prime}($.$) is a given$ non-negative function in $L^{1}(\Omega)$.
Consider the nonlinear elliptic problem

$$
\left\{\begin{array}{lc}
A(u)-\operatorname{div} \phi(u)+g(x, u, \nabla u)=f & \text { in } \Omega \tag{12}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

$$
\begin{equation*}
f \in L^{1}(\Omega) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi \in \mathcal{C}^{0}\left(\mathbb{R}, \mathbb{R}^{N}\right) \tag{14}
\end{equation*}
$$

Note that no growth hypothesis is assumed on the function ϕ, which implies that for a solution $u \in W_{0}^{1} L_{\varphi}(\Omega)$ the term div $\phi(u)$ may be meaningless, even as a distribution.

Remark 3.1. A consequence of (9) and the continuity of a with respect to ξ, is that, for almost every x in Ω and s in \mathbb{R}

$$
a(x, s, 0)=0
$$

Definition 3.1. A measurable function $u: \Omega \rightarrow \mathbb{R}$ is called renormalized solution of (12) if

$$
\left\{\begin{array}{l}
T_{k}(u) \in W_{0}^{1} L_{\varphi}(\Omega), a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \in\left(L_{\psi}(\Omega)\right)^{N} \tag{15}\\
\int_{\{m \leq|u| \leq m+1\}} a(x, u, \nabla u) . \nabla u d x \rightarrow 0 \text { as } m \rightarrow+\infty \\
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla(h(u) \theta) d x+\int_{\Omega} g(x, u, \nabla u) h(u) \theta d x \\
+\int_{\Omega} \phi(u) . \nabla(h(u) \theta) d x=\int_{\Omega} f h(u) \theta d x \\
\text { for all } h \in \mathcal{C}_{c}^{1}(\mathbb{R}) \text { and for all } \theta \in \mathcal{D}(\Omega)
\end{array}\right.
$$

We shall prove the following theorem
Theorem 3.1. Assume that (7)-(11) and (13)-(14) hold true, then there exists a renormalized solution u for the problem (12) in the sense of definition 3.1.

Proof. Step 1: A priori estimates

First let us define the truncation $T_{k}: \mathbb{R} \rightarrow \mathbb{R}$ at height $k>0$ by

$$
T_{k}(s)=\left\{\begin{array}{ccc}
s & \text { if } & |s| \leq k \\
k \frac{s}{|s|} & \text { if } & |s|>k
\end{array}\right.
$$

Consider the nonlinear elliptic approximate problem

$$
\left(\mathcal{P}_{n}\right)\left\{\begin{array}{l}
u_{n} \in W_{0}^{1} L_{\varphi}(\Omega) \\
-\operatorname{div} a\left(x, u_{n}, \nabla u_{n}\right)+g_{n}\left(x, u_{n}, \nabla u_{n}\right)=f_{n}+\operatorname{div} \phi_{n}\left(u_{n}\right) \text { in } \mathcal{D}^{\prime}(\Omega)
\end{array}\right.
$$

where $\left(f_{n}\right) \in W^{-1} E_{\psi}(\Omega)$ is a sequence of smooth functions such that $f_{n} \rightarrow f$ in $L^{1}(\Omega), \phi_{n}(s)=\phi\left(T_{n}(s)\right)$ and $g_{n}(x, s, \xi)=T_{n}(g(x, s, \xi))$.
Note that $g_{n}(x, s, \xi) s \geq 0,\left|g_{n}(x, s, \xi)\right| \leq|g(x, s, \xi)|$ and $\left|g_{n}(x, s, \xi)\right| \leq n$.
Since ϕ is continuous, we have $\left|\phi_{n}(t)\right|=\left|\phi\left(T_{n}(t)\right)\right| \leq c_{n}$, then the problem $\left(\mathcal{P}_{n}\right)$ have
at least one solution $u_{n} \in W_{0}^{1} L_{\varphi}(\Omega)$ (see [23], Proposition 1 and [16], Theorem 4). Using in $\left(\mathcal{P}_{n}\right)$, the test function $v=T_{k}\left(u_{n}\right), k>0$, we get

$$
\begin{aligned}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}\right) d x & +\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{k}\left(u_{n}\right) d x \\
& +\int_{\Omega} \phi\left(T_{n}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x=\int_{\Omega} f_{n} T_{k}\left(u_{n}\right) d x
\end{aligned}
$$

Remark that, by Lemma 2.6

$$
\int_{\Omega} \phi\left(T_{n}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x=\int_{\Omega} \operatorname{div}\left(\tilde{\phi}_{n}\left(u_{n}\right)\right) d x=0
$$

where $\tilde{\phi}_{n}(s)=\int_{0}^{T_{k}(s)} \phi\left(T_{n}(\tau)\right) d \tau,\left(\tilde{\phi}_{n}\left(u_{n}\right) \in W_{0}^{1} L_{\varphi}(\Omega)^{N}\right.$ by Lemma 2.2)
which implies, by using the fact that $g_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{k}\left(u_{n}\right) \geq 0$,

$$
\int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} d x \leq C k
$$

where C is a constant such that $\left\|f_{n}\right\|_{1, \Omega} \leq C, \forall n$.
Thanks to (9) one easily has

$$
\begin{equation*}
\int_{\Omega} \varphi\left(x,\left|\nabla T_{k}\left(u_{n}\right)\right|\right) d x \leq \frac{1}{\alpha} \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \leq C_{1} k \tag{16}
\end{equation*}
$$

On the other hand, by using Lemma 2.7, there exists a positive constant λ such that

$$
\begin{equation*}
\int_{\Omega} \varphi(x, v) d x \leq \int_{\Omega} \varphi(x, \lambda|\nabla v|) d x \quad \text { for all } v \in W_{0}^{1} L_{\varphi}(\Omega) \tag{17}
\end{equation*}
$$

Taking $v=\frac{1}{\lambda}\left|T_{k}\left(u_{n}\right)\right|$ in (17) and using (16) gives

$$
\int_{\Omega} \varphi\left(x, \frac{1}{\lambda}\left|T_{k}\left(u_{n}\right)\right|\right) d x \leq \int_{\Omega} \varphi\left(x,\left|\nabla T_{k}\left(u_{n}\right)\right|\right) d x \leq C_{1} k
$$

which implies that

$$
\begin{aligned}
\operatorname{meas}\left\{\left|u_{n}\right|>k\right\} & \leq \frac{1}{\inf _{x \in \Omega} \varphi\left(x, \frac{k}{\lambda}\right)} \int_{\left\{\left|u_{n}\right|>k\right\}} \varphi\left(x, \frac{k}{\lambda}\right) d x \\
& \leq \frac{1}{\inf _{x \in \Omega} \varphi\left(x, \frac{k}{\lambda}\right)} \int_{\Omega} \varphi\left(x, \frac{1}{\lambda}\left|T_{k}\left(u_{n}\right)\right|\right) d x \\
& \leq \frac{C_{1} k}{\inf _{x \in \Omega} \varphi\left(x, \frac{k}{\lambda}\right)}, \quad \forall n, \forall k>0 .
\end{aligned}
$$

