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Statistical considerations on the k-means algorithm

Dana Mihai and Mihai Mocanu

Abstract. Cluster analysis from a data mining point of view is an important method for

knowledge discovery in large databases. Clustering has a wide range of applications in life

sciences and over the years it has been used in many areas. The k -means is one of the
most popular and simple clustering algorithm that keeps data in main memory. It is a well

known algorithm for its efficiency in clustering large data sets and converges to acceptable

results in different areas. The k -means algorithm with a large number of variables may be
computationally faster than other algorithms. The current work presents the description

of two algorithmic procedures involved in the implementation of k -means algorithm and also
describes a statistical study on a known data set. The statistics obtained from the experiment,

by detailed analysis, can be used to improve the future implementation techniques at the k -

means algorithm to optimize data mining algorithms which are based on a model.
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1. Introduction

Knowledge Discovery and Data Mining are rapidly growing fields in the area of
Computer Science. They group together methods and techniques, which allow to
analyse very large data sets to extract and discover previously unknown structures
and relations out of huge heaps of unnecessary detailed information. Topics include:
classification and clustering, cluster analysis, deviations analysis, trend associations,
dependency modeling, sequential patterns, analysis of time series, classification by
decision trees or neural networks.

Over the last two decades we have witnessed an explosive growth in the generation
and collection of data. Information of all kinds needs to be filtered, prepared and
classified so that it will be a valuable aid for decisions and strategies. We developed
needs for new techniques and tools that can intelligently assist us in transforming row
data into useful knowledge [1].

The ever-growing repository of data in almost all fields can contribute significantly
towards future decision making provided appropriate knowledge-discovery mecha-
nisms are applied for extracting hidden, but potentially useful information embedded
in the data. A knowledge discovery system employs a wide class of machine-learning
algorithms to explore the relationships among tuples, and characterize the nature
of relationships that exist between them. Classification and clustering are two most
commonly examples for knowledge-discovery techniques that are applied to extract
knowledge. Classificatory analysis refers to a set of supervised learning algorithms
which study pre-classified data sets in order to extract rules for classification. Cluster
analysis and clustering techniques refer to unsupervised learning algorithms for data
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analysis in which the aim is to partition a given set of data elements into homogenous
groups called clusters [4].

In this paper we demonstrate how the popular k -means cluster algorithm can be
combined with statistical-based assumptions in order to obtain improvements in ef-
ficiency and also optimization of data mining algorithms based on k -means. Cluster
analysis is one of the major data mining methods for knowledge discovery in large
databases and also a statistical method used for partitioning a sample into homoge-
neous classes to create an operational classifications. It is the process of grouping
large data sets according to their similarity. Cluster analysis is a major tool in many
areas of engineering, medical and scientific applications including data segmentation,
discretization of continuous attributes, data reduction, outlier detection, noise filter-
ing, pattern recognition, image processing [2], data compression, vector quantization
and optimization. Also its applications appear in the commercial field: nowadays
organizations have large volumes of data, related to their business processes, and re-
sources, and this data can provide statistical information, so it will be useful to get
some knowledge about this data to improve performance and profit. In the same time
data clustering is useful in many non-commercial applications such as health care
systems, web, etc [3].

Many clustering algorithms have been proposed in the literature and there are
many clustering algorithms in use today. In this paper we focus on the k -means
algorithm. One of the simple clustering algorithms, k -means, was first published over
50 years ago. In spite of the fact that thousands of clustering algorithms have been
published since then, k -means is still widely used.

The k -means algorithm is well known for its efficiency in clustering large data set.
With a large number of variables k -means may be computationally faster than

other algorithms (if k is small) and also may produce tighter clusters compared to
other algorithms.

Starting from the idea that data mining is on the interface of Computer Science
and Statistics, utilizing advances in both disciplines to make progress in extracting
information from large databases, in this article we apply the k -means algorithm on a
known set of data in order to obtain statistics with very low error limits, statistics that
are necessary for the implementation of programs allowing for future improvement
techniques.

On the other hand the results obtained in this work will be the starting point for
new research to optimize data mining algorithms which are based on model.

The rest of this paper is organized as follows: in Section 2 we will view some related
work, Section 3 presents the classical k -means technique, in Section 4 we will review
the experimental results and in Section 5 we conclude and also we present the future
work.

