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Renormalized solution for nonlinear elliptic problems with
lower order terms and L' data in Musielak-Orlicz spaces

MusTAFA AIT KHELLOU AND ABDELMOUJIB BENKIRANE

ABSTRACT. We prove the existence of a renormalized solution for the nonlinear elliptic problem
—div a(z,u, Vu) — div ¢(u) + g(z,u, Vu) = f in Q,
in the setting of Musielak-Orlicz spaces. ¢ € CO(R,RY), the nonlinearity g has a natural

growth with respect to its third argument and satisfies the sign condition while the datum f
belongs to L (). No Az-condition is assumed on the Musielak function.

Key words and phrases. Musielak-Orlicz spaces, boundary value problems, truncations,
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1. Introduction

Let  be an open bounded subset of RV (N > 2). Consider the following non-linear
Dirichlet problem

u=~0 on 0N 1)

where A(u) = —div a(z,u, Vu) is a Leray-Lions Operator defined on

D(A) C WiLy(Q) — WL, (Q) with ¢ and ¢ are two complementary Musielak-
Orlicz functions, ¢ € CO(R,RY) and g is a non-linearity which satisfies the clas-
sical sign condition: g(x,s,£)s > 0 and the following natural growth condition:
lg(x,s,8)| < b(|s])(c/(x) + ¢(x,|£])), where b: R — R is a continuous non-decreasing
function and ¢/(.) is a non-negative function in L'().

The right-hand side f is assumed to belong to L!().

In the usual Sobolev spaces, the concept of renormalized solutions was introduced
by Diperna and Lions in [1] for the study of the Boltzmann equations, this notion of
solutions was then adapted to the study of the problem (1) by Boccardo et al. in [2]
when the right hand side is in W*Lp/(ﬂ) and in the case where the nonlinearity g
depends only on z and u, this work was then studied by Rakotoson in [3] when the
right hand side is in L!(2), and finally by DalMaso et al. in [4] for the case in which
the right hand side is general measure data. Some elliptic boundary value problems
with L' or Radon measure data or involving the p-Laplacian have been studied by
Radulescu et al. in [5], [6] and [7].

On Orlicz-Sobolev spaces and in variational case, Benkirane and Bennouna have
studied in [8] the problem (1) where the nonlinearity g depends only on  and u under
the restriction that the IN-function satisfies the As-condition, this work was then

{ A(u) —div ¢(u) + g(z,u, Vu) = f  in Q
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extended in [9] by Aharouch, Bennouna and Touzani for N-function not satisfying
necessarily the Ag-condition. If g depends also on Vu, the problem (1) has been solved
by Aissaoui Fqayeh, Benkirane, El Moumni and Youssfi in [10] without assuming the
As-condition on the N-function.

In the framework of variable exponent Sobolev spaces, Bendahmane and Wittbold
have treated in [11] the nonlinear elliptic equation

—div (|[VuP®=2Vu) = f in Q
u=20 on 0N

where f is assumed in L!(Q). They proved the existence and uniqueness of a
renormalized solution in Sobolev space with variable exponents VVO1 P (m)(Q) .In [12]
Azroul, Barbara, Benboubker and Ouaro have proved the existence of a renormalized
solution for some elliptic problem involving the p(z)-Laplacian with Neumann nonho-
mogeneous boundary conditions in the case where the second member f is in L'(Q).
Further works for nonlinear elliptic equations with variable exponent can be found in
[13] and [14].

In the variational case of Musielak-Orlicz spaces and in the case where g = 0 and
¢ = 0, an existence result for (1) has been proved by Benkirane and Sidi El Vally in
[15] and then in [16] when the non-linearity g depends only on x and u. If g depends
also on Vu, the problem (1) has recently been solved by Ait Khellou, Benkirane and
Douiri in [17] and then in [20] when the right hand side is in L(2).

Our main goal, in this paper, is to prove the existence of a renormalized solu-
tion for the problem (1) in Musielak-Orlicz space W!L, () by assuming that the
Musielak function ¢ depends only on N — 1 coordinates of the spatial variable z.
This assumption allow us to use a Poincaré inequality in Musielak-Orlicz spaces (see
Lemma 2.9).

2. Preliminaries

Musielak-Orlicz function. Let (2 be an open subset of RY and let ¢ be a real-valued
function defined in £ x R, and satisfying the following conditions:
(a): ¢(z,.) is an N-function for all x € Q (i.e. convex, nondecreasing, continuous,

— 3 50(937t) — 3 ] (p(:v,t) —
o(z,0) =0, ¢(x,t) > 0 for all t > 0, tll_l;% 21618 ; 0 and tlgglo ;relsfl :

0);
(b): ¢(.,t) is a measurable function for all ¢ > 0 .
A function ¢ which satisfies the conditions (a) and (b) is called a Musielak-Orlicz
function.
For a Musielak-Orlicz function ¢ we put ¢.(t) = ¢(z,t) and we associate its
nonnegative reciprocal function o, !, with respect to t, that is

vz (p(x,1) = pla, 05 (1) = L.
The Musielak-Orlicz function ¢ is said to satisfy the As—condition if for some & > 0,
and a non negative function h, integrable in ), we have

p(x,2t) < k @(z,t) + h(x) forall z € andallt>0. (2)

When (2) holds only for ¢ > ¢y > 0, then ¢ is said to satisfy the As—condition near
infinity.
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Let ¢ and v be two Musielak-Orlicz functions, we say that ¢ dominate v, and we
write v < ¢, near infinity (resp. globally) if there exists two positive constants ¢ and
to such that for almost all x € Q:

v(z,t) < p(x,ct) for all t > ¢y (rvesp. for all t > 0 i.e. to =0).

