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Renormalized solution for nonlinear elliptic problems with
lower order terms and L1 data in Musielak-Orlicz spaces

Mustafa Ait Khellou and Abdelmoujib Benkirane

Abstract. We prove the existence of a renormalized solution for the nonlinear elliptic problem

−div a(x, u,∇u)− div φ(u) + g(x, u,∇u) = f in Ω,

in the setting of Musielak-Orlicz spaces. φ ∈ C0(R,RN ), the nonlinearity g has a natural
growth with respect to its third argument and satisfies the sign condition while the datum f

belongs to L1(Ω). No ∆2-condition is assumed on the Musielak function.

Key words and phrases. Musielak-Orlicz spaces, boundary value problems, truncations,
renormalized solutions.

1. Introduction

Let Ω be an open bounded subset of RN (N ≥ 2). Consider the following non-linear
Dirichlet problem{

A(u)− div φ(u) + g(x, u,∇u) = f in Ω
u = 0 on ∂Ω

(1)

where A(u) = −div a(x, u,∇u) is a Leray-Lions Operator defined on
D(A) ⊂ W 1

0Lϕ(Ω) → W−1Lψ(Ω) with ϕ and ψ are two complementary Musielak-
Orlicz functions, φ ∈ C0(R,RN ) and g is a non-linearity which satisfies the clas-
sical sign condition: g(x, s, ξ)s ≥ 0 and the following natural growth condition:
|g(x, s, ξ)| ≤ b(|s|)(c′(x) + ϕ(x, |ξ|)), where b : R→ R is a continuous non-decreasing
function and c′(.) is a non-negative function in L1(Ω).
The right-hand side f is assumed to belong to L1(Ω).

In the usual Sobolev spaces, the concept of renormalized solutions was introduced
by Diperna and Lions in [1] for the study of the Boltzmann equations, this notion of
solutions was then adapted to the study of the problem (1) by Boccardo et al. in [2]

when the right hand side is in W−1,p′(Ω) and in the case where the nonlinearity g
depends only on x and u, this work was then studied by Rakotoson in [3] when the
right hand side is in L1(Ω), and finally by DalMaso et al. in [4] for the case in which
the right hand side is general measure data. Some elliptic boundary value problems
with L1 or Radon measure data or involving the p-Laplacian have been studied by
Rãdulescu et al. in [5], [6] and [7].

On Orlicz-Sobolev spaces and in variational case, Benkirane and Bennouna have
studied in [8] the problem (1) where the nonlinearity g depends only on x and u under
the restriction that the N -function satisfies the ∆2-condition, this work was then
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extended in [9] by Aharouch, Bennouna and Touzani for N -function not satisfying
necessarily the ∆2-condition. If g depends also on∇u, the problem (1) has been solved
by Aissaoui Fqayeh, Benkirane, El Moumni and Youssfi in [10] without assuming the
∆2-condition on the N -function.

In the framework of variable exponent Sobolev spaces, Bendahmane and Wittbold
have treated in [11] the nonlinear elliptic equation{

−div (|∇u|p(x)−2∇u) = f in Ω
u = 0 on ∂Ω

where f is assumed in L1(Ω). They proved the existence and uniqueness of a

renormalized solution in Sobolev space with variable exponents W
1,p(x)
0 (Ω) . In [12]

Azroul, Barbara, Benboubker and Ouaro have proved the existence of a renormalized
solution for some elliptic problem involving the p(x)-Laplacian with Neumann nonho-
mogeneous boundary conditions in the case where the second member f is in L1(Ω).
Further works for nonlinear elliptic equations with variable exponent can be found in
[13] and [14].

In the variational case of Musielak-Orlicz spaces and in the case where g ≡ 0 and
φ ≡ 0, an existence result for (1) has been proved by Benkirane and Sidi El Vally in
[15] and then in [16] when the non-linearity g depends only on x and u. If g depends
also on ∇u, the problem (1) has recently been solved by Ait Khellou, Benkirane and
Douiri in [17] and then in [20] when the right hand side is in L1(Ω).

Our main goal, in this paper, is to prove the existence of a renormalized solu-
tion for the problem (1) in Musielak-Orlicz space W 1Lϕ(Ω) by assuming that the
Musielak function ϕ depends only on N − 1 coordinates of the spatial variable x.
This assumption allow us to use a Poincaré inequality in Musielak-Orlicz spaces (see
Lemma 2.9).

2. Preliminaries

Musielak-Orlicz function. Let Ω be an open subset of RN and let ϕ be a real-valued
function defined in Ω× R+ and satisfying the following conditions:

(a): ϕ(x, .) is an N -function for all x ∈ Ω (i.e. convex, nondecreasing, continuous,

ϕ(x, 0) = 0, ϕ(x, t) > 0 for all t > 0, lim
t→0

sup
x∈Ω

ϕ(x,t)
t = 0 and lim

t→∞
inf
x∈Ω

ϕ(x,t)
t =

∞);
(b): ϕ(., t) is a measurable function for all t ≥ 0 .

A function ϕ which satisfies the conditions (a) and (b) is called a Musielak-Orlicz
function.

For a Musielak-Orlicz function ϕ we put ϕx(t) = ϕ(x, t) and we associate its
nonnegative reciprocal function ϕ−1

x , with respect to t, that is

ϕ−1
x (ϕ(x, t)) = ϕ(x, ϕ−1

x (t)) = t.

The Musielak-Orlicz function ϕ is said to satisfy the ∆2−condition if for some k > 0,
and a non negative function h, integrable in Ω, we have

ϕ(x, 2t) ≤ k ϕ(x, t) + h(x) for all x ∈ Ω and all t ≥ 0. (2)

When (2) holds only for t ≥ t0 > 0, then ϕ is said to satisfy the ∆2−condition near
infinity.
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Let ϕ and γ be two Musielak-Orlicz functions, we say that ϕ dominate γ, and we
write γ ≺ ϕ, near infinity (resp. globally) if there exists two positive constants c and
t0 such that for almost all x ∈ Ω:

γ(x, t) ≤ ϕ(x, ct) for all t ≥ t0 (resp. for all t ≥ 0 i.e. t0 = 0).

We say that γ grows essentially less rapidly than ϕ at 0 (resp. near infinity), and we
write γ ≺≺ ϕ, If for every positive constant c we have

lim
t→0

(
sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0 (resp. lim

t→∞

(
sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0).

Remark 2.1. [16] If γ ≺≺ ϕ near infinity, then ∀ε > 0 there exist k(ε) > 0 such
that for almost all x ∈ Ω we have

γ(x, t) ≤ k(ε)ϕ(x, εt) for all t ≥ 0.

Musielak-Orlicz space. For a Musielak-Orlicz function ϕ and a measurable function
u : Ω→ R we define the functional

%ϕ,Ω(u) =

∫
Ω

ϕ(x, |u(x)|) dx.

The set Kϕ(Ω) = {u : Ω → R measurable : %ϕ,Ω(u) < ∞} is called the Musielak-
Orlicz class (or generalized Orlicz class). The Musielak-Orlicz space (or generalized
Orlicz space) Lϕ(Ω) is the vector space generated by Kϕ(Ω), that is, Lϕ(Ω) is the
smallest linear space containing the set Kϕ(Ω). Equivalently:

Lϕ(Ω) = {u : Ω→ R measurable : %ϕ,Ω

(u
λ

)
<∞ for some λ > 0}.