2. Related work

The progress of clustering methodology has been a truly interdisciplinary endeavor.
The fields who collect and process real data have all contributed to clustering method-
ology. The notion of the ”data clustering” appeared for the first time in the title of
a 1954 article that presented anthropological data. Data clustering is also known as
Q-analysis, typology, clumping and taxonomy (Jain and Dubes, 1988), depending on
the domain where it is applied. In the literature some of the most popular books that
published on data clustering are: classic, Sokal and Sneath (1963), Anderberg (1973),
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Hartigan (1975), Jain and Dubes (1988), extensively studied in data mining, Han and
Kamber (2000) and machine learning, Bishop (2006).

Clustering algorithms can be divided into two groups: hierarchical and partitional.
Hierarchical clustering algorithms recursively find nested clusters in two ways: in ag-
glomerative mode and in divisive mode. The principles on which the agglomerative
mode and the divisive mode are based are summarized below: for the agglomerative
mode - starting with each data point in its own cluster and merging the most sim-
ilar pair of clusters successively to form a cluster hierarchy, for the divisive mode -
starting with all the data points in one cluster and recursively dividing each cluster
into smaller clusters. Partitional clustering algorithms in comparison to hierarchical
clustering algorithms, are sometimes more efficient in that they find all the clusters
simultaneously as the partition of the data and do not impose a hierarchical structure.

The k -means algorithm is one of the most popular hierarchical algorithms. Ease of
implementation, efficiency, simplicity and empirical succes are the main reasons for
its popularity. Keeping data in main memory it works fast and may form the basis
for other clustering algorithms. It is the best known algorithm because it is fast and
converges to acceptable results in different areas. It is a simple iterative method to
partition a given dataset into a user specified number of clusters, k. This algorithm
has been discovered by several researchers across different disciplines, most notably
Steinhaus (1956), Lloyd (1957, 1982), Ball and Hall (1965), Forgey (1965), Friedman
and Rubin (1967) and McQueen (1967). Gray and Neuhoff provide a nice historical
background for k -means placed in the larger context of hill-climbing algorithms [5].

3. Materials and methods

In this section we will extensively describe the k -means algorithm, description that
includes the presentation of mathematical concepts and also enumeration of solutions
consisting in proposing limitations and generalizations to solve various problems of
the algorithm.

3.1. The k-means algorithm. The algorithm works as follows: the user first must
define the number of clusters to be founded by k -means; k -means starts by initializing
a number of prototypes equal to number of desired clusters, then makes two steps;
the first is assigning each point to its closest center, then moving each prototype to
the mean of its assigned points. These two steps will be repeated until it converges
to a solution.The algorithm depends on minimizing the square sum of error to assign
each point to its cluster. Its simplicity and acceptable results mean it has a wide
usage. However k -means has some drawbacks: first the user may not know in advance
the number of clusters; also k -means is sensitive to the random initializing of its
prototypes which may give poor clusters, since a different initialization may give
different results, and this will cause k -means to converge to a suboptimal solution
rather than the global optimum. Another disadvantage of k -means is its sensitivity
to outliers [3].

The algorithm operates on a set of d-dimensional vectors, D = {xi | i = 1, ...., N},
where xi ∈ <d denotes the i-th data point. The algorithm is initialized by picking
k points in <d as the initial k cluster representatives or ”centroids”. Techniques for
selecting these initial seeds include sampling at random from the dataset, setting them
as the solution of clustering a small subset of the data or perturbing the global mean
of the data k times. Then the algorithm iterates between two steps till convergence:
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Case 1: Data Assignment. Each data point is assigned to its closest centroid, with
ties broken arbitrarily. This results in a partitioning of the data.

Case 2: Relocation of ”means”. Each cluster representative is relocated to the cen-
ter (mean) of all data points assigned to it. If the data points come with a probability
measure (weights), then the relocation is to the expectations (weighted mean) of the
data partitions.

The algorithm converges when the assignment (and hence the cj values) no longer
changes. Each iteration needs N × k comparisons, which determines the time com-
plexity of one iteration. The number of iterations required for convergence varies and
may depend on N , but the algorithm can be considered linear in the dataset size.

One issue to resolve is how to quantify ”closest” in the assignment step. The
default measure of closeness is the Euclidean distance, in which case one can readily
show that the non-negative cost function,

N∑
i=1

(
argminj‖xi − cj‖22

)
will decrease whenever there is a change in the assignment or the relocation steps,
and hence convergence is guaranteed in a finite number of iterations [5].