We say that v grows essentially less rapidly than ¢ at 0 (resp. near infinity), and we
write v << ¢, If for every positive constant ¢ we have

t t
lim <sup (@, )) =0 (resp. lim <sup v, )) =0).
t—0 zeQ QO(.’E,t) t—o0 zeQ (p(mat)

Remark 2.1. [16] If v << ¢ near infinity, then Ve > 0 there exist k() > 0 such
that for almost all z € Q we have

Y(z,t) < k(e) p(z,et) for all t > 0.

Musielak-Orlicz space. For a Musielak-Orlicz function ¢ and a measurable function
u : 2 = R we define the functional

0p0(u) = / o(z, [u(2))) d.
Q

The set K,(2) = {u: @ - R measurable : g, o(u) < oo} is called the Musielak-
Orlicz class (or generalized Orlicz class). The Musielak-Orlicz space (or generalized
Orlicz space) L, () is the vector space generated by K,(f2), that is, L,(f2) is the
smallest linear space containing the set K, (). Equivalently:

L,(©2) ={u:Q — R measurable : g, 0 (%) < oo for some A > 0}.

For a Musielak-Orlicz function ¢ we put

Y(z,8) = jgg(st —p(z,t)).

1 is called the Musielak-Orlicz function complementary (or conjugate) to ¢ in the
sense of Young with respect to s.

We say that a sequence of functions u, C L,(f2) is modular convergent to u €
L () if there exists a constant A > 0 such that

. Up —u\

This implies convergence for o(IIL,,IIL,) (Lemma 4.7 of [16]).

In the space L,(2) we define the following two norms:

”U”ap,Q = inf{)\ >0: /ga(x, K)\m”)dz < 1},

Q

which is called the Luxemburg norm, and the so-called Orlicz norm by

po= sup [ fu(z)v(z)|de,
/

llvlly <1

[[]el]
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where 1 is the Musielak-Orlicz function complementary to ¢. These two norms are
equivalent [21]. K,(€) is a convex subset of L, (2).

The closure in L,(£2) of the set of bounded measurable functions with compact
support in  is denoted by E,(Q). It is a separable space and (Ey,(2))* = L, ()
[21]. We have E,(Q) = K,(Q) if and only if K,(Q) = L, () if and only if ¢ satisfy
the As-condition (2) for large values of ¢ or for all values of ¢, according to whether
Q has finite measure or not.

We define
WL, (Q) = {u € Ly(Q) : D u € L,(Q), V|a| <1}
WIEL(Q) = {u € E,(Q) : D*u € Ey(Q), V|a| <1},
where @ = (aq,...,an), |a] = |ag| + -+ + |an| and D*u denote the distributional

derivatives. The space W' L, (f2) is called the Musielak-Orlicz-Sobolev space. Let

. _ m
0,.0(u) :Z 0p.0(D%u) and Hu||}p9 = inf {/\ >0:0,0 (X) < 1} for u € W1L¢(Q).
la|<1

These functionals are convex modular and a norm on WL, () respectively. The
pair (WL, (), Hu||8199> is a Banach space if ¢ satisfies the following condition [21]:

there exists a constant ¢y > 0 such that ing2 o(z,1) > co. (3)
S

The space WL, () is identified to a subspace of the product o<1 Ly (2) = MLy
this subspace is o(IIL,,, IIEy,) closed.
We denote by ©() the Schwartz space of infinitely smooth functions with compact
support in Q and by D() the restriction of D(RY) on Q. The space Wi L, () is
defined as the o(I1L,, I1E,) closure of D(2) in WL, (£2) and the space W} E,,(2) as
the (norm) closure of the Schwartz space D(€2) in W!L,(Q).
For two complementary Musielak-Orlicz functions ¢ and 1, we have [21]:

(i) The Young inequality: ts < ¢(z,t) + ¥ (x,s) for all t,s > 0, z € Q,

(ii) The Holder inequality: | [u(z) v(z) dz| < 2||ul|s,0 |[v]ly,0. for all u € L, (Q),v €

Q

Ly ().
We say that a sequence of functions u,, converges to u for the modular convergence
in WL, (Q) (respectively in W L,(Q)) if, for some A > 0,

. — Up — U
A 2,0 </\> =0

The following spaces of distributions will also be used:

WLy(Q) ={f €D'(Q): f = Y (=1)I*ID*f, where fo € Lyy(2)}

lal<1

WEL(Q) ={feD(Q):f= > (-1)*ID*f, where fo € E,(Q)}.

lo| <1
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Lemma 2.1. [22] Let Q be a bounded Lipschitz domain in RN and let ¢ and 1 be
two complementary Musielak-Orlicz functions which satisfy the following conditions:

(1) There ezists a constant c¢o > 0 such that ingga(x, 1) > ¢o; [(2.2)]
Te

1
(#4) There exists a constant A > 0 such that for all x,y € Q with |x —y| < 3

b <i>
we have wlz,t) <¢\! #(=ar) forall t>1; (4)
e(y1)
(i) /ﬂ@nm<m; (5)
Q
(iv) There exists a constant ¢ > 0 such that ¥(x,1) <c; a.e in Q. (6)

Under these assumptions, D(S2) is dense in L,(Q), D(Q) is dense in W} L,(Q) and
D(Q) is dense in WL, () for the modular convergence.

Lemma 2.2. [16] Let F : R — R be uniformly Lipschitzian, with F(0) = 0. Le
¢ be an Musielak-Orlicz function and let uw € W} Ly(Q). Then F(u) € Wg Ly (€2).
Moreover, if the set D of discontinuity points of F' is finite, we have

3} {F’(u)au a.ein {x € Q:u(zx) ¢ D}

= dz;
prod (u)

0 a.ein {x € Q:u(zx) € D}.
Lemma 2.3. [16] Let F : R — R be uniformly Lipschitzian, with F(0) = 0. Let
¢ be a Musielak-Orlicz function, then the mapping Tp : W'L,(2) — W!L,(Q)
defined by Tr(u) = F(u) is sequentially continuous with respect to the weak™ topology
o(IL,, TEy).