For a Musielak-Orlicz function ϕ we put

ψ(x, s) = sup
t≥0

(st− ϕ(x, t)).

ψ is called the Musielak-Orlicz function complementary (or conjugate) to ϕ in the
sense of Young with respect to s.

We say that a sequence of functions un ⊂ Lϕ(Ω) is modular convergent to u ∈
Lϕ(Ω) if there exists a constant λ > 0 such that

lim
n→∞

%ϕ,Ω

(
un − u
λ

)
= 0.

This implies convergence for σ(ΠLϕ,ΠLψ) (Lemma 4.7 of [16]).

In the space Lϕ(Ω) we define the following two norms:

‖u‖ϕ,Ω = inf{λ > 0 :

∫
Ω

ϕ(x,
|u(x)|
λ

) dx ≤ 1},

which is called the Luxemburg norm, and the so-called Orlicz norm by

|||u|||ϕ,Ω = sup
‖v‖ψ≤1

∫
Ω

|u(x) v(x)| dx,
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where ψ is the Musielak-Orlicz function complementary to ϕ. These two norms are
equivalent [21]. Kϕ(Ω) is a convex subset of Lϕ(Ω).

The closure in Lϕ(Ω) of the set of bounded measurable functions with compact

support in Ω is denoted by Eϕ(Ω). It is a separable space and (Eψ(Ω))∗ = Lϕ(Ω)
[21]. We have Eϕ(Ω) = Kϕ(Ω) if and only if Kϕ(Ω) = Lϕ(Ω) if and only if ϕ satisfy
the ∆2-condition (2) for large values of t or for all values of t, according to whether
Ω has finite measure or not.
We define

W 1Lϕ(Ω) = {u ∈ Lϕ(Ω) : Dαu ∈ Lϕ(Ω), ∀|α| ≤ 1}

W 1Eϕ(Ω) = {u ∈ Eϕ(Ω) : Dαu ∈ Eϕ(Ω), ∀|α| ≤ 1},

where α = (α1, . . . , αN ), |α| = |α1| + · · · + |αN | and Dαu denote the distributional
derivatives. The space W 1Lϕ(Ω) is called the Musielak-Orlicz-Sobolev space. Let

%ϕ,Ω(u) =
∑
|α|≤1

%ϕ,Ω(Dαu) and ‖u‖1ϕ,Ω = inf
{
λ > 0 : %ϕ,Ω

(u
λ

)
≤ 1
}

for u ∈W 1Lϕ(Ω).

These functionals are convex modular and a norm on W 1Lϕ(Ω) respectively. The
pair 〈W 1Lϕ(Ω), ‖u‖1ϕ,Ω〉 is a Banach space if ϕ satisfies the following condition [21]:

there exists a constant c0 > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c0. (3)

The space W 1Lϕ(Ω) is identified to a subspace of the product Π|α|≤1Lϕ(Ω) = ΠLϕ;
this subspace is σ(ΠLϕ,ΠEψ) closed.
We denote by D(Ω) the Schwartz space of infinitely smooth functions with compact
support in Ω and by D(Ω) the restriction of D(RN ) on Ω. The space W 1

0Lϕ(Ω) is
defined as the σ(ΠLϕ,ΠEψ) closure of D(Ω) in W 1Lϕ(Ω) and the space W 1

0Eϕ(Ω) as
the (norm) closure of the Schwartz space D(Ω) in W 1Lϕ(Ω).
For two complementary Musielak-Orlicz functions ϕ and ψ, we have [21]:

(i) The Young inequality: ts ≤ ϕ(x, t) + ψ(x, s) for all t, s ≥ 0, x ∈ Ω,
(ii) The Hölder inequality: |

∫
Ω

u(x) v(x) dx| ≤ 2‖u‖ϕ,Ω ‖v‖ψ,Ω, for all u ∈ Lϕ(Ω), v ∈

Lψ(Ω).
We say that a sequence of functions un converges to u for the modular convergence
in W 1Lϕ(Ω) (respectively in W 1

0Lϕ(Ω)) if, for some λ > 0,

lim
n→∞

%ϕ,Ω

(
un − u
λ

)
= 0.

The following spaces of distributions will also be used:

W−1Lψ(Ω) = {f ∈ D′(Ω) : f =
∑
|α|≤1

(−1)|α|Dαfα where fα ∈ Lψ(Ω)}

W−1Eψ(Ω) = {f ∈ D′(Ω) : f =
∑
|α|≤1

(−1)|α|Dαfα where fα ∈ Eψ(Ω)}.
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Lemma 2.1. [22] Let Ω be a bounded Lipschitz domain in RN and let ϕ and ψ be
two complementary Musielak-Orlicz functions which satisfy the following conditions:

(i) There exists a constant c0 > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c0; [(2.2)]

(ii) There exists a constant A > 0 such that for all x, y ∈ Ω with |x− y| ≤ 1

2

we have
ϕ(x, t)

ϕ(y, t)
≤ t

(
A

log( 1
|x−y| )

)
for all t ≥ 1; (4)

(iii)

∫
Ω

ϕ(x, 1) dx <∞; (5)

(iv) There exists a constant c1 > 0 such that ψ(x, 1) ≤ c1 a.e in Ω. (6)

Under these assumptions, D(Ω) is dense in Lϕ(Ω), D(Ω) is dense in W 1
0Lϕ(Ω) and

D(Ω) is dense in W 1Lϕ(Ω) for the modular convergence.

Lemma 2.2. [16] Let F : R → R be uniformly Lipschitzian, with F (0) = 0. Let
ϕ be an Musielak-Orlicz function and let u ∈ W 1

0Lϕ(Ω). Then F (u) ∈ W 1
0Lϕ(Ω).

Moreover, if the set D of discontinuity points of F ′ is finite, we have

∂

∂xi
F (u) =

{
F ′(u) ∂u∂xi a.e in {x ∈ Ω : u(x) /∈ D}

0 a.e in {x ∈ Ω : u(x) ∈ D}.

Lemma 2.3. [16] Let F : R → R be uniformly Lipschitzian, with F (0) = 0. Let
ϕ be a Musielak-Orlicz function, then the mapping TF : W 1Lϕ(Ω) → W 1Lϕ(Ω)
defined by TF (u) = F (u) is sequentially continuous with respect to the weak* topology
σ(ΠLϕ,ΠEψ).

Lemma 2.4. Let fn, f ∈ L1(Ω) such that
i) fn ≥ 0 a.e in Ω;
ii) fn → f a.e in Ω;

iii)

∫
Ω

fn(x) dx→
∫
Ω

f(x) dx.

Then fn → f strongly in L1(Ω).