For any $\beta>0$, we have
meas $\left\{\left|u_{n}-u_{m}\right|>\beta\right\} \leq$ meas $\left\{\left|u_{n}\right|>k\right\}+$ meas $\left\{\left|u_{m}\right|>k\right\}+$ meas $\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>\beta\right\}$
and so that

$$
\begin{equation*}
\operatorname{meas}\left\{\left|u_{n}-u_{m}\right|>\beta\right\} \leq \frac{2 C_{1} k}{\inf _{x \in \Omega} \varphi\left(x, \frac{k}{\lambda}\right)}+\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>\beta\right\} \tag{18}
\end{equation*}
$$

By using (16) and Corollary 2.8, we deduce that $\left(T_{k}\left(u_{n}\right)\right)$ is bounded in $W_{0}^{1} L_{\varphi}(\Omega)$, and then there exists $\omega_{k} \in W_{0}^{1} L_{\varphi}(\Omega)$ such that $T_{k}\left(u_{n}\right) \rightharpoonup \omega_{k}$ weakly in $W_{0}^{1} L_{\varphi}(\Omega)$ for $\sigma\left(\Pi L_{\varphi}, \Pi E_{\psi}\right)$, strongly in $E_{\varphi}(\Omega)$ and a.e. in Ω.
Consequently, we can assume that $T_{k}\left(u_{n}\right)$ is a cauchy sequence in measure in Ω.
 some $k(\varepsilon)>0$ such that

$$
\operatorname{meas}\left\{\left|u_{n}-u_{m}\right|>\beta\right\} \leq \varepsilon, \quad \text { for all } n, m \geq n_{0}(k(\varepsilon), \beta)
$$

This proves that $\left(u_{n}\right)$ is a cauchy sequence in measure, thus, u_{n} converges almost everywhere to some measurable function u.
Finally, by Lemma 4.4 of [24], we obtain for all $k>0$

$$
\begin{gather*}
T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) \text { weakly in } W_{0}^{1} L_{\varphi}(\Omega) \text { for } \sigma\left(\Pi L_{\varphi}, \Pi E_{\psi}\right) \\
\text { strongly in } E_{\varphi}(\Omega) \text { and a.e. in } \Omega . \tag{19}
\end{gather*}
$$

Now, we shall prove that $\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\right)_{n}$ is bounded in $\left(L_{\psi}(\Omega)\right)^{N}$ for all $k>0$, by using the dual norm of $\left(L_{\psi}(\Omega)\right)^{N}$.
Let $\vartheta \in\left(E_{\varphi}(\Omega)\right)^{N}$ such that $\|\vartheta\|_{\varphi, \Omega}=1$. We have from (8)

$$
\int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \frac{\vartheta}{k_{3}}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\frac{\vartheta}{k_{3}}\right) d x \geq 0
$$

this implies by (16)

$$
\begin{aligned}
\int_{\Omega} \frac{1}{k_{3}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \vartheta d x \leq & \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \\
& -\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \frac{\vartheta}{k_{3}}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\frac{\vartheta}{k_{3}}\right) d x \\
\leq & C k-\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \frac{\vartheta}{k_{3}}\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \\
& +\frac{1}{k_{3}} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \frac{\vartheta}{k_{3}}\right) \vartheta d x
\end{aligned}
$$

By using Young's inequality in the last two terms of the last side and (16) we have

$$
\begin{aligned}
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \vartheta d x \leq & C k k_{3}+3 k_{1}\left(1+k_{3}\right) \int_{\Omega} \psi\left(x, \frac{\left|a\left(x, T_{k}\left(u_{n}\right), \frac{\vartheta}{k_{3}}\right)\right|}{3 k_{1}}\right) d x \\
& +3 k_{1} k_{3} \int_{\Omega} \varphi\left(x,\left|\nabla T_{k}\left(u_{n}\right)\right|\right) d x+3 k_{1} \int_{\Omega} \varphi(x,|\vartheta|) d x \\
\leq & C k k_{3}+3 C_{1} k k_{1} k_{3}+3 k_{1} \\
& \left.+3 k_{1}\left(1+k_{3}\right) \int_{\Omega} \psi\left(x, \frac{\mid a\left(x, T_{k}\left(u_{n}\right), \vartheta \vartheta\right.}{3 k_{1}}\right) \right\rvert\,
\end{aligned}
$$

Using (7) and the convexity of ψ yields

$$
\psi\left(x, \frac{\left|a\left(x, T_{k}\left(u_{n}\right), \frac{\vartheta}{k_{3}}\right)\right|}{3 k_{1}}\right) \leq \frac{1}{3}\left(\psi(x, c(x)) d x+\gamma\left(x, k_{2} T_{k}\left(u_{n}\right)\right)+\varphi(x,|\vartheta|)\right)
$$

and, since γ grows essentially less rapidly than φ near infinity there exists $\zeta(k)>0$ such that $\gamma\left(x, k_{2}\left|T_{k}\left(u_{n}\right)\right|\right) \leq \gamma\left(x, k_{2} k\right) \leq \zeta(k) \varphi(x, 1)$ (see Remark 2.1), then we have by integrating over Ω and using (5)

$$
\begin{aligned}
& \int_{\Omega} \psi\left(x, \frac{\left|a\left(x, T_{k}\left(u_{n}\right), \frac{\vartheta}{k_{3}}\right)\right|}{3 k_{1}}\right) d x \\
& \quad \leq \frac{1}{3}\left(\int_{\Omega} \psi(x, c(x)) d x+\zeta(k) \int_{\Omega} \varphi(x, 1) d x+\int_{\Omega} \varphi(x,|\vartheta|) d x\right) \leq C_{k}
\end{aligned}
$$

where C_{k} is a constant depending on k, we deduce that

$$
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \vartheta d x \leq C_{k} \quad \forall \vartheta \in\left(E_{\varphi}(\Omega)\right)^{N} \quad \text { with } \quad\|\vartheta\|_{\varphi, \Omega}=1
$$

which shows that $\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\right)_{n}$ is bounded in $\left(L_{\psi}(\Omega)\right)^{N}$.
Step 2: Almost everywhere convergence of the gradients.
Let $\mu(t)=t e^{\delta t^{2}}, \delta>0$. It is well known that for $\delta \geq\left(\frac{b(k)}{2 \alpha}\right)^{2}$ one has

$$
\begin{equation*}
\mu^{\prime}(t)-\frac{b(k)}{\alpha}|\mu(t)| \geq \frac{1}{2} \quad \text { for all } t \in \mathbb{R} \tag{20}
\end{equation*}
$$

where $k>0$ is a fixed real number which will be used as a level of the truncation.
Let $v_{j} \in \mathfrak{D}(\Omega)$ be a sequence which converges to $T_{k}(u)$ for the modular convergence in $W_{0}^{1} L_{\varphi}(\Omega)$ and define the function

$$
\rho_{m}(s)=\left\{\begin{array}{lll}
1 & \text { if } & |s| \leq m \\
m+1-|s| & \text { if } & m \leq|s| \leq m+1 \\
0 & \text { if } & |s| \geq m+1
\end{array}\right.
$$

where $m>k$.
Let $\theta_{n}^{j}=T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right), \theta^{j}=T_{k}(u)-T_{k}\left(v_{j}\right)$ and $z_{n, m}^{j}=\mu\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right)$.