Lemma 2.4. Let f,, f € L*(Q) such that
1) fn=>0 aeinQ;
i) fo—=f aein;

nn/h@mw»/ﬂ@m.

Q Q
Then f, — f strongly in L*(S).

Recall now the following result which is proved in [17]

Lemma 2.5. (The Nemuytskii operator) Let €2 be an open susbset of RN with
finite measure and let ¢ and i be two Musielak-Orlicz functions. Let f : Q xRP — R4
be a Carathéodory function such that for a.e. © € Q and all s € RP

[ (@, 9)] < @) + a1 ;" p(x, azls])

where an, o are real positive constants and ¢ € E,(Q).
Then the Nemytskii operator Ny defined by Ny(u)(x) = f(z,u(x)), is continuous from
(P(E4(%), O%))” =I{u € L,(Q) : d(u, E,(Q2)) < 0%2} into (Ly ()9 for the modular

convergence. Furthermore if c € E,(QQ) and v << 1 then Ny is strongly continuous
from (P(E,(Q), 2))7 into (E,())".

) Qg

We will use the following Lemma whose proof is straightforward.
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Lemma 2.6. Let Q be an open bounded subset of RN satisfying the segment property.
Ifue (WEL,(Q)N, then
/ divudx = 0.

Q

Lemma 2.7. [18] Let 2 be a bounded Lipschitz domain of RN and let p be a Musielak-
Orlicz function satisfying the conditions of Lemma 2.1. Assume also that the function
@ depends only on N—1 coordinates of x. Then there exists a constant X > 0 depending
only on € such that

/(p(z, [v|) dx < /ga(x,)\|Vv|)dx for all v e WyL,(Q).

Q Q
Corollary 2.8. [18] (Poincaré Inequality) Let Q2 be a bounded Lipchitz domain of
RN and let ¢ be a Musielak-Orlicz function satisfying the same conditions of Lemma
2.7. Then there exists a constant C > 0 such that

lolle <ClIVull, Yo € WoLy(9).

The following example shows that the integral form of Poincaré inequality can not,
in general, hold

Example 2.1. [19] Let p :
equals 3 in (—2,—-1)U(1,2),
function such that wuy(+2)
Then

(—2,2) — [2, 3] be a Lipschitz continuous exponent that
21in ( 3. 3) and is linear elsewhere. Let uy be a Lipschitz
=0,uy = Ain (—1,1) and |u}| = X in (—2,-1) U (1,2).

_ 2 @ A2
QP(*)(uA) _ f—z [ua) da > f*% A de - 1 — 0

Oy (W) [PjuhP@ dr T 2 [T APde 2A

as A — 0t.
3. Main result

Let ©Q be a bounded Lipschitz domain in RY, N > 2 and let ¢ and v be two
Musielak-Orlicz functions such that ¢ and its complementary 1) satisfies the conditions
of Lemma 2.2 and v << ¢.

Let A: D(A) C WgL,(2) = WLy (£2) be a mapping given by

A(u) = — div a(z, u, Vu),
where a : Q x R x RY — R¥ is a Carathéodory function satisfying, for a.e z € £ and
for all s € R and all £ £, € RV, £ £ &,

la(z,s,6)] < ku (c(@) +v5  (V(z, kals])) + w5 (e(z, ks[€]))) (7)
(a(z,s,8) —a(z,s,8)) (€= &) >0 (8)
a(z,s,§).£ = ap(z,[¢]) 9)

where c(.) belongs to £,(2), ¢ >0 and k; > 0,i=1,2,3, a € R}
Furthermore, let g : Q x R x RY — R be a Carathéodory function such that, for a.e
x € Qand for all s € R

9(z,5,§)s =0 (10)

l9(x, 5, )] < b(ls]) (¢ () + (=, [£])) (11)
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where b : R — R is a continuous and non-decreasing function and ¢/(.) is a given
non-negative function in L*(£2).
Consider the nonlinear elliptic problem

{ A(u) — div ¢(u) + g(z,u,Vu) = f  in Q (12)
u=0 on 02
where
A (13)
and
¢ € C°(R,RYN) (14)

Note that no growth hypothesis is assumed on the function ¢, which implies that for a
solution u € W Ly,(2) the term div ¢(u) may be meaningless, even as a distribution.

Remark 3.1. A consequence of (9) and the continuity of @ with respect to &, is that,
for almost every z in  and s in R

a(x,s,0) = 0.
Definition 3.1. A measurable function v :  — R is called renormalized solution of

(12) if
Ty (u) € Wg Ly (), a(x, Ty (u), VTi(u)) € (Ly ()N,

a(z,u, Vu).Vudr — 0 as m — +0o0,
{m<|u|<m+1}
a(x,u, Vu).V(h(u)0) da:+/ g(x,u, Vu)h(u)f dz (15)

o Q
/¢ u)6) dm:/f h(u)6 dx

Q
for all h € C1(R) and for all § € D(Q).

We shall prove the following theorem

Theorem 3.1. Assume that (7)-(11) and (13)-(14) hold true, then there exists a
renormalized solution u for the problem (12) in the sense of definition 3.1.

Proof. Step 1: A priori estimates
First let us define the truncation T} : R — R at height k£ > 0 by

s it |s| <k,

Tu(s) =9 k2 it |s| >k
s

Consider the nonlinear elliptic approximate problem

Pu) up € Wi Ly(9)
" —diva(x, un, Vuy) + gn (@, un, Vu,) = fr + divé, (uy,) in D'(Q),

where (f,) € W_le(Q) is a sequence of smooth functions such that f, — f in
LY(Q), pn(s) = ¢(Tu(s)) and gu(z,s,&) = Tn(g(x,s,£)).

Note that g, (7,s,€) s >0, |gn(®,s,§)| < |g(z,s,§)| and |gn(z, s,§)| < n.