Recall now the following result which is proved in [17]

Lemma 2.5. (The Nemytskii operator) Let Ω be an open susbset of RN with
finite measure and let ϕ and ψ be two Musielak-Orlicz functions. Let f : Ω×Rp → Rq
be a Carathéodory function such that for a.e. x ∈ Ω and all s ∈ Rp

|f(x, s)| ≤ c(x) + α1 ψ
−1
x ϕ(x, α2|s|)

where α1, α2 are real positive constants and c ∈ Eψ(Ω).
Then the Nemytskii operator Nf defined by Nf (u)(x) = f(x, u(x)), is continuous from
(P(Eϕ(Ω), 1

α2
))p = Π{u ∈ Lϕ(Ω) : d(u,Eϕ(Ω)) < 1

α2
} into (Lψ(Ω))q for the modular

convergence. Furthermore if c ∈ Eγ(Ω) and γ ≺≺ ψ then Nf is strongly continuous
from (P(Eϕ(Ω), 1

α2
))p into (Eγ(Ω))q.

We will use the following Lemma whose proof is straightforward.
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Lemma 2.6. Let Ω be an open bounded subset of RN satisfying the segment property.
If u ∈ (W 1

0Lϕ(Ω))N , then ∫
Ω

div u dx = 0.

Lemma 2.7. [18] Let Ω be a bounded Lipschitz domain of RN and let ϕ be a Musielak-
Orlicz function satisfying the conditions of Lemma 2.1. Assume also that the function
ϕ depends only on N−1 coordinates of x. Then there exists a constant λ > 0 depending
only on Ω such that∫

Ω

ϕ(x, |v|) dx ≤
∫
Ω

ϕ(x, λ|∇v|) dx for all v ∈W 1
0Lϕ(Ω).

Corollary 2.8. [18] (Poincaré Inequality) Let Ω be a bounded Lipchitz domain of
RN and let ϕ be a Musielak-Orlicz function satisfying the same conditions of Lemma
2.7. Then there exists a constant C > 0 such that

‖v‖ϕ ≤ C ‖∇v‖ϕ ∀v ∈W 1
0Lϕ(Ω).

The following example shows that the integral form of Poincaré inequality can not,
in general, hold

Example 2.1. [19] Let p : (−2, 2) → [2, 3] be a Lipschitz continuous exponent that
equals 3 in (−2,−1)∪(1, 2), 2 in (− 1

2 ,
1
2 ) and is linear elsewhere. Let uλ be a Lipschitz

function such that uλ(±2) = 0, uλ = λ in (−1, 1) and |u′λ| = λ in (−2,−1) ∪ (1, 2).
Then

%p(.)(uλ)

%p(.)(u
′
λ)

=

∫ 2

−2
|uλ|p(x) dx∫ 2

−2
|u′λ|p(x) dx

≥

∫ 1
2

− 1
2

λ2 dx

2
∫ −1

−2
|λ|3 dx

=
1

2λ
→∞

as λ→ 0+.

3. Main result

Let Ω be a bounded Lipschitz domain in RN , N ≥ 2 and let ϕ and γ be two
Musielak-Orlicz functions such that ϕ and its complementary ψ satisfies the conditions
of Lemma 2.2 and γ ≺≺ ϕ.
Let A : D(A) ⊂W 1

0Lϕ(Ω)→W−1Lψ(Ω) be a mapping given by

A(u) = − div a(x, u,∇u),

where a : Ω×R×RN → RN is a Carathéodory function satisfying, for a.e x ∈ Ω and
for all s ∈ R and all ξ ,ξ∗ ∈ RN , ξ 6= ξ∗:

|a(x, s, ξ)| ≤ k1

(
c(x) + ψ−1

x (γ(x, k2|s|)) + ψ−1
x (ϕ(x, k3|ξ|))

)
(7)

(a(x, s, ξ)− a(x, s, ξ∗)) (ξ − ξ∗) > 0 (8)

a(x, s, ξ).ξ ≥ αϕ(x, |ξ|) (9)

where c(.) belongs to Eψ(Ω), c ≥ 0 and ki > 0, i = 1, 2, 3, α ∈ R∗+.
Furthermore, let g : Ω× R× RN → R be a Carathéodory function such that, for a.e
x ∈ Ω and for all s ∈ R

g(x, s, ξ) s ≥ 0 (10)

|g(x, s, ξ)| ≤ b(|s|) (c′(x) + ϕ(x, |ξ|)) (11)
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where b : R → R is a continuous and non-decreasing function and c′(.) is a given
non-negative function in L1(Ω).
Consider the nonlinear elliptic problem{

A(u)− div φ(u) + g(x, u,∇u) = f in Ω
u = 0 on ∂Ω

(12)

where

f ∈ L1(Ω) (13)

and

φ ∈ C0(R,RN ) (14)

Note that no growth hypothesis is assumed on the function φ, which implies that for a
solution u ∈W 1

0Lϕ(Ω) the term div φ(u) may be meaningless, even as a distribution.

Remark 3.1. A consequence of (9) and the continuity of a with respect to ξ, is that,
for almost every x in Ω and s in R

a(x, s, 0) = 0.

Definition 3.1. A measurable function u : Ω→ R is called renormalized solution of
(12) if 

Tk(u) ∈W 1
0Lϕ(Ω), a(x, Tk(u),∇Tk(u)) ∈ (Lψ(Ω))N ,∫

{m≤|u|≤m+1}

a(x, u,∇u).∇u dx→ 0 as m→ +∞,∫
Ω

a(x, u,∇u).∇(h(u)θ) dx+

∫
Ω

g(x, u,∇u)h(u)θ dx

+

∫
Ω

φ(u).∇(h(u)θ) dx =

∫
Ω

f h(u)θ dx

for all h ∈ C1
c (R) and for all θ ∈ D(Ω).

(15)

We shall prove the following theorem

Theorem 3.1. Assume that (7)-(11) and (13)-(14) hold true, then there exists a
renormalized solution u for the problem (12) in the sense of definition 3.1.

Proof. Step 1 : A priori estimates
First let us define the truncation Tk : R→ R at height k > 0 by

Tk(s) =

{
s if |s| ≤ k,

k
s

|s|
if |s| > k.

Consider the nonlinear elliptic approximate problem

(Pn)

{
un ∈W 1

0Lϕ(Ω)
−diva(x, un,∇un) + gn(x, un,∇un) = fn + divφn(un) in D′(Ω),

where (fn) ∈ W−1Eψ(Ω) is a sequence of smooth functions such that fn → f in
L1(Ω), φn(s) = φ(Tn(s)) and gn(x, s, ξ) = Tn(g(x, s, ξ)).
Note that gn(x, s, ξ) s ≥ 0, |gn(x, s, ξ)| ≤ |g(x, s, ξ)| and |gn(x, s, ξ)| ≤ n.
Since φ is continuous, we have |φn(t)| = |φ(Tn(t))| ≤ cn, then the problem (Pn) have
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at least one solution un ∈W 1
0Lϕ(Ω) (see [23], Proposition 1 and [16], Theorem 4).