Using in $\left(\mathcal{P}_{n}\right)$ the test function $z_{n, m}^{j}$ gives

$$
\begin{align*}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla z_{n, m}^{j}+\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \phi_{n}\left(u_{n}\right) \cdot \nabla u_{n} \rho_{m}^{\prime}\left(u_{n}\right) \mu\left(T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right) d x \\
& \quad+\int_{\Omega} \phi_{n}\left(u_{n}\right) \cdot \nabla \mu\left(T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right) \rho_{m}\left(u_{n}\right) d x+\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) z_{n, m}^{j} d x \\
& =\int_{\Omega} f_{n} z_{n, m}^{j} d x \tag{21}
\end{align*}
$$

Denote by $\varepsilon_{i}(n, j)(i=0,1,2, \ldots)$ various sequences of real numbers which tend to 0 when n and $j \rightarrow \infty$, i.e. $\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \varepsilon_{i}(n, j)=0$.
In view of (19), we have $z_{n, m}^{j} \rightarrow \mu\left(\theta^{j}\right) \rho_{m}(u)$ weakly* in $L^{\infty}(\Omega)$ as $n \rightarrow \infty$ and then

$$
\int_{\Omega} f_{n} z_{n, m}^{j} d x \rightarrow \int_{\Omega} f \mu\left(\theta^{j}\right) \rho_{m}(u) d x \text { as } n \rightarrow \infty
$$

and since $\theta^{j} \rightarrow 0$ weakly* * in $L^{\infty}(\Omega)$ we get $\int_{\Omega} f \mu\left(\theta^{j}\right) \rho_{m}(u) d x \rightarrow 0$ as $j \rightarrow \infty$, then

$$
\int_{\Omega} f_{n} z_{n, m}^{j} d x=\varepsilon_{0}(n, j)
$$

By Lemma 2.6, it's easy to see that

$$
\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} \phi_{n}\left(u_{n}\right) \cdot \nabla u_{n} \rho_{m}^{\prime}\left(u_{n}\right) \mu\left(T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right) d x=0
$$

Concerning the third term in the left-hand side of (21) we can write

$$
\begin{aligned}
\int_{\Omega} \phi_{n}\left(u_{n}\right) \cdot \nabla \mu\left(T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right) \rho_{m}\left(u_{n}\right) d x & =\int_{\Omega} \phi_{n}\left(u_{n}\right) \cdot \nabla T_{k}\left(u_{n}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x \\
& -\int_{\Omega} \phi_{n}\left(u_{n}\right) \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x
\end{aligned}
$$

Using again Lemma 2.6, we get

$$
\int_{\Omega} \phi_{n}\left(u_{n}\right) \cdot \nabla T_{k}\left(u_{n}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x=0
$$

From (19) we have

$$
\phi_{n}\left(u_{n}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) \rightarrow \phi(u) \mu^{\prime}\left(\theta^{j}\right) \rho_{m}(u) \text { almost everywhere in } \Omega \text { as } n \rightarrow \infty
$$

furthermore, we can check that

$$
\left\|\phi_{n}\left(u_{n}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right)\right\|_{\psi} \leq c_{m} c_{1} \mu^{\prime}(2 k)|\Omega|
$$

where $c_{m}=\max _{|t| \leq m+1} \phi(t)$ and c_{1} is the constant defined in (6).
Applying [25, Theorem 14.6] we get

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \phi_{n}\left(u_{n}\right) \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x=\int_{\Omega} \phi(u) \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta^{j}\right) \rho_{m}(u) d x
$$

and by using the modular convergence of $\left(v_{j}\right)$, we obtain

$$
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{\Omega} \phi_{n}\left(u_{n}\right) \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x=\int_{\Omega} \phi(u) \cdot \nabla T_{k}(u) \rho_{m}(u) d x
$$

then, by Lemma 2.6, one has $\int_{\Omega} \phi(u) . \nabla T_{k}(u) \rho_{m}(u) d x=0$.
Hence

$$
\int_{\Omega} \phi_{n}\left(u_{n}\right) \cdot \nabla \mu\left(T_{k}\left(u_{n}\right)-T_{k}\left(v_{j}\right)\right) \rho_{m}\left(u_{n}\right) d x=\epsilon_{1}(n, j) .
$$

Since $g_{n}\left(x, u_{n}, \nabla u_{n}\right) z_{n, m}^{j} \geq 0$ on the subset $\left\{x \in \Omega:\left|u_{n}(x)\right|>k\right\}$ and $\rho_{m}\left(u_{n}\right)=1$ on the subset $\left\{x \in \Omega:\left|u_{n}(x)\right| \leq k\right\}$ we have, from (21),

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla z_{n, m}^{j}+\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) \mu\left(\theta_{n}^{j}\right) d x \leq \varepsilon_{2}(n, j) . \tag{22}
\end{equation*}
$$

For what concerns the first term of the left-hand side of (22) we have

$$
\begin{aligned}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla z_{n, m}^{j}= & \int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right)\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x \\
& -\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x \\
& +\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mu\left(\theta_{n}^{j}\right) \rho_{m}^{\prime}\left(u_{n}\right) d x \\
= & \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right)\right) \mu^{\prime}\left(\theta_{n}^{j}\right) d x \\
& -\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x \\
& +\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mu\left(\theta_{n}^{j}\right) \rho_{m}^{\prime}\left(u_{n}\right) d x
\end{aligned}
$$

and then

$$
\begin{gather*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla z_{n, m}^{j}=\int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right] \\
\times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right] \mu^{\prime}\left(\theta_{n}^{j}\right) d x \\
+\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) d x \\
-\int_{\Omega \backslash \Omega_{j}^{s}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) d x \\
-\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x \\
+\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mu\left(\theta_{n}^{j}\right) \rho_{m}^{\prime}\left(u_{n}\right) d x \tag{23}
\end{gather*}
$$