Since ¢ is continuous, we have |¢,,(t)| = |¢(T(t))| < ¢y, then the problem (P,) have
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at least one solution u,, € W L,(£2) (see [23], Proposition 1 and [16], Theorem 4).
Using in (P,), the test function v = Ty (u,), k > 0, we get

/a(x,un,Vun).VTk(un) dx—i—/gn(x Up, Vuy,) Ti(uy,) dz
Q

Q
+/¢ (un)) VT (uy) dx—/fn Ti(up) dz
Q

Remark that, by Lemma 2.6

/ (T (un)) Vi (up) dz = / div(éy, (un)) dz = 0
Q

Q

Tk (s)
where ¢, (s) = [ &(Tn(7)) dr, (0n(tn) € W Lo (Q)N by Lemma 2.2)
0

which implies, by using the fact that g, (z, upn, Vuy) Tk (uy) > 0,

a(x, U, Vg, ).Vu, de < Ck,
{lunlgk}

where C'is a constant such that || f,|l1,0 < C, Vn.
Thanks to (9) one easily has

1
/ ol (VT dr < - / a2, ty, Vi)V Ty () d < Crk, (16)
Q Q

On the other hand, by using Lemma 2.7, there exists a positive constant A such that
/@(x,v) dzx < /go(:r,)\|Vv|)dx for all v € Wy L, (Q). (17)
Q Q

Taking v = §|Tk(uy)| in (17) and using (16) gives

[ et 3t < [ o Viu) do < Cik,
Q

Q

which implies that

meas{|u,| >k} < ;k / o(z, ﬁ)daz
inf o(x, 7) A
20 {lun|>k}
1 1
< e | Py
JLEQSO Q
< Cik Vn, Yk > 0.

nf oz E)
Inf o(z, %)
For any 8 > 0, we have

meas{|u,—um| > B} < meas{|u,| > k}+meas{|u,| > k}+meas{|Ti(u,)—Tk(um)| > 5}
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and so that

2C4 k

W + meas{|Tk(un) — Tr(um)| > B} (18)

meas{|u, — um| > B} <

By using (16) and Corollary 2.8, we deduce that (Tk(u,)) is bounded in Wg L, (€2),
and then there exists wy, € W{ L, () such that T (u,) — wy weakly in W L,(£2) for
o(IIL,,I1Ey), strongly in E, () and a.e. in §.

Consequently, we can assume that Ty (u,,) is a cauchy sequence in measure in €.

Let ¢ > 0, then by (18) and the fact that % — 0 as k — 400, there exists
cen PIX

some k(eg) > 0 such that
meas{|un, — um| > B} <e, for all n,m > ng (k(e), B).

This proves that (u,) is a cauchy sequence in measure, thus, u, converges almost
everywhere to some measurable function .
Finally, by Lemma 4.4 of [24], we obtain for all £k > 0

T (un) — Ty (u) weakly in Wy Ly,(Q) for o(I1L,, I1E,),
strongly in E,(€2) and a.e. in . (19)

Now, we shall prove that (a(x, Ty (un), VTk(uy)))s is bounded in (L, (Q))Y for all
k > 0, by using the dual norm of (L, (2))V.
Let 9 € (E,(2))Y such that [|[9],q = 1. We have from (8)

! (a(m,Tk(un),VTk(un)) — a(z, Ty, (un), :3)> . (VTk(un) _ ﬁ) dz >0

this implies by (16)

/k1 a(2, Te(un), VTi(un)) 9dz < /a(x,Tk(un),VTk(un)).VTk(un)dx
3
Q Q
—/a(x,Tk(un), %).(VTk(un) - %) dx
Q
< Ck—/a(x Tk (up), ;).VTk(un)dac
1
k—?) a(x, T (un), 3) Ydx.

Q
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By using Young’s inequality in the last two terms of the last side and (16) we have

|a(x7Tk(u7l)7 k%”
/a(x,Tk(un),VTk(un)) ddr < Ckks + 3k1(1 +k3)/¢ (:E, 3% ) dz
Q Q
+3k1k3/<p(x, VT (u,)|) dz + 3k /ap(x, |9]) dx
Q Q
< Chks + 3C,kk ks + 3k,

a(z, Ty (un), v
13k (1 + k3) /w( ’;(k ) i )> dz.
1

Using (7) and the convexity of 1 yields

a(z, Tk (u, 7i
v <x,' ) ) ') < 3 (0, (@) do (@, kT () + ol [9])

and, since vy grows essentially less rapidly than ¢ near infinity there exists {(k) > 0
such that v(z, k2| Tk (un)|) < v(z, k2 k) < {(k)p(z,1) (see Remark 2.1), then we have
by integrating over Q and using (5)

Y
/¢< '73 Tk(un)vm)> di

3% /¢($7C($))dx+C(k)/cp(m,l)dx+/w(x7 9)) de | <
Q

Q Q

where C}, is a constant depending on k, we deduce that

/ a2, Th(un), VTi(u)) 9dz < G V9 € (Ep (@)Y with [[8]]p0 = 1.
Q

which shows that (a(z, Ty (uy), VT (un)))s is bounded in (L (€2))V.
Step 2: Almost everywhere convergence of the gradlents.
Let p(t) = te®, 8 > 0. It is well known that for § > ( )) one has

for all t € R, (20)

N —

where k£ > 0 is a fixed real number which will be used as a level of the truncation.
Let v; € ©(Q2) be a sequence which converges to Ti(u) for the modular convergence
in Wi L,(Q2) and define the function

1 if s <m
pm(s) =< m+1—1s| if m<|s|<m+1
0 if |s|>m+1

where m > k.
Let 07, = Ty.(un) — T(v;), 67 = Ti(u) — Ti(v;) and 2}, ,,, = (1(63,) pm (un).
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Using in (P,) the test function 2} ,, gives
/a(w, U, Vun).VzZl’m + / G (un).Vuy phy (un) w(Ti(un) — T(v;)) da
Q {m<Jun|<m+1}