Using in (Pn), the test function v = Tk(un), k > 0, we get∫
Ω

a(x, un,∇un).∇Tk(un) dx+

∫
Ω

gn(x, un,∇un) Tk(un) dx

+

∫
Ω

φ(Tn(un))∇Tk(un) dx =

∫
Ω

fn Tk(un) dx

Remark that, by Lemma 2.6∫
Ω

φ(Tn(un))∇Tk(un) dx =

∫
Ω

div(φ̃n(un)) dx = 0

where φ̃n(s) =
Tk(s)∫

0

φ(Tn(τ)) dτ, (φ̃n(un) ∈W 1
0Lϕ(Ω)N by Lemma 2.2)

which implies, by using the fact that gn(x, un,∇un) Tk(un) ≥ 0,∫
{|un|≤k}

a(x, un,∇un).∇un dx ≤ Ck,

where C is a constant such that ‖fn‖1,Ω ≤ C, ∀n.
Thanks to (9) one easily has∫

Ω

ϕ(x, |∇Tk(un)|) dx ≤ 1

α

∫
Ω

a(x, un,∇un).∇Tk(un) dx ≤ C1k. (16)

On the other hand, by using Lemma 2.7, there exists a positive constant λ such that∫
Ω

ϕ(x, v) dx ≤
∫
Ω

ϕ(x, λ|∇v|) dx for all v ∈W 1
0Lϕ(Ω). (17)

Taking v = 1
λ |Tk(un)| in (17) and using (16) gives∫

Ω

ϕ(x,
1

λ
|Tk(un)|) dx ≤

∫
Ω

ϕ(x, |∇Tk(un)|) dx ≤ C1k,

which implies that

meas{|un| > k} ≤ 1

inf
x∈Ω

ϕ(x, kλ )

∫
{|un|>k}

ϕ(x,
k

λ
) dx

≤ 1

inf
x∈Ω

ϕ(x, kλ )

∫
Ω

ϕ(x,
1

λ
|Tk(un)|) dx

≤ C1k

inf
x∈Ω

ϕ(x, kλ )
, ∀n, ∀k > 0.

For any β > 0, we have

meas{|un−um| > β} ≤ meas{|un| > k}+meas{|um| > k}+meas{|Tk(un)−Tk(um)| > β}
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and so that

meas{|un − um| > β} ≤ 2C1k

inf
x∈Ω

ϕ(x, kλ )
+meas{|Tk(un)− Tk(um)| > β}. (18)

By using (16) and Corollary 2.8, we deduce that (Tk(un)) is bounded in W 1
0Lϕ(Ω),

and then there exists ωk ∈W 1
0Lϕ(Ω) such that Tk(un) ⇀ ωk weakly in W 1

0Lϕ(Ω) for
σ(ΠLϕ,ΠEψ), strongly in Eϕ(Ω) and a.e. in Ω.
Consequently, we can assume that Tk(un) is a cauchy sequence in measure in Ω.
Let ε > 0, then by (18) and the fact that 2C1k

inf
x∈Ω

ϕ(x, kλ )
→ 0 as k → +∞, there exists

some k(ε) > 0 such that

meas{|un − um| > β} ≤ ε, for all n,m ≥ n0 (k(ε), β).

This proves that (un) is a cauchy sequence in measure, thus, un converges almost
everywhere to some measurable function u.
Finally, by Lemma 4.4 of [24], we obtain for all k > 0

Tk(un) ⇀ Tk(u) weakly in W 1
0Lϕ(Ω) for σ(ΠLϕ,ΠEψ),

strongly in Eϕ(Ω) and a.e. in Ω. (19)

Now, we shall prove that (a(x, Tk(un),∇Tk(un)))n is bounded in (Lψ(Ω))N for all
k > 0, by using the dual norm of (Lψ(Ω))N .
Let ϑ ∈ (Eϕ(Ω))N such that ‖ϑ‖ϕ,Ω = 1. We have from (8)

∫
Ω

(
a(x, Tk(un),∇Tk(un))− a(x, Tk(un),

ϑ

k3
)

)
.

(
∇Tk(un)− ϑ

k3

)
dx ≥ 0

this implies by (16)

∫
Ω

1

k3
a(x, Tk(un),∇Tk(un)) ϑ dx ≤

∫
Ω

a(x, Tk(un),∇Tk(un)).∇Tk(un) dx

−
∫
Ω

a(x, Tk(un),
ϑ

k3
).(∇Tk(un)− ϑ

k3
) dx

≤ C k −
∫
Ω

a(x, Tk(un),
ϑ

k3
).∇Tk(un) dx

+
1

k3

∫
Ω

a(x, Tk(un),
ϑ

k3
) ϑ dx.
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By using Young’s inequality in the last two terms of the last side and (16) we have∫
Ω

a(x, Tk(un),∇Tk(un)) ϑ dx ≤ Ckk3 + 3k1(1 + k3)

∫
Ω

ψ

(
x,
|a(x, Tk(un), ϑk3

)|
3k1

)
dx

+3k1k3

∫
Ω

ϕ(x, |∇Tk(un)|) dx+ 3k1

∫
Ω

ϕ(x, |ϑ|) dx

≤ Ckk3 + 3C1kk1k3 + 3k1

+3k1(1 + k3)

∫
Ω

ψ

(
x,
|a(x, Tk(un), ϑk3

)|
3k1

)
dx.

Using (7) and the convexity of ψ yields

ψ

(
x,
|a(x, Tk(un), ϑk3

)|
3k1

)
≤ 1

3
(ψ(x, c(x)) dx+ γ(x, k2Tk(un)) + ϕ(x, |ϑ|))

and, since γ grows essentially less rapidly than ϕ near infinity there exists ζ(k) > 0
such that γ(x, k2|Tk(un)|) ≤ γ(x, k2 k) ≤ ζ(k)ϕ(x, 1) (see Remark 2.1), then we have
by integrating over Ω and using (5)∫

Ω

ψ

(
x,
|a(x, Tk(un), ϑk3

)|
3k1

)
dx

≤ 1

3

∫
Ω

ψ(x, c(x)) dx+ ζ(k)

∫
Ω

ϕ(x, 1) dx+

∫
Ω

ϕ(x, |ϑ|) dx

 ≤ Ck
where Ck is a constant depending on k, we deduce that∫

Ω

a(x, Tk(un),∇Tk(un)) ϑ dx ≤ Ck ∀ϑ ∈ (Eϕ(Ω))N with ‖ϑ‖ϕ,Ω = 1,

which shows that (a(x, Tk(un),∇Tk(un)))n is bounded in (Lψ(Ω))N .
Step 2 : Almost everywhere convergence of the gradients.

Let µ(t) = teδt
2

, δ > 0. It is well known that for δ ≥ ( b(k)
2α )2 one has

µ′(t)− b(k)

α
|µ(t)| ≥ 1

2
for all t ∈ R, (20)

where k > 0 is a fixed real number which will be used as a level of the truncation.
Let vj ∈ D(Ω) be a sequence which converges to Tk(u) for the modular convergence
in W 1

0Lϕ(Ω) and define the function

ρm(s) =

 1 if |s| ≤ m
m+ 1− |s| if m ≤ |s| ≤ m+ 1
0 if |s| ≥ m+ 1

where m > k.
Let θjn = Tk(un)− Tk(vj), θ

j = Tk(u)− Tk(vj) and zjn,m = µ(θjn)ρm(un).
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Using in (Pn) the test function zjn,m gives∫
Ω

a(x, un,∇un).∇zjn,m +

∫
{m≤|un|≤m+1}

φn(un).∇un ρ′m(un) µ(Tk(un)−Tk(vj)) dx

+

∫
Ω

φn(un).∇µ(Tk(un)− Tk(vj)) ρm(un) dx+

∫
Ω

gn(x, un,∇un) zjn,m dx

=

∫
Ω

fn z
j
n,m dx. (21)

Denote by εi(n, j) (i = 0, 1, 2, . . . ) various sequences of real numbers which tend to 0
when n and j →∞, i.e. lim

j→∞
lim
n→∞

εi(n, j) = 0.