where χ_{j}^{s} is the characteristic function of the set $\Omega_{j}^{s}=\left\{x \in \Omega:\left|\nabla T_{k}\left(v_{j}\right)\right| \leq s\right\}$.
For the third term, since $\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\right)_{n}$ is bounded in $\left(L_{\psi}(\Omega)\right)^{N}$, we have, for a subsequence, $a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \rightharpoonup l_{k}$ weakly in $\left(L_{\psi}(\Omega)\right)^{N}$ for $\sigma\left(\Pi L_{\psi}, \Pi E_{\varphi}\right)$, with $l_{k} \in\left(L_{\psi}(\Omega)\right)^{N}$ and since $\nabla T_{k}\left(v_{j}\right) \chi_{\Omega \backslash \Omega_{j}^{s}} \in\left(E_{\varphi}(\Omega)\right)^{N}$ we have, by letting $n \rightarrow \infty$

$$
-\int_{\Omega \backslash \Omega_{j}^{s}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) d x \rightarrow-\int_{\Omega \backslash \Omega_{j}^{s}} l_{k} \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta^{j}\right) d x
$$

Using now, the modular convergence of $\left(v_{j}\right)$, we get

$$
-\int_{\Omega \backslash \Omega_{j}^{s}} l_{k} . \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta^{j}\right) d x \rightarrow-\int_{\Omega \backslash \Omega_{s}} l_{k} . \nabla T_{k}(u) d x \text { as } j \rightarrow \infty
$$

where $\Omega_{s}=\left\{x \in \Omega:\left|\nabla T_{k}(u)\right| \leq s\right\}$. We have then proved that

$$
\begin{equation*}
-\int_{\Omega \backslash \Omega_{j}^{s}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) d x=-\int_{\Omega \backslash \Omega_{s}} l_{k} \cdot \nabla T_{k}(u) d x+\varepsilon_{3}(n, j) \tag{24}
\end{equation*}
$$

Concerning the fourth term, since $\rho_{m}\left(u_{n}\right)=0$ on the subset $\left\{\left|u_{n}\right|>m+1\right\}$, we have

$$
\begin{aligned}
& -\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x \\
& \quad=-\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, T_{m+1}\left(u_{n}\right), \nabla T_{m+1}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x
\end{aligned}
$$

and as above

$$
\begin{gather*}
-\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, T_{m+1}\left(u_{n}\right), \nabla T_{m+1}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rho_{m}\left(u_{n}\right) d x \\
=-\int_{\{|u|>k\}} l_{m+1} \cdot \nabla T_{k}(u) \rho_{m}(u) d x+\varepsilon_{4}(n, j) \\
=\varepsilon_{4}(n, j) \tag{25}
\end{gather*}
$$

where we have used the fact that $\nabla T_{k}(u)=0$ on the subset $\{x \in \Omega:|u(x)|>k\}$.
For the second term of (23), remark that by using Lemma 2.5 and the fact that $\nabla T_{k}\left(u_{n}\right) \rightharpoonup \nabla T_{k}(u)$ weakly in $\left(L_{\varphi}(\Omega)\right)^{N}$, by (19), we have

$$
a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) \rightarrow a\left(x, T_{k}(u), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \mu^{\prime}\left(\theta^{j}\right)
$$

strongly in $\left(E_{\psi}(\Omega)\right)^{N}$ as $n \rightarrow \infty$, then

$$
\begin{aligned}
& \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \mu^{\prime}\left(\theta_{n}^{j}\right) d x \\
& \quad \rightarrow \int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left(\nabla T_{k}(u)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \mu^{\prime}\left(\theta^{j}\right) d x \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

on the other hand, since $\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s} \rightarrow \nabla T_{k}(u) \chi^{s}$ strongly in $\left(E_{\varphi}(\Omega)\right)^{N}$ as $j \rightarrow \infty$, it is easy to see that

$$
\int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left(\nabla T_{k}(u)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \mu^{\prime}\left(\theta^{j}\right) d x \rightarrow 0 \text { as } j \rightarrow \infty
$$

where χ^{s} is the characteristic function of the set Ω_{s}, then

$$
\begin{equation*}
\left.\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right]\right) \mu^{\prime}\left(\theta_{n}^{j}\right) d x=\varepsilon_{5}(n, j) \tag{26}
\end{equation*}
$$

The last term of (23) reads as
$\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mu\left(\theta_{n}^{j}\right) \rho_{m}^{\prime}\left(u_{n}\right) d x=\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mu\left(\theta_{n}^{j}\right) \rho_{m}^{\prime}\left(u_{n}\right) d x$,
then

$$
\left|\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mu\left(\theta_{n}^{j}\right) \rho_{m}^{\prime}\left(u_{n}\right) d x\right| \leq \mu(2 k) \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} d x
$$

Taking $T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right)$ as test function in $\left(\mathcal{P}_{n}\right)$ yields

$$
\begin{aligned}
& \int_{\left\{m<\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} d x+\int_{\left\{m<\left|u_{n}\right| \leq m+1\right\}} \phi\left(T_{n}\left(u_{n}\right)\right) \cdot \nabla u_{n} d x \\
& +\int_{\left\{\left|u_{n}\right|>m\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right) d x=\int_{\left\{\left|u_{n}\right|>m\right\}} f_{n} T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right) d x .
\end{aligned}
$$

Thanks to Lemma 2.6 we have

$$
\int_{\left\{m<\left|u_{n}\right| \leq m+1\right\}} \phi\left(T_{n}\left(u_{n}\right)\right) \cdot \nabla u_{n} d x=0
$$

which implies, by using the fact that $g_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{1}\left(u_{n}-T_{m}\left(u_{n}\right)\right) \geq 0$ on the subset $\left\{x \in \Omega:\left|u_{n}\right| \geq m\right\}$,

$$
\begin{equation*}
\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} d x \leq \int_{\left\{\left|u_{n}\right|>m\right\}}\left|f_{n}\right| d x, \tag{27}
\end{equation*}
$$

consequently

$$
\left|\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} \mu\left(\theta_{n}^{j}\right) \rho_{m}^{\prime}\left(u_{n}\right) d x\right| \leq \mu(2 k) \int_{\left\{\left|u_{n}\right|>m\right\}}\left|f_{n}\right| d x
$$

Combining this inequality with (24), (25) and (26) we obtain

$$
\begin{align*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla z_{n, m}^{j} \geq & -\int_{\Omega \backslash \Omega_{s}} l_{k} \cdot \nabla T_{k}(u) d x-\mu(2 k) \int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x \\
& +\int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right] \mu^{\prime}\left(\theta_{n}^{j}\right) d x+\varepsilon_{6}(n, j) . \quad(28) \tag{28}
\end{align*}
$$