+/¢n(un).Vu(Tk(un) — Ty (vj)) pm(un)dx—i—/gn(m,un,Vun) zfl’m dx
Q Q

:/fn thmdﬂc. (21)
Q

Denote by €;(n,7) (i =0,1,2,...) various sequences of real numbers which tend to 0

when n and j — oo, i.e. lim lim &;(n,j) =0.
J—00 n—00

In view of (19), we have 27 . — pu(67) pm(u) weakly* in L>°(Q) as n — oo and then

/fn zfl’m dx — /f 1(07) p (u) dz as n — oo,
Q Q

and since 67 — 0 weakly* in L°°(2) we get /f w(07) pp(u)dz — 0 as j — oo,
Q
then
/fn z%’m dx = eo(n, j).
Q
By Lemma 2.6, it’s easy to see that

On(Un).-Vuy p;n(un) (T (un) — Tk(vj)) dr =0

{m<|un|<m+1}

Concerning the third term in the left-hand side of (21) we can write

[ ) Fi(Tun) = Te(0)) pntn) o = [ 600n)-FTin) 4(63) ()
Q Q

- / () VT (0;) 163 po (1) i
Q

Using again Lemma 2.6, we get

[ 0000 Tula) 1 6) () iz =
Q

From (19) we have
On(Un) 1 (02) pm(un) = @(u) 1 (67) pp(u) almost everywhere in  as n — oo,
furthermore, we can check that

16 (un) 1/(6) pm(un)lly < em c1 ' (2k) 19
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where ¢, = max|s<pm41 ¢(t) and c; is the constant defined in (6).
Applying [25, Theorem 14.6] we get

n— oo

lim [ ¢ (un). VT3 (v5) 1/ (60) pim(un) dz = / ¢(u). VT (v;) 1 (67) pm(u) dx
Q Q

and by using the modular convergence of (v;), we obtain

J—+00 n—00

lim lm [ ¢ (un).VTk(v;) @/ (02) pm(uy)de = /(/)(u).VTk(u) pm(u) dz,
o) o)

then, by Lemma 2.6, one has /qﬁ(u).VTk(u) pm(u) dz = 0.
Q

Hence

[ 600 ilTilin) = Te(0)) prtn) do = €1, 3).
Q

Since g (, Un, Viin)2], ,, > 0 on the subset {z € Q : |u,(z)| > k} and py, (un) =1 on
the subset {z € Q : |u,(z)| < k} we have, from (21),

/a(w, Un, Vup). V2l + / Gn (T, Un, V) p(09) doe < ea(n, ). (22)
Q {lun|<k}

For what concerns the first term of the left-hand side of (22) we have

/a(m,un,Vun).VzZL)m = / a(x, Up, V). (VI (un) — VIk(vj)) W (09) o (uy) da
Q {lun|<k}

— / a(w, tup, Vun).VTi(v;) i1 (02) pm(uy) de

{lun|>k}
+ | a(x,un, V). Vu, w(6l) pl (u,) dz
/
= /a,(x,Tk(un),VTk(un)).(VTk(un) — VTk(v;)) (/' (60%) dz

Q
— / a(z, n, Vun).VTi(v5) 1 (02) pm(un) da
{lun|>k}

+ [ a0, 90) T 18]) 1)
Q
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and then
/ (@, U, Vi) V2l = / [a(@, Ti(un), VT (un)) — a(@, Ti(un), Te(v;)x;)]
Q Q

X[V T (1) — Vi (03)3] 1/ (63) dc
+ / a2, Ti (), VTu(07)x3) (VTi(un) — VTi(oy)x) 4 (62) de
Q

/ a(z, Ty (un), Vg (un)). VTk(v;) 1 (6%) do

o\Q8

- / a2, i, Vi) T (0) 1(03) pom (1)
{|un‘>k}

—|—/a(x,un,Vun).Vun w(@2) pl(uy,) de, (23)
Q

where x? is the characteristic function of the set Q3 = {z € Q: [VT}(v;)| < s}.

For the third term, since (a(z, Tk (un), VT (un)))n is bounded in (L, (2))Y, we have,
for a subsequence, a(x, Ty (uy,), VTk(uy)) = lx weakly in (Ly ()N for o(ILL,, [1E,),
with Iy € (Ly ()Y and since ka(Uj)XQ\Q; € (E,(2))Y we have, by letting n — oo

_ / a(, To(tn), VT (un)). VT (0;) 1/(69) da — — / 1V Th(v;) @ (67) da,
Q\Q; Q\Q;

Using now, the modular convergence of (v;), we get

- / . VT (v;) @/ (07)dz — — / . VTi(u)dr as j— oo,
a\0s Q.

where Q; = {z € Q: |VTi(u)| < s}. We have then proved that

- / a(z, Ty (un), Vi (un)).VTk(vj) (' (67) do = — / lp. VT (u) de + e3(n, ).
o\Q: Q\Q,
(24)
Concerning the fourth term, since py,(u,) = 0 on the subset {|u,| > m + 1}, we have

- / a(z, up, Vu,).VTi(v;) @ (02) pm(un) dz
{|un|>k}

. / a2, T2 (), V1 (1)) VT (05) 1 (63) pom (1) iz
{|un|>k}
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and as above

= [ Al T (), VEoa(0) V() 1(8]) ) d
{lun|>k}
_ / Lons1 VTe(w) p(u)dz + 24(n, )
{lul>k}