In view of (19), we have zjn,m → µ(θj) ρm(u) weakly* in L∞(Ω) as n→∞ and then∫
Ω

fn z
j
n,m dx→

∫
Ω

f µ(θj)ρm(u) dx as n→∞,

and since θj → 0 weakly* in L∞(Ω) we get

∫
Ω

f µ(θj) ρm(u) dx→ 0 as j →∞,

then ∫
Ω

fn z
j
n,m dx = ε0(n, j).

By Lemma 2.6, it’s easy to see that∫
{m≤|un|≤m+1}

φn(un).∇un ρ′m(un) µ(Tk(un)− Tk(vj)) dx = 0

Concerning the third term in the left-hand side of (21) we can write∫
Ω

φn(un).∇µ(Tk(un)− Tk(vj)) ρm(un) dx =

∫
Ω

φn(un).∇Tk(un) µ′(θjn) ρm(un) dx

−
∫
Ω

φn(un).∇Tk(vj) µ
′(θjn) ρm(un) dx

Using again Lemma 2.6, we get∫
Ω

φn(un).∇Tk(un) µ′(θjn) ρm(un) dx = 0.

From (19) we have

φn(un) µ′(θjn) ρm(un)→ φ(u) µ′(θj) ρm(u) almost everywhere in Ω as n→∞,

furthermore, we can check that

‖φn(un) µ′(θjn) ρm(un)‖ψ ≤ cm c1 µ
′(2k) |Ω|
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where cm = max|t|≤m+1 φ(t) and c1 is the constant defined in (6).
Applying [25, Theorem 14.6] we get

lim
n→∞

∫
Ω

φn(un).∇Tk(vj) µ
′(θjn) ρm(un) dx =

∫
Ω

φ(u).∇Tk(vj) µ
′(θj) ρm(u) dx

and by using the modular convergence of (vj), we obtain

lim
j→∞

lim
n→∞

∫
Ω

φn(un).∇Tk(vj) µ
′(θjn) ρm(un) dx =

∫
Ω

φ(u).∇Tk(u) ρm(u) dx,

then, by Lemma 2.6, one has

∫
Ω

φ(u).∇Tk(u) ρm(u) dx = 0.

Hence ∫
Ω

φn(un).∇µ(Tk(un)− Tk(vj)) ρm(un) dx = ε1(n, j).

Since gn(x, un,∇un)zjn,m ≥ 0 on the subset {x ∈ Ω : |un(x)| > k} and ρm(un) = 1 on
the subset {x ∈ Ω : |un(x)| ≤ k} we have, from (21),

∫
Ω

a(x, un,∇un).∇zjn,m +

∫
{|un|≤k}

gn(x, un,∇un)µ(θjn) dx ≤ ε2(n, j). (22)

For what concerns the first term of the left-hand side of (22) we have

∫
Ω

a(x, un,∇un).∇zjn,m =

∫
{|un|≤k}

a(x, un,∇un).(∇Tk(un)−∇Tk(vj)) µ
′(θjn) ρm(un) dx

−
∫

{|un|>k}

a(x, un,∇un).∇Tk(vj) µ
′(θjn) ρm(un) dx

+

∫
Ω

a(x, un,∇un).∇un µ(θjn) ρ′m(un) dx

=

∫
Ω

a(x, Tk(un),∇Tk(un)).(∇Tk(un)−∇Tk(vj)) µ
′(θjn) dx

−
∫

{|un|>k}

a(x, un,∇un).∇Tk(vj) µ
′(θjn) ρm(un) dx

+

∫
Ω

a(x, un,∇un).∇un µ(θjn) ρ′m(un) dx,
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and then∫
Ω

a(x, un,∇un).∇zjn,m =

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un), Tk(vj)χ
s
j)]

×[∇Tk(un)−∇Tk(vj)χ
s
j ] µ

′(θjn) dx

+

∫
Ω

a(x, Tk(un),∇Tk(vj)χ
s
j) (∇Tk(un)−∇Tk(vj)χ

s
j) µ

′(θjn) dx

−
∫

Ω\Ωsj

a(x, Tk(un),∇Tk(un)).∇Tk(vj) µ
′(θjn) dx

−
∫

{|un|>k}

a(x, un,∇un).∇Tk(vj) µ
′(θjn) ρm(un) dx

+

∫
Ω

a(x, un,∇un).∇un µ(θjn) ρ′m(un) dx, (23)

where χsj is the characteristic function of the set Ωsj = {x ∈ Ω : |∇Tk(vj)| ≤ s}.
For the third term, since (a(x, Tk(un),∇Tk(un)))n is bounded in (Lψ(Ω))N , we have,
for a subsequence, a(x, Tk(un),∇Tk(un)) ⇀ lk weakly in (Lψ(Ω))N for σ(ΠLψ,ΠEϕ),
with lk ∈ (Lψ(Ω))N and since ∇Tk(vj)χΩ\Ωsj ∈ (Eϕ(Ω))N we have, by letting n→∞

−
∫

Ω\Ωsj

a(x, Tk(un),∇Tk(un)).∇Tk(vj) µ
′(θjn) dx→ −

∫
Ω\Ωsj

lk.∇Tk(vj) µ
′(θj) dx,

Using now, the modular convergence of (vj), we get

−
∫

Ω\Ωsj

lk.∇Tk(vj) µ
′(θj) dx→ −

∫
Ω\Ωs

lk.∇Tk(u) dx as j →∞,

where Ωs = {x ∈ Ω : |∇Tk(u)| ≤ s}. We have then proved that

−
∫

Ω\Ωsj

a(x, Tk(un),∇Tk(un)).∇Tk(vj) µ
′(θjn) dx = −

∫
Ω\Ωs

lk.∇Tk(u) dx+ ε3(n, j).

(24)
Concerning the fourth term, since ρm(un) = 0 on the subset {|un| > m+ 1}, we have

−
∫

{|un|>k}

a(x, un,∇un).∇Tk(vj) µ
′(θjn) ρm(un) dx

= −
∫

{|un|>k}

a(x, Tm+1(un),∇Tm+1(un)).∇Tk(vj) µ
′(θjn) ρm(un) dx
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and as above

−
∫

{|un|>k}

a(x, Tm+1(un),∇Tm+1(un)).∇Tk(vj) µ
′(θjn) ρm(un) dx

= −
∫

{|u|>k}

lm+1.∇Tk(u) ρm(u) dx + ε4(n, j)

= ε4(n, j) (25)

where we have used the fact that ∇Tk(u) = 0 on the subset {x ∈ Ω : |u(x)| > k}.