Concerning the second term of the left-hand side of (22), we have

$$
\begin{aligned}
& \left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) z_{n, m}^{j} d x\right|=\left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \mu\left(\theta_{n}^{j}\right) d x\right| \\
& \quad \leq \int_{\Omega} b(k) c^{\prime}(x)\left|\mu\left(\theta_{n}^{j}\right)\right| d x+b(k) \int_{\Omega} \varphi\left(x,\left|\nabla T_{k}\left(u_{n}\right)\right|\right)\left|\mu\left(\theta_{n}^{j}\right)\right| d x \\
&
\end{aligned}
$$

We can write the last term of the last side of this inequality as

$$
\begin{align*}
& \frac{b(k)}{\alpha} \int_{\Omega}[a(x, \\
& \left.\left.\quad T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right] \\
& \quad \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right]\left|\mu\left(\theta_{n}^{j}\right)\right| d x \\
& \quad+\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left|\mu\left(\theta_{n}^{j}\right)\right| d x \tag{29}\\
& \quad-\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\left|\mu\left(\theta_{n}^{j}\right)\right| d x
\end{align*}
$$

we argue as above to show that

$$
\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\left|\mu\left(\theta_{n}^{j}\right)\right| d x=\varepsilon_{8}(n, j)
$$

and

$$
\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\left|\mu\left(\theta_{n}^{j}\right)\right| d x=\varepsilon_{9}(n, j)
$$

then

$$
\begin{aligned}
& \left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) z_{n, m}^{j} d x\right| \\
& \quad \leq \frac{b(k)}{\alpha} \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right] \\
& \quad \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right]\left|\mu\left(\theta_{n}^{j}\right)\right| d x+\varepsilon_{10}(n, j)
\end{aligned}
$$

Combining this with (22) and (28), we obtain

$$
\begin{aligned}
& \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right] \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right] \\
\times & \left(\mu^{\prime}\left(\theta_{n}^{j}\right)-\frac{b(k)}{\alpha}\left|\mu\left(\theta_{n}^{j}\right)\right|\right) d x \leq \varepsilon_{11}(n, j)+\int_{\Omega \backslash \Omega_{s}} l_{k} \cdot \nabla T_{k}(u) d x+\mu(2 k) \int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x
\end{aligned}
$$

and by using (20) we deduce that

$$
\begin{align*}
\int_{\Omega}\left[a \left(x, T_{k}\left(u_{n}\right)\right.\right. & \left.\left., \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right] \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right] d x \\
& \leq 2 \varepsilon_{11}(n, j)+2 \int_{\Omega \backslash \Omega_{s}} l_{k} \cdot \nabla T_{k}(u) d x+2 \mu(2 k) \int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x \tag{30}
\end{align*}
$$

On the other hand

$$
\begin{gathered}
\int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\right] \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right] d x \\
=\int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right] \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right] d x \\
+\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot\left[\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}-\nabla T_{k}(u) \chi^{s}\right] d x \\
-\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right) \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right] d x \\
+\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right] d x .
\end{gathered}
$$

We shall pass to the limit in n and in j in the last three terms of the right-hand side of the above equality. Similar tools as in (23) and (29) gives

$$
\begin{aligned}
& \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot\left[\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}-\nabla T_{k}(u) \chi^{s}\right] d x=\varepsilon_{12}(n, j), \\
& \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right) \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right] d x=\varepsilon_{13}(n, j)
\end{aligned}
$$

and

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right] d x=\varepsilon_{14}(n, j) \tag{31}
\end{equation*}
$$

Which implies that

$$
\begin{aligned}
& \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\right] \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right] d x \\
& =\int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right] \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right] d x \\
& \quad+\varepsilon_{15}(n, j) .
\end{aligned}
$$

For $r \leq s$, one has

$$
\begin{aligned}
0 \leq & \int_{\Omega_{r}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \\
\leq & \int_{\Omega_{s}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \\
= & \int_{\Omega_{s}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\right] \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right] d x \\
\leq & \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u) \chi^{s}\right)\right] \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi^{s}\right] d x \\
= & \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right)\right] \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right] d x \\
& +\varepsilon_{15}(n, j) \\
\leq & \varepsilon_{16}(n, j)+2 \int l_{\Omega} l_{k} \cdot \nabla T_{k}(u) d x+2 \mu(2 k) \int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x .
\end{aligned}
$$

This implies that, by passing at first to the limit sup over n and then over j,

$$
\begin{array}{r}
0 \leq \limsup _{n \rightarrow \infty} \int_{\Omega_{r}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \\
\leq 2 \int_{\Omega \backslash \Omega_{s}} l_{k} \cdot \nabla T_{k}(u) d x+2 \mu(2 k) \int_{\{|u| \geq m\}}|f| d x
\end{array}
$$

Letting s and $m \rightarrow \infty$ and using the fact that $l_{k} \cdot \nabla T_{k}(u) \in L^{1}(\Omega)$ we get, since $\left|\Omega \backslash \Omega_{s}\right| \rightarrow 0$ and $|\{|u| \geq m\}| \rightarrow 0$,
$\int_{\Omega_{r}}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \rightarrow 0$ as $n \rightarrow \infty$.
As in [26], we deduce that there exists a subsequence, still denoted by u_{n}, such that

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \text { a.e in } \Omega \tag{32}
\end{equation*}
$$

which implies that

$$
\begin{gather*}
a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \rightharpoonup a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \text { weakly in }\left(L_{\psi}(\Omega)\right)^{N} \text { for } \\
\sigma\left(\Pi L_{\psi}, \Pi E_{\varphi}\right), \forall k>0 . \tag{33}
\end{gather*}
$$

Step 3: Modular convergence of the truncations.

Going back to the equation (30), we can write

$$
\begin{array}{r}
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \leq \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s} d x \\
+\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right) \cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}\left(v_{j}\right) \chi_{j}^{s}\right] d x \\
+2 \varepsilon_{11}(n, j)+2 \int_{\Omega \backslash \Omega_{s}} l_{k} \cdot \nabla T_{k}(u) d x+2 \mu(2 k) \int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x,
\end{array}
$$

then, by using (31), we have

$$
\begin{aligned}
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \leq & \varepsilon_{17}(n, j)+\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) . \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s} d x \\
& +2 \int_{\Omega \backslash \Omega_{s}} l_{k} \cdot \nabla T_{k}(u) d x+2 \mu(2 k) \int_{\left\{\left|u_{n}\right| \geq m\right\}}\left|f_{n}\right| d x .
\end{aligned}
$$