3.2. Limitations. Besides the great sensitivity to the initialization, the k -means
algorithm presents other several problems. First, we can notice that k -means is a
limiting case of fitting data by a mixture of k Gaussians with identical, isotropic co-
variance matrices (

∑
= σ2I ), when the soft assignments of data points to mixture

components are hardened to allocate each data point solely to the most likely compo-
nent. So, it will falter whenever the data is not well described by reasonably separated
spherical balls, for example, if there are non-covex shaped clusters in the data. This
problem may be alleviated by rescaling the data to ”whiten” it before clustering, or
by using a different distance measure that is more appropriate for the dataset. For
example, information-theoretic clustering uses the kl-divergence to measure the dis-
tance between two data points representing two discrete probability distributions. It
has been recently shown that if one measures distance by selecting any member of a
very large class of divergences called Bregman divergences during the assignment step
and makes no other changes, the essential properties of k -means, including guaran-
teed convergence, linear separation boundaries and scalability, are retained. As long
as using a corresponding divergence this result makes k -means effective for a much
larger class of datasets.

For describing non-convex clusters k -means can be associated with another al-
gorithm. One first clusters the data into a large number of groups using k -means.
These groups are then agglomerated into larger clusters using single link hierarchical
clustering, which can detect complex shapes. This approach also makes the solution
less sensitive to initialization, and since the hierarchical method provides results at
multiple resolutions, one does not need to pre-specify k either. The cost of the opti-
mal solution decreases with increasing k till it hits zero when the number of clusters
equals the number of distinct data-points. This situation makes difficulties in two
cases: the first case is directly compare solutions with different numbers of clusters
and the second case is to find the optimum value of k. If the desired k is not known
in advance, one will typically run k -means with different values of k, and then use
a suitable criterion to select one of the results. Alternatively, one can progressively
increase the number of clusters, in conjunction with a suitable stopping criterion.
Bisecting k -means achieves this by first putting all the data into a single cluster, and
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then recursively splitting the least compact cluster into two using 2-means. Both
these approaches thus alleviate the need to know k beforehand.

The algorithm is also sensitive to the presence of outliers, since ”mean” is not
a robust statistic. A preprocessing step to remove outliers can be helpful. Post-
processing the results, for example to eliminate small clusters, or to merge close
clusters into a large cluster, is also desirable [5].

3.3. Generalizations and connections. As mentioned earlier, k -means is closely
related to fitting a mixture of k isotropic Gaussians to the data. Moreover, the
generalization of the distance measure to all Bregman divergences is related to fitting
the data with a mixture of k components from the exponential family of distributions.
Another broad generalization is to view the ”means” as probabilistic models instead
of points in Rd. Here, in the assignment step, each data point is assigned to the most
likely model to have generated it. In the ”relocation” step, the model parameters are
updated to best fit the assigned datasets. Such model-based k -means allow one to
cater to more complex data, for example the sequences described by Hidden Markov
models.

Also exists the posibility to ”kernelize” k -means. Though boundaries between
clusters are still linear in the implicit high-dimensional space, they can become non-
linear when projected back to the original space, thus allowing kernel k -means to deal
with more complex clusters. The k -medoid algorithm is similar to k -means except
that the centroids have to belong to the data set being clustered. Fuzzy c-means is
also similar, except that it computes fuzzy membership functions for each clusters
rather than a hard one [5].

4. Experiments and results

The current section presents the description of two procedures of implementing
k -means algorithm, database description with which we have worked and finally de-
scription of statistical results by comparing the two cases on the data set, results
represented by diagrams. The implementation of k -means algorithm was performed
in the C programming language after an approach by Ethan Brodsky. We used the
DEV-C++ software Integrated Development Environment as presented in [12].

We described two algorithmic procedures involved in the implementation of the
k -means algorithm: the Procedure CalcClusterCentroids which sets a new cluster
center (see Algorithm 1) and the Procedure ChooseAllClustersFromDistances which
determines the objects grouped around the center (see Algorithm 2).

The Procedure CalcClusterCentroids sets a new cluster center. First step is to
initialize cluster centroid coordinate sums to zero. The next step is to calculate sum
all points. For every point which cluster is it in, we update count of members in
that cluster. Then the next step is to calculate the sum point coordinates for finding
centroid. To find the centroid we divide each coordinates sum by number of members.
For each cluster, if cluster centroid coordinate sums are zero then the cluster is empty.
The last step is for each dimensions we divide by zero for any empty clusters.
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Algorithm 1 Procedure CalcClusterCentroids

1: � Initialize cluster centroid coordinate sums to zero
2: for i = 0→ length(k) do
3: vectorcluster member count[i]← 0
4: for j = 0→ length(dim) do
5: vectornew cluster centroid[i ∗ dim+ j]← 0
6: end for
7: end for
8: � Sum all points
9: � For every point