For the second term of (23), remark that by using Lemma 2.5 and the fact that
∇Tk(un) ⇀ ∇Tk(u) weakly in (Lϕ(Ω))N , by (19), we have

a(x, Tk(un),∇Tk(vj)χ
s
j) µ

′(θjn)→ a(x, Tk(u),∇Tk(vj)χ
s
j) µ

′(θj)

strongly in (Eψ(Ω))N as n→∞, then∫
Ω

a(x, Tk(un),∇Tk(vj)χ
s
j).(∇Tk(un)−∇Tk(vj)χ

s
j) µ

′(θjn) dx

→
∫
Ω

a(x, Tk(u),∇Tk(vj)χ
s
j).(∇Tk(u)−∇Tk(vj)χ

s
j) µ

′(θj) dx as n→∞

on the other hand, since ∇Tk(vj)χ
s
j → ∇Tk(u)χs strongly in (Eϕ(Ω))N as j →∞, it

is easy to see that∫
Ω

a(x, Tk(u),∇Tk(vj)χ
s
j).(∇Tk(u)−∇Tk(vj)χ

s
j) µ

′(θj) dx→ 0 as j →∞,

where χs is the characteristic function of the set Ωs, then∫
Ω

a(x, Tk(un),∇Tk(vj)χ
s
j).(∇Tk(un)−∇Tk(vj)χ

s
j ]) µ

′(θjn) dx = ε5(n, j). (26)

The last term of (23) reads as∫
Ω

a(x, un,∇un).∇un µ(θjn) ρ′m(un) dx =

∫
{m≤|un|≤m+1}

a(x, un,∇un).∇un µ(θjn) ρ′m(un) dx,

then

|
∫
Ω

a(x, un,∇un).∇un µ(θjn) ρ′m(un) dx |≤ µ(2k)

∫
{m≤|un|≤m+1}

a(x, un,∇un).∇un dx.

Taking T1(un − Tm(un)) as test function in (Pn) yields∫
{m<|un|≤m+1}

a(x, un,∇un).∇un dx+

∫
{m<|un|≤m+1}

φ(Tn(un)).∇un dx

+

∫
{|un|>m}

gn(x, un,∇un) T1(un−Tm(un)) dx =

∫
{|un|>m}

fn T1(un−Tm(un)) dx.
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Thanks to Lemma 2.6 we have∫
{m<|un|≤m+1}

φ(Tn(un)).∇un dx = 0,

which implies, by using the fact that gn(x, un,∇un) T1(un − Tm(un)) ≥ 0 on the
subset {x ∈ Ω : |un| ≥ m},∫

{m≤|un|≤m+1}

a(x, un,∇un).∇un dx ≤
∫

{|un|>m}

|fn| dx, (27)

consequently

|
∫
Ω

a(x, un,∇un).∇un µ(θjn) ρ′m(un) dx | ≤ µ(2k)

∫
{|un|>m}

|fn| dx.

Combining this inequality with (24), (25) and (26) we obtain∫
Ω

a(x, un,∇un).∇zjn,m ≥ −
∫

Ω\Ωs

lk.∇Tk(u) dx− µ(2k)

∫
{|un|≥m}

|fn| dx

+

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un), Tk(vj)χ
s
j)]

×[∇Tk(un)−∇Tk(vj)χ
s
j ] µ

′(θjn) dx + ε6(n, j). (28)

Concerning the second term of the left-hand side of (22), we have

|
∫

{|un|≤k}

gn(x, un,∇un)zjn,m dx |=|
∫

{|un|≤k}

gn(x, Tk(un),∇Tk(un)) µ(θjn) dx |

≤
∫
Ω

b(k) c′(x) |µ(θjn)| dx+ b(k)

∫
Ω

ϕ(x, |∇Tk(un)|) |µ(θjn)| dx

≤ ε7(n, j) +
b(k)

α

∫
Ω

a(x, Tk(un),∇Tk(un)).∇Tk(un) |µ(θjn)| dx.

We can write the last term of the last side of this inequality as

b(k)

α

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ
s
j)]

× [∇Tk(un)−∇Tk(vj)χ
s
j ] |µ(θjn)| dx

+
b(k)

α

∫
Ω

a(x, Tk(un),∇Tk(vj)χ
s
j).(∇Tk(un)−∇Tk(vj)χ

s
j) |µ(θjn)| dx

− b(k)

α

∫
Ω

a(x, Tk(un),∇Tk(un)).∇Tk(vj)χ
s
j |µ(θjn)| dx (29)



RENORMALIZED SOLUTION FOR NONLINEAR ELLIPTIC PROBLEMS 179

we argue as above to show that

b(k)

α

∫
Ω

a(x, Tk(un),∇Tk(vj)χ
s
j).(∇Tk(un)−∇Tk(vj)χ

s
j) |µ(θjn)| dx = ε8(n, j)

and
b(k)

α

∫
Ω

a(x, Tk(un),∇Tk(un)).∇Tk(vj)χ
s
j |µ(θjn)| dx = ε9(n, j)

then

|
∫

{|un|≤k}

gn(x, un,∇un)zjn,m dx |

≤ b(k)

α

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ
s
j)]

×[∇Tk(un)−∇Tk(vj)χ
s
j ] |µ(θjn)| dx+ ε10(n, j).

Combining this with (22) and (28), we obtain∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ
s
j)].[∇Tk(un)−∇Tk(vj)χ

s
j ]

×
(
µ′(θjn)− b(k)

α
|µ(θjn)|

)
dx ≤ ε11(n, j)+

∫
Ω\Ωs

lk.∇Tk(u) dx+µ(2k)

∫
{|un|≥m}

|fn| dx

and by using (20) we deduce that∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ
s
j)].[∇Tk(un)−∇Tk(vj)χ

s
j ] dx

≤ 2 ε11(n, j) + 2

∫
Ω\Ωs

lk.∇Tk(u) dx+ 2 µ(2k)

∫
{|un|≥m}

|fn| dx. (30)

On the other hand∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]× [∇Tk(un)−∇Tk(u)χs] dx

=

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vj)χ
s
j)]×[∇Tk(un)−∇Tk(vj)χ

s
j ] dx

+

∫
Ω

a(x, Tk(un),∇Tk(un)).[∇Tk(vj)χ
s
j −∇Tk(u)χs] dx

−
∫
Ω

a(x, Tk(un),∇Tk(u)χs).[∇Tk(un)−∇Tk(u)χs] dx

+

∫
Ω

a(x, Tk(un),∇Tk(vj)χ
s
j).[∇Tk(un)−∇Tk(vj)χ

s
j ] dx.
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We shall pass to the limit in n and in j in the last three terms of the right-hand side
of the above equality. Similar tools as in (23) and (29) gives∫

Ω

a(x, Tk(un),∇Tk(un)).[∇Tk(vj)χ
s
j −∇Tk(u)χs] dx = ε12(n, j),

∫
Ω

a(x, Tk(un),∇Tk(u)χs).[∇Tk(un)−∇Tk(u)χs] dx = ε13(n, j),

and ∫
Ω

a(x, Tk(un),∇Tk(vj)χ
s
j).[∇Tk(un)−∇Tk(vj)χ

s
j ] dx = ε14(n, j). (31)

Which implies that∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)].[∇Tk(un)−∇Tk(u)χs] dx

=

∫
Ω

[a(x, Tk(un),∇Tk(un))−a(x, Tk(un),∇Tk(vj)χ
s
j)].[∇Tk(un)−∇Tk(vj)χ

s
j ] dx

+ ε15(n, j).