Passing to the limit sup over n in both sides of this inequality yields

$$
\begin{array}{r}
\limsup _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \leq \int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}\left(v_{j}\right) \chi_{j}^{s} d x \\
+\lim _{n \rightarrow \infty} \varepsilon_{17}(n, j)+2 \int_{\Omega \backslash \Omega_{s}} l_{k} \cdot \nabla T_{k}(u) d x+2 \mu(2 k) \int_{\{|u| \geq m\}}|f| d x
\end{array}
$$

in which, we can pass to the limit in j, to obtain

$$
\begin{array}{r}
\limsup _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \leq \int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) \chi^{s} d x \\
+2 \int_{\Omega \backslash \Omega_{s}} l_{k} \cdot \nabla T_{k}(u) d x+2 \mu(2 k) \int_{\{|u| \geq m\}}|f| d x
\end{array}
$$

Letting s and $m \rightarrow \infty$ gives

$$
\limsup _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) . \nabla T_{k}\left(u_{n}\right) d x \leq \int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) d x
$$

then by using Fatou's Lemma we have

$$
\int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) . \nabla T_{k}\left(u_{n}\right) d x
$$

consequently

$$
\lim _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x=\int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) d x
$$

and, by using Lemma 2.4, we conclude that

$$
\begin{equation*}
a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) . \nabla T_{k}\left(u_{n}\right) \rightarrow a\left(x, T_{k}(u), \nabla T_{k}(u)\right) . \nabla T_{k}(u) \text { in } L^{1}(\Omega) \tag{34}
\end{equation*}
$$

The convexity of the Musielak-Orlicz function φ and (9) allow us to get

$$
\begin{aligned}
\varphi\left(x, \frac{\left|\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right|}{2}\right) \leq & \frac{1}{2 \alpha} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) \\
& +\frac{1}{2 \alpha} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u)
\end{aligned}
$$

and by (34) we obtain

$$
\lim _{|E| \rightarrow 0} \sup _{n} \int_{E} \varphi\left(x, \frac{\left|\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right|}{2}\right) d x=0
$$

which implies, by using Vitali's theorem, that

$$
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \text { in } W_{0}^{1} L_{\varphi}(\Omega) \text { for the modular convergence } \forall k>0
$$

Step 4 : Equi-integrability of the non-linearities.

We shall prove that $g_{n}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow g(x, u, \nabla u)$ strongly in $L^{1}(\Omega)$ by using Vitali's theorem. Thanks to (32) we have $g_{n}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow g(x, u, \nabla u)$ a.e in Ω, so it suffices to prove that $g_{n}\left(x, u_{n}, \nabla u_{n}\right)$ is uniformly equi-integrable in Ω.
Let $E \subset \Omega$ be a measurable subset of Ω. We have for any $m>1$,
$\int_{E}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x=\int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x+\int_{E \cap\left\{\left|u_{n}\right|>m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x$.
Taking

$$
T_{1}\left(u_{n}-T_{m-1}\left(u_{n}\right)\right)=\left\{\begin{array}{cl}
0 & \text { if }\left|u_{n}\right| \leq m-1 \\
u_{n}-(m-1) \operatorname{sgn}\left(u_{n}\right) & \text { if } m-1 \leq\left|u_{n}\right| \leq m \\
\operatorname{sgn}\left(u_{n}\right) & \text { if }\left|u_{n}\right|>m
\end{array}\right.
$$

as test function in $\left(\mathcal{P}_{n}\right)$, gives

$$
\begin{aligned}
& \quad \int_{\left\{m-1<\left|u_{n}\right| \leq m\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} d x+\int_{\left\{m-1<\left|u_{n}\right| \leq m\right\}} \phi\left(T_{n}\left(u_{n}\right)\right) \cdot \nabla u_{n} d x \\
& +\int_{\left\{\left|u_{n}\right|>m-1\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{1}\left(u_{n}-T_{m-1}\left(u_{n}\right)\right) d x=\int_{\left\{\left|u_{n}\right|>m-1\right\}} f_{n} T_{1}\left(u_{n}-T_{m-1}\left(u_{n}\right)\right) d x
\end{aligned}
$$

consequently

$$
\int_{\left\{\left|u_{n}\right|>m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \int_{\left\{\left|u_{n}\right|>m-1\right\}}\left|f_{n}\right| d x
$$

Let $\varepsilon>0$, there exists $m=m(\varepsilon)>1$ such that

$$
\int_{E \cap\left\{\left|u_{n}\right|>m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \frac{\varepsilon}{2}, \quad \forall n
$$

On the other hand

$$
\begin{aligned}
\int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x & \leq \int_{E}\left|g_{n}\left(x, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right)\right| d x \\
\leq & b(m) \int_{E}\left(c^{\prime}(x)+\varphi\left(x,\left|\nabla T_{m}\left(u_{n}\right)\right|\right)\right) d x \\
\leq & \frac{b(m)}{\alpha} \int_{E} a\left(x, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right) \nabla T_{m}\left(u_{n}\right) d x \\
& +b(m) \int_{E} c^{\prime}(x) d x
\end{aligned}
$$

By virtue of the strong convergence (34) and the fact that $c^{\prime}(.) \in L^{1}(\Omega)$, there exists $\eta>0$, such that

$$
|E|<\eta \text { implies } \int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \frac{\varepsilon}{2}, \quad \forall n
$$

So that

$$
|E|<\eta \text { implies } \int_{E}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \varepsilon, \quad \forall n
$$

which shows that $g_{n}\left(x, u_{n}, \nabla u_{n}\right)$ is uniformly equi-integrable in Ω. By Vitali's theorem, we conclude that $g(x, u, \nabla u) \in L^{1}(\Omega)$ and

$$
\begin{equation*}
g_{n}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow g(x, u, \nabla u) \text { strongly in } L^{1}(\Omega) \tag{35}
\end{equation*}
$$

Step 5 : Passage to the limit.

Turning to the inequality (27), we have for the first term
$\int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} d x=\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot\left(\nabla T_{m+1}\left(u_{n}\right)-\nabla T_{m}\left(u_{n}\right)\right) d x$

$$
\begin{aligned}
= & \int_{\Omega} a\left(x, T_{m+1}\left(u_{n}\right), \nabla T_{m+1}\left(u_{n}\right)\right) \cdot \nabla T_{m+1}\left(u_{n}\right) d x \\
& -\int_{\Omega} a\left(x, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right) \cdot \nabla T_{m}\left(u_{n}\right) d x
\end{aligned}
$$

then by (34) we obtain
$\lim _{n \rightarrow \infty} \int_{\left\{m \leq\left|u_{n}\right| \leq m+1\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} d x=\int_{\Omega} a\left(x, T_{m+1}(u), \nabla T_{m+1}(u)\right) . \nabla T_{m+1}(u) d x$

$$
\begin{aligned}
& -\int_{\Omega} a\left(x, T_{m}(u), \nabla T_{m}(u)\right) \cdot \nabla T_{m}(u) d x \\
= & \int_{\Omega} a(x, u, \nabla u) \cdot\left(\nabla T_{m+1}(u)-\nabla T_{m}(u)\right) d x \\
= & \int_{\{m \leq|u| \leq m+1\}} a(x, u, \nabla u) \cdot \nabla u d x .
\end{aligned}
$$