= ea(n, j) (25)
where we have used the fact that VTj(u) = 0 on the subset {x € Q : |u(z)| > k}.
For the second term of (23), remark that by using Lemma 2.5 and the fact that
VT (un) = VT (u) weakly in (L,(22))Y, by (19), we have

a(z, T(un), VTi(v5)X5) W (67) — a(z, Ty (u), VTi(vs)X;) ' (67)

strongly in (Ey ()Y as n — oo, then

/ (i, Ti (), VT (03)3)-(VTk (1) — VT (07)x3) 1/ (83) dc
Q

— /a(m,Tk(u),VTk(vj)Xj).(VTk(u) — VTi(vj)x;) W (07)dz as n— oo
Q

on the other hand, since VT (v;)x; — VTi(u)x® strongly in (B ()N as j — oo, it
is easy to see that

/a(x,Tk(u),VTk(vj)X;f).(VTk(u) — VTk(vj)X;) ,u’(@j) dr —0 as j — oo,

Q
where x® is the characteristic function of the set 2, then

/G(IvTk(un%VTk(vj)Xj)-(VTk(un) = VTi(vy)x;)) ' (6)) do = e5(n,5).  (26)
Q
The last term of (23) reads as

/a(m,un, V).V, 1w(679) ol (uy) de = / a(x, U, Vg ).V, 1(62) p (uy,) da,

Q {m<|un|<m+1}

then

| /a(a:,un,Vun).Vun w(62) pl (wy) da |< pu(2Kk) / a(x, Uy, V). Vu, dx.
Q {m<|uy|<m+1}

Taking 11 (un, — T (uy)) as test function in (P,,) yields
a(x, Upn, V). Vi, dr + / d(Tn(un)).Vuy, de
{m<|un|<m+1} {m<|un|<m+1}

+ / In (@, un, Vuy) T1 (U — T (uy)) do = / S T1 (up, — T (uy)) da.

{lun|>m} {lun|>m}
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Thanks to Lemma 2.6 we have
d(Tr(up)).Vu, dz =0,
{m<Jun|<m+1}
which implies, by using the fact that g,(x,un, Vu,) T1(u, — Tn(uy,)) > 0 on the
subset {z € Q: |uy| > m},

a(z, Uy, V). Vu, dr < / | fn] dz, (27)
{m<|un|<m+1} {lun[>m}
consequently
[ a0, V).V ) i) | < k) [ Ifld
{lun|>m}

Combining this inequality with (24), (25) and (26) we obtain

/a(x,un,Vun).sz;hm > - / lg. VT (u) de — p(2k) / | fr] dx

Q O\, {lun|=m}
Jr/[a(x,Tk(un),VTk(un)) —a(z, Ty (un), Trk(vj)x;)]
Q

X [VTk(un) — VTk(vi)x5] 1/ (0]) dx + e6(n,j). (28)

Concerning the second term of the left-hand side of (22), we have

| / G (2 s V)2, =] / 9 (2, T (t0n), VT (11n)) p(63) |
{lun|<k} {lun|<k}
/ bk < (a) V6| o+ b(8) [ (o[ 9T 163 o
Q
< erfn,g) + @ [ 0o Tulua). 9T 00)) VT (03]
Q

We can write the last term of the last side of this inequality as
b(k) .
2 (ol Tin), 9Ta(un)) — (. Ta(un), VTi(03)x)
Q
X VT (un) = VT (05)x5] [1(67,)| d

+ b(ch) / a(@, T (un), VT3 (05)x5)-(VTk (un) = VTk(v;)X5) |1(63)] da

_ b(ai)/a(x,Tk(un),VTk(un)).VTk(yj)Xj, (69 )
Q
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we argue as above to show that

@ /a(-’E,Tk(Un), VT (vj)X5)-(VTk(un) — VT (v5)x5) |1(609)| dx = eg(n, 5)
Q
and
@ /a(x,Tk(un),VTk(un)).VTk(vj)X; |1(69)] da: = e9(n, j)
Q
then

| gn(xvun7vun)zg.t,m dax l
{lun|<k}

< @ / (e, T (un), VTi(un)) = a(@, Tr(un), VTk(0)X3)]
Q

X[V Ty (un) = VTi(v;)x5) [1(03)] dx + e10(n, 7).
Combining this with (22) and (28), we obtain

/[a(% Ty (un), Vi (un)) = a(@, Ti(un), Vi (05) X5)]- [V Tk (un) = VTk(0;) X5]
Q

(o) - "Puel) e <+ [ 050 [ 1l

Q\Qs {lunlzm}

and by using (20) we deduce that

1060 T00), T Tel0)) = o Tan), VLo HT Taln) = V(0315 o
Q
O\Q. {lun|>m}

On the other hand

/[a(m,Tk(un), VTi(un)) — alx, Ty (un), VIR (w)x®)] X [VTk(un) — VTE(u)x®] dz
Q

- / la(@, Ti(un), VT (un)) — a(a, Ti(un ), VTk(v5) X5)] % [VTk (un) =V Tk (v5) x5] d
Q

+ [ a(@, T (un), VIk(un)).[VTi(v)) Xj — VTk(u) x°] dx

a(x, Tk (un), VI (u) x°).[VTk(uy) — VI (uw) x°] dz

+ /a(xaTk(un)aka(vj)X;)-[VTk(un) — VT (v;) x5 dz.

2
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We shall pass to the limit in n and in j in the last three terms of the right-hand side
of the above equality. Similar tools as in (23) and (29) gives

/ (e, T (tn), VT (1)) [V T (03)x — VTa(u)x*] det = 1 (n, ),
Q
/ 0, T (1), YTk (w)x*)-[VTk () — VT (u)x*] dez = 15, ),

Q
and

/a(x’ Ti(un), VTk(v5)X5)- [V Tk (un) — VT (vj)x;] dx = €14(n, j). (31)
Q
Which implies that

/[a(:v, Ti(un), VT (un)) — alx, Tk (un), VI (w) X)) [VTk(un) — VI (u)x®] da
Q
:/[a(x, Ty (un),VTi(un)) —a(z, T (un), VT (0;) X))V Tk (un) = VT (v5)x5] dx
Q
+ 515(naj)'

For r <'s, one has

0< /[a(m,Tk(un), VT (un))—a(z, Tk (un), VI (w)]. [V (uy) = VI (u)] dx

Q.