For r ≤ s, one has

0≤
∫
Ωr

[a(x, Tk(un),∇Tk(un))−a(x, Tk(un),∇Tk(u))].[∇Tk(un)−∇Tk(u)] dx

≤
∫
Ωs

[a(x, Tk(un),∇Tk(un))−a(x, Tk(un),∇Tk(u))].[∇Tk(un)−∇Tk(u)] dx

=

∫
Ωs

[a(x, Tk(un),∇Tk(un))−a(x, Tk(un),∇Tk(u)χs)].[∇Tk(un)−∇Tk(u)χs] dx

≤
∫
Ω

[a(x, Tk(un),∇Tk(un))−a(x, Tk(un),∇Tk(u)χs)].[∇Tk(un)−∇Tk(u)χs] dx

=

∫
Ω

[a(x, Tk(un),∇Tk(un))−a(x, Tk(un),∇Tk(vj)χ
s
j)].[∇Tk(un)−∇Tk(vj)χ

s
j ] dx

+ ε15(n, j)

≤ ε16(n, j) + 2

∫
Ω\Ωs

lk.∇Tk(u) dx+ 2 µ(2k)

∫
{|un|≥m}

|fn| dx.

This implies that, by passing at first to the limit sup over n and then over j,

0 ≤ lim sup
n→∞

∫
Ωr

[a(x, Tk(un),∇Tk(un))−a(x, Tk(un),∇Tk(u))].[∇Tk(un)−∇Tk(u)] dx

≤ 2

∫
Ω\Ωs

lk.∇Tk(u) dx+ 2 µ(2k)

∫
{|u|≥m}

|f | dx.
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Letting s and m → ∞ and using the fact that lk.∇Tk(u) ∈ L1(Ω) we get, since
|Ω\Ωs| → 0 and |{|u| ≥ m}| → 0,∫
Ωr

[a(x, Tk(un),∇Tk(un))−a(x, Tk(un),∇Tk(u))].[∇Tk(un)−∇Tk(u)] dx→ 0 as n→∞.

As in [26], we deduce that there exists a subsequence, still denoted by un, such that

∇un → ∇u a.e in Ω, (32)

which implies that

a(x, Tk(un),∇Tk(un)) ⇀ a(x, Tk(u),∇Tk(u)) weakly in (Lψ(Ω))N for

σ(ΠLψ,ΠEϕ),∀k > 0. (33)

Step 3 : Modular convergence of the truncations.
Going back to the equation (30), we can write∫
Ω

a(x, Tk(un),∇Tk(un)).∇Tk(un) dx≤
∫
Ω

a(x, Tk(un),∇Tk(un)).∇Tk(vj)χ
s
j dx

+

∫
Ω

a(x, Tk(un),∇Tk(vj)χ
s
j).[∇Tk(un)−∇Tk(vj)χ

s
j ] dx

+2 ε11(n, j) + 2

∫
Ω\Ωs

lk.∇Tk(u) dx+ 2µ(2k)

∫
{|un|≥m}

|fn| dx,

then, by using (31), we have∫
Ω

a(x, Tk(un),∇Tk(un)).∇Tk(un) dx≤ ε17(n, j) +

∫
Ω

a(x, Tk(un),∇Tk(un)).∇Tk(vj) χ
s
j dx

+2

∫
Ω\Ωs

lk.∇Tk(u) dx+ 2µ(2k)

∫
{|un|≥m}

|fn| dx.

Passing to the limit sup over n in both sides of this inequality yields

lim sup
n→∞

∫
Ω

a(x, Tk(un),∇Tk(un)).∇Tk(un) dx≤
∫
Ω

a(x, Tk(u),∇Tk(u)).∇Tk(vj) χ
s
j dx

+ lim
n→∞

ε17(n, j) + 2

∫
Ω\Ωs

lk.∇Tk(u) dx+ 2 µ(2k)

∫
{|u|≥m}

|f | dx,

in which, we can pass to the limit in j, to obtain

lim sup
n→∞

∫
Ω

a(x, Tk(un),∇Tk(un)).∇Tk(un) dx ≤
∫
Ω

a(x, Tk(u),∇Tk(u)).∇Tk(u) χs dx

+ 2

∫
Ω\Ωs

lk.∇Tk(u) dx+ 2 µ(2k)

∫
{|u|≥m}

|f | dx.
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Letting s and m→∞ gives

lim sup
n→∞

∫
Ω

a(x, Tk(un),∇Tk(un)).∇Tk(un) dx ≤
∫
Ω

a(x, Tk(u),∇Tk(u)).∇Tk(u) dx

then by using Fatou’s Lemma we have∫
Ω

a(x, Tk(u),∇Tk(u)).∇Tk(u) dx ≤ lim inf
n→∞

∫
Ω

a(x, Tk(un),∇Tk(un)).∇Tk(un) dx,

consequently

lim
n→∞

∫
Ω

a(x, Tk(un),∇Tk(un)).∇Tk(un) dx =

∫
Ω

a(x, Tk(u),∇Tk(u)).∇Tk(u) dx

and, by using Lemma 2.4, we conclude that

a(x, Tk(un),∇Tk(un)).∇Tk(un)→ a(x, Tk(u),∇Tk(u)).∇Tk(u) in L1(Ω). (34)

The convexity of the Musielak-Orlicz function ϕ and (9) allow us to get

ϕ

(
x,
|∇Tk(un)−∇Tk(u)|

2

)
≤ 1

2α
a(x, Tk(un),∇Tk(un)).∇Tk(un)

+
1

2α
a(x, Tk(u),∇Tk(u)).∇Tk(u),

and by (34) we obtain

lim
|E|→0

sup
n

∫
E

ϕ

(
x,
|∇Tk(un)−∇Tk(u)|

2

)
dx = 0

which implies, by using Vitali’s theorem, that

Tk(un)→ Tk(u) in W 1
0Lϕ(Ω) for the modular convergence ∀k > 0.

Step 4 : Equi-integrability of the non-linearities.
We shall prove that gn(x, un,∇un)→ g(x, u,∇u) strongly in L1(Ω) by using Vitali’s
theorem. Thanks to (32) we have gn(x, un,∇un)→ g(x, u,∇u) a.e in Ω, so it suffices
to prove that gn(x, un,∇un) is uniformly equi-integrable in Ω.
Let E ⊂ Ω be a measurable subset of Ω. We have for any m > 1,∫
E

|gn(x, un,∇un)| dx =

∫
E∩{|un|≤m}

|gn(x, un,∇un)| dx+

∫
E∩{|un|>m}

|gn(x, un,∇un)| dx.

Taking

T1(un − Tm−1(un)) =

 0 if |un| ≤ m− 1
un − (m− 1)sgn(un) if m− 1 ≤ |un| ≤ m

sgn(un) if |un| > m
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as test function in (Pn), gives∫
{m−1<|un|≤m}

a(x, un,∇un).∇un dx+

∫
{m−1<|un|≤m}

φ(Tn(un)).∇un dx

+

∫
{|un|>m−1}

gn(x, un,∇un) T1(un−Tm−1(un)) dx =

∫
{|un|>m−1}

fn T1(un−Tm−1(un)) dx

consequently ∫
{|un|>m}

|gn(x, un,∇un)| dx ≤
∫

{|un|>m−1}

|fn| dx.

Let ε > 0, there exists m = m(ε) > 1 such that∫
E∩{|un|>m}

|gn(x, un,∇un)| dx ≤ ε

2
, ∀n.