Consequently, by letting n to infinity in (27) we get

$$
\int_{\{m \leq|u| \leq m+1\}} a(x, u, \nabla u) \cdot \nabla u d x \leq \int_{\{|u| \geq m\}}|f| d x
$$

in which we can pass to the limit in m to obtain

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{\{m \leq|u| \leq m+1\}} a(x, u, \nabla u) \cdot \nabla u d x=0 . \tag{36}
\end{equation*}
$$

Now, from (34) and Lemma 2.4 we deduce that

$$
\begin{equation*}
a\left(x, u_{n}, \nabla u_{n}\right) . \nabla u_{n} \rightarrow a(x, u, \nabla u) . \nabla u \text { in } L^{1}(\Omega) \tag{37}
\end{equation*}
$$

Let $h \in \mathcal{C}_{c}^{1}(\mathbb{R})$ and $\theta \in \mathcal{D}(\Omega)$. Taking $h\left(u_{n}\right) \theta$ as test function in $\left(\mathcal{P}_{n}\right)$, we get

$$
\begin{align*}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} h^{\prime}\left(u_{n}\right) \theta d x+\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla h\left(u_{n}\right) \theta d x \\
& +\int_{\Omega} \phi_{n}\left(u_{n}\right) \cdot \nabla\left(h\left(u_{n}\right) \theta\right) d x+\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) h\left(u_{n}\right) \theta d x=\int_{\Omega} f_{n} h\left(u_{n}\right) \theta d x \tag{38}
\end{align*}
$$

Since h and h^{\prime} have compact support in \mathbb{R}, there exists $\rho>0$ such that supp $h \subset[-\rho, \rho]$ and $\operatorname{supp} h^{\prime} \subset[-\rho, \rho]$, then for $n>\rho$ we can write

$$
\begin{aligned}
\phi_{n}(t) h(t) & =\phi\left(T_{n}(t)\right) h(t)=\phi\left(T_{\rho}(t)\right) h(t) \\
\phi_{n}(t) h^{\prime}(t) & =\phi\left(T_{n}(t)\right) h^{\prime}(t)=\phi\left(T_{\rho}(t)\right) h^{\prime}(t)
\end{aligned}
$$

Moreover, the functions ϕh and ϕh^{\prime} belong to $\left(\mathcal{C}^{0}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})\right)^{N}$.
Since $u_{n} \in W_{0}^{1} L_{\varphi}(\Omega)$ there exists two positive constants η_{1}, η_{2} such that

$$
\int_{\Omega} \varphi\left(x, \frac{\left|\nabla u_{n}\right|}{\eta_{1}}\right) d x \leq \eta_{2}
$$

Let τ be a positive constant such that $\left\|h\left(u_{n}\right)|\nabla \theta|\right\|_{\infty} \leq \tau$ and $\left\|h^{\prime}\left(u_{n}\right) \theta\right\|_{\infty} \leq \tau$. For μ large enough, we have

$$
\begin{aligned}
\int_{\Omega} \varphi\left(x, \frac{\left|\nabla\left(h\left(u_{n}\right) \theta\right)\right|}{\mu}\right) d x & \leq \int_{\Omega} \varphi\left(x, \frac{\left|h\left(u_{n}\right) \nabla \theta\right|+\left|h^{\prime}\left(u_{n}\right) \theta\right|\left|\nabla u_{n}\right|}{\mu}\right) d x \\
& \leq \int_{\Omega} \varphi\left(x, \frac{\tau+\frac{\tau \eta_{1}\left|\nabla u_{n}\right|}{\eta_{1}}}{\mu}\right) d x \\
& \leq \int_{\Omega} \varphi\left(x, \frac{\tau}{\mu}\right) d x+\frac{\tau \eta_{1}}{\mu} \int_{\Omega} \varphi\left(x, \frac{\left|\nabla u_{n}\right|}{\eta_{1}}\right) d x \\
& \leq \int_{\Omega} \varphi(x, 1) d x+\frac{\tau \eta_{1} \eta_{2}}{\mu} \leq C
\end{aligned}
$$

which implies that $h\left(u_{n}\right) \theta$ is bounded in $W_{0}^{1} L_{\varphi}(\Omega)$ and then we deduce that

$$
\begin{equation*}
h\left(u_{n}\right) \theta \rightharpoonup h(u) \theta \text { weakly in } W_{0}^{1} L_{\varphi}(\Omega) \text { for } \sigma\left(\Pi L_{\varphi}, \Pi E_{\psi}\right) \tag{39}
\end{equation*}
$$

On the other hand, for any measurable subset E of Ω we have

$$
\begin{aligned}
\left\|\phi\left(T_{\rho}\left(u_{n}\right)\right) \chi_{E}\right\|_{\psi} & =\sup _{\|v\|_{\varphi} \leq 1}\left|\int_{E} \phi\left(T_{\rho}\left(u_{n}\right)\right) v d x\right| \\
& \leq c_{\rho} \sup _{\|v\|_{\varphi} \leq 1}\left\|\chi_{E}\right\|_{\psi}\|v\|_{\varphi} \\
& \leq c_{\rho} \frac{1}{M^{-1}\left(\frac{1}{|E|}\right)}
\end{aligned}
$$

where $c_{\rho}=\max _{|t| \leq \rho} \phi(t)$ and M is the N-function defined by $M=\sup _{x \in \Omega} \psi(x, t)$, then

$$
\lim _{|E| \rightarrow 0} \sup _{n}\left\|\phi\left(T_{\rho}\left(u_{n}\right)\right) \chi_{E}\right\|_{\psi}=0
$$

consequently from (19) and by using [25, Lemma 11.2] we obtain

$$
\begin{equation*}
\phi\left(T_{\rho}\left(u_{n}\right)\right) \rightarrow \phi\left(T_{\rho}(u)\right) \text { strongly in }\left(E_{\psi}(\Omega)\right)^{N} \tag{40}
\end{equation*}
$$

It follows that by (39) and (40)

$$
\int_{\Omega} \phi_{n}\left(u_{n}\right) \cdot \nabla\left(h\left(u_{n}\right) \theta\right) d x \rightarrow \int_{\Omega} \phi(u) \cdot \nabla(h(u) \theta) d x \text { as } n \rightarrow+\infty .
$$

For the first term of (38), we have

$$
\left|a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} h^{\prime}\left(u_{n}\right) \theta\right| \leq \tau a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n}
$$