< /[a(ﬂf,Tk(Un)aVTk(un))—a(ﬂf,Tk(un)aVTk(u))}-[VTk(un)—VTk(U)] dx
Qs

= /[a(ﬂfa Tio(un ), VT (un)) —a(@, T (un), VT (w)x*)]. [V Tk (un) = VT (u) X "] da
Qs

< /[a(m, Tk (un), VT (un)) —a(x, Tx (un), VT (w)x*)]. [VTk (un) = VT (u)x*] da
Q

= /[a(a:, T (tn), VT (un)) —a(@, T (un ), VTk(v;) X)) [V Tk (n) =V T (v;)x5] d
3— e15(n,7)

< e16(n,j) +2 / I VT (u) de 4+ 2 p(2k) /{un>m} | fn] de.

O\,

This implies that, by passing at first to the limit sup over n and then over j,

0 < lim sup/[a(x,Tk(un), VTi(un))—alx, T (un), VI (w)].[VTE(un) —VTk(u)] dz

n—oo

O\Qs {lu]zm}
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Letting s and m — oo and using the fact that [;,. VT, (u) € L*(2) we get, since
|O\Qs| — 0 and [{|u| > m}| — 0,

/[a(gc,Tk(un)7 VT (un))—a(z, Tk (un), V()] [V (un)—VTg(u)] de — 0 as n — oo.
Qr
As in [26], we deduce that there exists a subsequence, still denoted by u,,, such that
Vu, = Vu a.e in €, (32)
which implies that
a(z, Ty (un), VIk(un)) — a(z, Ty (uv), VTx(u)) weakly in (Ly(Q))N for
o(IILy,IIE,),VEk > 0. (33)

Step 8 : Modular convergence of the truncations.
Going back to the equation (30), we can write

/a(m,Tk(un),VTk(un)).VTk(un) dm§/a(x,Tk(un),VTk(un)).VTk(vj)Xj- dx

Q Q
+/a(x7Tk(un), VT (v5) X3)-[VTk(un) — VTi(vj) xj] dv
Q
+2¢e11(n, j) + 2 / . VT (u) dz + 2 p(2k) / | fnl d,
Qs {lun|=m}

then, by using (31), we have
/a(m,Tk(unLVTk(un)) VTi(uy)de <ei7(n,j) +/a (2, Tx(un), Vi (un)).VTi(vj) x; dx
Q Q

+2/lk.VTk(u)dx+2u(2k) / (] da

\Q, {lunl2m}

Passing to the limit sup over n in both sides of this inequality yields

limsup/a(x,Tk(un),VTk(un)).VTk(un)dx§/a(x,Tk(u),VTk(u)).VTk(vj) X; dz

n—oQ
Q
+ le e1r(n,j) + 2 / le. VT (u) de + 2 p(2k) / |f] dz,
A\, {lulzm}

in which, we can pass to the limit in j, to obtain

limsup/a(aj,Tk(un),VTk(un)).VTk(un) dx < /a(x,Tk(u),VTk(u)).VTk(u) x° dx

n—oo
Q

+2/lk.VTk(u)dx+2u(2k) / \f| da.

Qs {lu]zm}
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Letting s and m — oo gives

liinﬁsolip/a(x,Tk(un),VTk(un)).VTk(un) dx < /a(m,Tk(u),VTk(u)).VTk(u) dx

Q Q

then by using Fatou’s Lemma we have

/a(x,Tk(u),VTk(u)).VTk(u) dzx < liminf/a(:c,Tk(un),VTk(un)).VTk(un) dz,

n—00
Q Q

consequently

lim [ a(z, Tip(un), VTk(un)). VT (uy) de = /a(m,Tk(u),VTk(u)).VTk(u) dz

n—oo

Q Q

and, by using Lemma 2.4, we conclude that
a(x, T (un), VTk(tn)). VT (un) — alz, Ty(u), VT (u)). VT (u) in LY(Q).  (34)
The convexity of the Musielak-Orlicz function ¢ and (9) allow us to get
o (s (722t - T

. ) < 50l Ti(un), VTi(un)) VT 1)

+ia(m, Ty (u), VT (u)).VTi(u),

and by (34) we obtain

lim sup/tp x VT (un) = VT (u) dx =0
|E|>0 n ’
E

2

which implies, by using Vitali’s theorem, that

Ti(un) = Ti(u) in WyLy(Q) for the modular convergence Vk > 0.

Step 4 : Equi-integrability of the non-linearities.

We shall prove that g, (@, u,, Vu,) = g(z,u, Vu) strongly in L1 (Q) by using Vitali’s
theorem. Thanks to (32) we have g, (z, u,, Vu,) = g(x,u, Vu) a.e in €, so it suffices
to prove that g, (z,u,, Vu,) is uniformly equi-integrable in €.

Let E C Q be a measurable subset of 2. We have for any m > 1,

/|gn(:z:,un,Vun)|d:17 = / |gn (2, un, Vuy, )| de+ / |gn (2, up, Vuy,)| de.
E EO{jtin] <m} EN{Jun|>m}
Taking
0 if |up| <m—1
Ty (up — Trn—1(tn)) = up — (m — L)sgn(uy) if m—1<|u,| <m

sgn(un) if |u,| >m
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as test function in (P,), gives

a(x, Un, V). Vu, dz + / d(Tn(up)).Vuy, de

{m—1<|un|<m} {m—1<]up|<m}
+ / In (@, un, V) Ty (up—T -1 (uy)) doe = / o T1(up—Thm-1(uy)) dx
{lun|>m—1} {lun|>m—1}
consequently

(G0 (2 4y V)| der < / \fal .

{lun|>m} {|un|>m—1}

Let £ > 0, there exists m = m(g) > 1 such that

Vn.