On the other hand∫
E∩{|un|≤m}

|gn(x, un,∇un)| dx≤
∫
E

|gn(x, Tm(un),∇Tm(un))| dx

≤ b(m)

∫
E

(c′(x) + ϕ(x, |∇Tm(un)|)) dx

≤ b(m)

α

∫
E

a(x, Tm(un),∇Tm(un)) ∇Tm(un) dx

+b(m)

∫
E

c′(x) dx.

By virtue of the strong convergence (34) and the fact that c′(.) ∈ L1(Ω), there exists
η > 0, such that

|E| < η implies

∫
E∩{|un|≤m}

|gn(x, un,∇un)| dx ≤ ε

2
, ∀n.

So that

|E| < η implies

∫
E

|gn(x, un,∇un)| dx ≤ ε, ∀n,

which shows that gn(x, un,∇un) is uniformly equi-integrable in Ω. By Vitali’s theo-
rem, we conclude that g(x, u,∇u) ∈ L1(Ω) and

gn(x, un,∇un)→ g(x, u,∇u) strongly in L1(Ω). (35)
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Step 5 : Passage to the limit.
Turning to the inequality (27), we have for the first term∫
{m≤|un|≤m+1}

a(x, un,∇un).∇un dx=

∫
Ω

a(x, un,∇un).(∇Tm+1(un)−∇Tm(un)) dx

=

∫
Ω

a(x, Tm+1(un),∇Tm+1(un)).∇Tm+1(un) dx

−
∫
Ω

a(x, Tm(un),∇Tm(un)).∇Tm(un) dx.

then by (34) we obtain

lim
n→∞

∫
{m≤|un|≤m+1}

a(x, un,∇un).∇un dx=

∫
Ω

a(x, Tm+1(u),∇Tm+1(u)).∇Tm+1(u) dx

−
∫
Ω

a(x, Tm(u),∇Tm(u)).∇Tm(u) dx

=

∫
Ω

a(x, u,∇u).(∇Tm+1(u)−∇Tm(u)) dx

=

∫
{m≤|u|≤m+1}

a(x, u,∇u).∇u dx.

Consequently, by letting n to infinity in (27) we get∫
{m≤|u|≤m+1}

a(x, u,∇u).∇u dx ≤
∫

{|u|≥m}

|f | dx

in which we can pass to the limit in m to obtain

lim
m→∞

∫
{m≤|u|≤m+1}

a(x, u,∇u).∇u dx = 0. (36)

Now, from (34) and Lemma 2.4 we deduce that

a(x, un,∇un). ∇un → a(x, u,∇u). ∇u in L1(Ω) (37)

Let h ∈ C1
c (R) and θ ∈ D(Ω). Taking h(un)θ as test function in (Pn), we get∫

Ω

a(x, un,∇un).∇unh′(un) θ dx+

∫
Ω

a(x, un,∇un).∇h(un) θ dx

+

∫
Ω

φn(un).∇(h(un) θ) dx+

∫
Ω

gn(x, un,∇un)h(un) θ dx =

∫
Ω

fnh(un) θ dx (38)

Since h and h′ have compact support in R, there exists ρ > 0 such that supph ⊂ [−ρ, ρ]
and supph′ ⊂ [−ρ, ρ], then for n > ρ we can write

φn(t)h(t) = φ(Tn(t))h(t) = φ(Tρ(t))h(t)

φn(t)h′(t) = φ(Tn(t))h′(t) = φ(Tρ(t))h
′(t)
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Moreover, the functions φh and φh′ belong to (C0(R) ∩ L∞(R))N .
Since un ∈W 1

0Lϕ(Ω) there exists two positive constants η1, η2 such that∫
Ω

ϕ(x,
|∇un|
η1

) dx ≤ η2.

Let τ be a positive constant such that ‖h(un)|∇θ|‖∞ ≤ τ and ‖h′(un)θ‖∞ ≤ τ.
For µ large enough, we have∫

Ω

ϕ

(
x,
|∇(h(un)θ)|

µ

)
dx≤

∫
Ω

ϕ

(
x,
|h(un)∇θ|+ |h′(un)θ||∇un|

µ

)
dx

≤
∫
Ω

ϕ(x,
τ + τη1|∇un|

η1

µ
) dx

≤
∫
Ω

ϕ(x,
τ

µ
) dx+

τη1

µ

∫
Ω

ϕ(x,
|∇un|
η1

) dx

≤
∫
Ω

ϕ(x, 1) dx+
τη1η2

µ
≤ C

which implies that h(un) θ is bounded in W 1
0Lϕ(Ω) and then we deduce that

h(un) θ ⇀ h(u) θ weakly in W 1
0Lϕ(Ω) for σ(ΠLϕ,ΠEψ). (39)

On the other hand, for any measurable subset E of Ω we have

‖φ(Tρ(un))χE‖ψ = sup
‖v‖ϕ≤1

|
∫
E

φ(Tρ(un)) v dx|

≤ cρ sup
‖v‖ϕ≤1

‖χE‖ψ‖v‖ϕ

≤ cρ
1

M−1( 1
|E| )

where cρ = max|t|≤ρ φ(t) and M is the N-function defined by M = sup
x∈Ω

ψ(x, t),

then

lim
|E|→0

sup
n
‖φ(Tρ(un))χE‖ψ = 0

consequently from (19) and by using [25, Lemma 11.2] we obtain

φ(Tρ(un))→ φ(Tρ(u)) strongly in (Eψ(Ω))N . (40)

It follows that by (39) and (40)∫
Ω

φn(un).∇(h(un) θ) dx→
∫
Ω

φ(u).∇(h(u) θ) dx as n→ +∞.

For the first term of (38), we have

|a(x, un,∇un).∇un h′(un) θ| ≤ τ a(x, un,∇un).∇un
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So, by using Vitali’s theorem and (37) we get∫
Ω

a(x, un,∇un).∇un h′(un) θ dx→
∫
Ω

a(x, u,∇u).∇u h′(u) θ dx

Concerning the second term of (38), we have

h(un)∇θ → h(u)∇θ strongly in (Eϕ(Ω))N

and

a(x, un,∇un) ⇀ a(x, u,∇u) weakly in (Lψ(Ω))N for σ(ΠLψ,ΠEϕ)

then ∫
Ω

a(x, un,∇un).∇θh(un) dx→
∫
Ω

a(x, u,∇u).∇θh(u) dx

Since h(un) θ ⇀ h(u) θ weakly in L∞(Ω) for σ∗(L∞, L1) and by using (35), we have∫
Ω

gn(x, un,∇un) h(un) θ dx→
∫
Ω

g(x, u,∇u) h(u) θ dx

and ∫
Ω

fn h(un) θ dx→
∫
Ω

f h(u) θ dx.

Finally, we can easily pass to the limit in each term of (38) and obtain∫
Ω

a(x, u,∇u).[h′(u) θ ∇u+ h(u) ∇θ] dx+

∫
Ω

φ(u)h′(u) θ.∇u dx

+

∫
Ω

φ(u)h(u).∇θ dx+

∫
Ω

g(x, u,∇u) h(u) θ dx =

∫
Ω

f h(u) θ dx

for all h ∈ C1
c (R), and for all θ ∈ D(Ω), which proves the Theorem 3.1. �
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