So, by using Vitali's theorem and (37) we get

$$
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} h^{\prime}\left(u_{n}\right) \theta d x \rightarrow \int_{\Omega} a(x, u, \nabla u) \cdot \nabla u h^{\prime}(u) \theta d x
$$

Concerning the second term of (38), we have

$$
h\left(u_{n}\right) \nabla \theta \rightarrow h(u) \nabla \theta \text { strongly in }\left(E_{\varphi}(\Omega)\right)^{N}
$$

and

$$
a\left(x, u_{n}, \nabla u_{n}\right) \rightharpoonup a(x, u, \nabla u) \text { weakly in }\left(L_{\psi}(\Omega)\right)^{N} \text { for } \sigma\left(\Pi L_{\psi}, \Pi E_{\varphi}\right)
$$

then

$$
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla \theta h\left(u_{n}\right) d x \rightarrow \int_{\Omega} a(x, u, \nabla u) \cdot \nabla \theta h(u) d x
$$

Since $h\left(u_{n}\right) \theta \rightharpoonup h(u) \theta$ weakly in $L^{\infty}(\Omega)$ for $\sigma^{*}\left(L^{\infty}, L^{1}\right)$ and by using (35), we have

$$
\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) h\left(u_{n}\right) \theta d x \rightarrow \int_{\Omega} g(x, u, \nabla u) h(u) \theta d x
$$

and

$$
\int_{\Omega} f_{n} h\left(u_{n}\right) \theta d x \rightarrow \int_{\Omega} f h(u) \theta d x
$$

Finally, we can easily pass to the limit in each term of (38) and obtain

$$
\begin{aligned}
& \int_{\Omega} a(x, u, \nabla u) \cdot\left[h^{\prime}(u) \theta \nabla u+h(u) \nabla \theta\right] d x+\int_{\Omega} \phi(u) h^{\prime}(u) \theta \cdot \nabla u d x \\
& \quad+\int_{\Omega} \phi(u) h(u) \cdot \nabla \theta d x+\int_{\Omega} g(x, u, \nabla u) h(u) \theta d x=\int_{\Omega} f h(u) \theta d x
\end{aligned}
$$

for all $h \in \mathcal{C}_{c}^{1}(\mathbb{R})$, and for all $\theta \in \mathcal{D}(\Omega)$, which proves the Theorem 3.1.

References

[1] R. J. DiPerna, P. L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130(2) (1989), 321-366.
[2] L. Boccardo, D. Giachetti, J. I. Diaz, F. Murat, Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms, J. Differential Equations 106(2) (1993), 215-237.
[3] J. M. Rakotoson, Uniqueness of renormalized solutions in a T-set for the L1-data problem and the link between various formulations, Indiana Univ. Math. J. 43(2) (1994), 685-702.
[4] G. Dal Maso, F. Murat, L. Orsina, A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28(4) (1999), 741-808.
[5] V. Rădulescu, M. Bocea, Problèmes elliptiques avec non-linéarité discontinue et second membre L^{1}, C. R. Acad. Sci. Paris, Ser. I 324 (1997), 169-172.
[6] V. Rădulescu, D. Motreanu, Existence theorems for some classes of boundary value problems involving the p-Laplacian, PanAmerican Math, Journal 7 (2) (1997), 53-66.
[7] V. Rădulescu, M. Willem, Elliptic systems involving finite Radon measures, Differential and Integral Equations 16 (2003), 221-229.
[8] A. Benkirane, J. Bennouna, Existence of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms in Orlicz spaces. Partial differential equations, In: Lecture Notes in Pure and Appl. Math., Dekker, New York, 229 (2002), pp. 125-138.
[9] L. Aharouch, J. Bennouna, A. Touzani, Existence of Renormalized Solution of Some Elliptic Problems in Orlicz Spaces, Rev. Mat. Complut. 22(1) (2009), 91-110.
[10] A. Aissaoui Fqayeh, A. Benkirane, M. El Moumni, A. Youssfi, Existence of renormalized solutions for some strongly nonlinear elliptic equations in Orlicz spaces, Georgian Mathematical Journal 22(3) (2015), 305-321.
[11] M. Bendahmane, P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and L^{1} data, Nonlinear Anal. 70 (2009), 567-583.
[12] E. Azroul, A. Barbara, M.B. Benboubker, S. Ouaro, Renormalized solutions for a $p(x)$-Laplacian equation with Neumann nonhomogeneous boundary conditions and L^{1}-data, Annals of the University of Craiova, Mathematics and Computer Science Series 40(1) (2013), 9-22.
[13] V. Rădulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Analysis: Theory, Methods and Applications 121 (2015), 336-369.
[14] V. Rădulescu, D. Repovs̃, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor and Francis Group, Boca Raton FL, 2015.
[15] A. Benkirane, M. Sidi El Vally (Ould Mohamedhen Val), An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin 20(1) (2013), 57-75.
[16] A. Benkirane, M. Sidi El Vally (Ould Mohamedhen val), Variational inequalities in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin 21(5) (2014), 787-811.
[17] M. Ait Khellou, A. Benkirane, S. M. Douiri, Existence of solutions for elliptic equations having natural growth terms in Musielak spaces, J. Math. Comput. Sci. 4(4) (2014), 665-688.
[18] M. Ait Khellou, A. Benkirane, Strongly non-linear elliptic problems in Musielak spaces with L^{1} data, Nonlinear Studies 23(3) (2016), 491-510.
[19] L. Diening, P. Harjulehto, P. Hästö, M. Råžička, Lebesgue and Sobolev Spaces with Variable Exponents, vol. 2017 of Lecture Notes in Mathematics, Springer, Heidelberg, Germany, 2011.
[20] M. Ait Khellou, A. Benkirane, S. M. Douiri, An inequality of type Poincaré in Musielak spaces and application to some non-linear elliptic problems with L^{1} data, Complex Variables and Elliptic Equations 60(9) (2015), 1217-1242.
[21] J. Musielak, Modular spaces and Orlicz spaces, Lecture Notes in Math. 1034, 1983.
[22] A. Benkirane, M. Sidi El Vally (Ould Mohamedhen Val), Some approximation properties in Musielak-Orlicz-Sobolev spaces, Thai.J. Math. 10(2) (2012), 371-381.
[23] J. P. Gossez, V. Mustonen, Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal. 11(3) (1987), 379-392.
[24] J. P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163-205.
[25] M. A. Krasnoselskii, Ja. B. Rutickii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961.
[26] A. Benkirane, A. Elmahi, Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Anal. Theory Methods Appl. 28 (1997), 1769-1784.
(Mustafa Ait Khellou, Abdelmoujib Benkirane) University of Fez, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, Department of Mathematics, P.O. Box 1796, Atlas, 30 000 Fez, Morocco.
E-mail address: maitkhellou@gmail.com, abd.benkirane@gmail.com

[^0]: Received April 8, 2015.