90 (@ tn, Vun) | da < 3,

En{|un|>m}
On the other hand

/ (G0 (2 1, V)| dir < / 190 (s Ton (1), VT (1)) dt
E

En{|un|<m}

< b(m) / (¢ (&) + (@, VT () da

E

< @/a( Ton(un), VT (un)) VT (uy) dz
E
b(m) [ ¢

+b( '(z) da.

E

By virtue of the strong convergence (34) and the fact that ¢/(.) € L!(Q2), there exists
1 > 0, such that

vn.

|E| < n implies / |gn (2, Up, Vuy,)| de < %,

En{|un|<m}
So that
|E| <n implies /|gn(a:,un,Vun)| de <e, Vn,
E
which shows that g, (z, u,, Vuy,) is uniformly equi-integrable in 2. By Vitali’s theo-
rem, we conclude that g(z,u, Vu) € L*(Q) and

Gn (2, U, Vi) — g(x,u, Vu) strongly in L*(Q). (35)
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Step 5 : Passage to the limit.
Turning to the inequality (27), we have for the first term

a(x, Un, V). Vu, de = / a(@, Un, Vr). (Vg1 (Un) — VI (uy)) de
{m<|up|<m+1} Q

= / a(x, Trt1(un), Vst (un)). Vi1 (uy) dz
Q

—/a(:c,Tm(un),VTm(un)).VTm(un) dx.
Q
then by (34) we obtain

n— o0
{m<fun|<m+1}

lim / a(x, Un, Vg, ). Vu, de = / a(x, Tmt1(w), Vi1 (). Vi1 (u) de

)

—/a(a:,Tm(u),VTm(u)).VTm(u) dz

Q

/ a(x,u, Vu).(VT 41 (u) — VI, (u)) dx
Q

= a(z,u, Vu).Vudz.
{m<lul<m+1}

Consequently, by letting n to infinity in (27) we get
a(z,u, Vu).Vudr < / |f] dx

{m<|u|<m+1} u[=m}

in which we can pass to the limit in m to obtain

W}i_r}rloo / a(x,u, Vu).Vudr = 0. (36)
{m<|u|<m+1}
Now, from (34) and Lemma 2.4 we deduce that
a(®, Up, Vuy). Vu, — a(z,u, Vu). Vu in L*(Q) (37)

Let h € CL(R) and 0 € D(Q). Taking h(u,)f as test function in (P,), we get

/a(x,un,Vun).Vunh’(un) 0dx—|—/a(ac,un,Vun).Vh(un) 0 dx
Q
[ ) V() 0) i+ [ gl Vun)h(unn) Oz = [ fuh(un) 0z (38)
/ / /

Since h and k' have compact support in R, there exists p > 0 such that supph C [—p, p]
and supph’ C [—p, p], then for n > p we can write

Pn()(t) = ¢(Tn () h(t) = ¢(T,(t))h(t)
G () (t) = G(Tn(£))M'(t) = (T, (1)) (2)
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Moreover, the functions ¢h and ¢h’ belong to (CO(R) N L (R))™.
Since u,, € Wonga () there exists two positive constants 71,72 such that

Vuy,
/w(%' = l)dxénz-

m
Q

Let 7 be a positive constant such that |h(u,)|VO||lcc < 7 and ||/ (un)0]co < T
For p large enough, we have

JwQuW“f””)MsszJ“%W“*fW““VWQd

4+ ™11 |V, |
< / P — T
I
Q
S/ ple, =) do+ T8 / o, YVl gy
M M m
Q Q
g/go(:ml)dx—i-w <C
W
Q

which implies that h(u,) 6 is bounded in W L, (2) and then we deduce that
h(uy) 6 — h(u) 8 weakly in Wy L,(Q) for o(IIL,, [1Ey). (39)

On the other hand, for any measurable subset E of Q0 we have

16(T,(un))xelly = sup | / (T, () v ]

llvlle<1

<¢p, sup |lxellelvll,

lvlle<1

< CpiM (‘E‘)

where ¢, = maxp <, ¢(t) and M is the N-function defined by M = sup ¥ (x, 1),
N €N
then

lim sup |[¢(T,(un))xEelly =0
|E‘~>0 n

consequently from (19) and by using [25, Lemma 11.2] we obtain

O(Ty(un)) — ¢(T(u)) strongly in (Ey(Q))". (40)
It follows that by (39) and (40)

/¢71(un)-v( un daj — /¢ )dﬂ? as n — +oo.
Q

For the first term of (38), we have
la(z, un, Vu,).Vu, b (u,) 0] < 7 a(z, un, Vu,).Vuy,
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So, by using Vitali’s theorem and (37) we get

/a(x,un,Vun).Vun R (uy) 0dx — /a(x,u,Vu).Vu R (u) 0 dx
) o)

Concerning the second term of (38), we have

and

h(u,)VO — h(u)V6 strongly in (E,(Q))Y

a(z, U, Vu,) = a(z,u, Vu) weakly in (Ly(Q))Y for o(IILy, TE,)

then

/a(m,un,Vun).VQh(un) de — /a(m,u,Vu).V@h(u) dx
Q Q

Since h(uy,) 6 — h(u) 6 weakly in L®°(Q) for o*(L>°, L) and by using (35), we have

and

/gn(x,un,Vun) h(uy) 0dx — /g(z,u,Vu) h(u) 6dx
Q Q

Q/fn h(u) 9dx—>Q/f h(u) 6 dz.

Finally, we can easily pass to the limit in each term of (38) and obtain

Q

/a(x,u, Vu).[h (u) 0 Vu + h(u) VO] dz + /(b(u)h’(u) 0.Vudx
)

+ [ ¢(w)h(u).VOde + [ g(x,u, Vu) h(u) 0dx = [ f h(u) 0dx
/ / [

Q
for all h € C}(R), and for all § € D(£2), which proves the Theorem 3.1. O
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