10: for i = 0→ length(n) do
11: � Which cluster is it in
12: active cluster ← cluster assignment index[i]
13: � Update count of members in that cluster
14: vectorcluster member count[active cluster]←
15: vectorcluster member count[active cluster] + 1
16: � Sum point coordinates for finding centroid
17: for j = 0→ length(dim) do
18: vectornew cluster centroid[active cluster ∗ dim+ j] =
19: vectornew cluster centroid[active cluster ∗ dim+ j] + vectorX[i ∗ dim+ j]
20: end for
21: end for
22: � Divide each coordinate sum by number of members to find mean/centroid
23: � For each cluster
24: for i = 0→ length(k) do
25: if vectorcluster member count[i] = 0 then
26: write ”Empty cluster”
27: end if
28: � For each dimension
29: for j = 0→ length(dim) do
30: � Will divide by zero here for any empty clusters
31: vectornew cluster centroid[i ∗ dim+ j] =
32: vectornew cluster centroid[i ∗ dim+ j] div cluster member count[i]
33: end for
34: end for

Algorithm 2 Procedure ChooseAllClustersFromDistances

1: � For each point
2: for i = 0→ length(n) do
3: best index← −1
4: closest distance← BIG double
5: � For each cluster
6: for j = 0→ length(k) do
7: � Distance between point and cluster centroid
8: current distance← vectordistance array[i ∗ k + j]
9: if current distance < closest distance then

10: best index← j
11: closest distance← current distance
12: end if
13: end for
14: � Record in array
15: vectorcluster assignment index[i]← best index
16: end for
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The Procedure ChooseAllClustersFromDistances determines the objects grouped
around the center. The first step through the whole sequence of points. The next
step through the whole sequence of clusters. For each cluster we define the distance
between point and cluster centroid. The last step, using a vector, determines the
objects grouped around the center.

Database that we used in this paper to obtain statistical results is called Per-
fume.data which contains 20 classes of 28 instances each (560 instances), where each
class refers to a type of perfume [14].

In the experiment we applied k -means algorithm on the database Perfume.data
for two cases and after clustering we obtained statistics on the following notions:
Euclidean Distances and Plot of Means for Each Cluster [13].

Euclidean Distances is the straight line distance between two points in Euclidean
space. In a plane with p1 at (x1, y1) and p2 at (x2, y2) it is

√
((x1 − x2)2 + (y1 − y2)2).

Plot of Means for Each Cluster provides a succinct graphical representation of how
well each object is defined by the each cluster.

For the first case we worked with three clusters and we presented the Euclidean
Distances statistics (see Table 1) and also the Plot of Means for Each Cluster (see
Figure 1). The results obtained in Table 1 represent the Euclidean Distances between
Clusters, Distances below diagonal and Squared distances above diagonal.

Cluster Number No.1 No.2 No.3
No.1 0.0000 292214.4 22236.2
No.2 540.5686 0.0 221376.0
No.3 471.5254 470.5 0.0

Table 1. Euclidean Distances

Figure 1. Plot of Means for 3 Clusters - Cluster 1=blue, Cluster 2=red,
Cluster 3=green (Perfume.sta)
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Applying k -means with a value of k=3 onto the Perfume.data set we obtained
results as graphical representations in Figure 1 - Plot of Means for Each Cluster. Each
cluster determines for each type of perfume statistics as Mean, Standard Deviation
and Variance.

For the second case we worked with four clusters and we presented the Euclidean
Distances statistics (see Table 2) and also the Plot of Means for Each Cluster (see
Figure 2). The results obtained in Table 2 represent the Euclidean Distances between
Clusters, Distances below diagonal and Squared distances above diagonal.

Cluster Number No.1 No.2 No.3 No.4
No.1 0.0000 181538.4 2223571.9 279555.7
No.2 426.0723 0.0 380679.8 243448.4
No.3 472.8339 617.0 0.0 217050.4
No.4 528.7303 493.4 465.9 0.0

Table 2. Euclidean Distances

Figure 2. Plot of Means for 4 Clusters - Cluster 1=blue, Cluster 2=red,
Cluster 3=green, Cluster 4=pink (Perfume.sta)

Applying k -means with a value of k=4 onto the Perfume.data set we obtained
results as graphical representations in Figure 2 - Plot of Means for Each Cluster. Each
cluster determines for each type of perfume statistics as Mean, Standard Deviation
and Variance.

These statistics obtained from the experiment, by detailed analysis, can be used to
improve the future implementation techniques at the k -means algorithm to optimize
data mining algorithms which are based on model.
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5. Conclusions and future work

The current paper highlights statistical improvements on the k -means algorithm
and proves their efficiency through a statistical study on a known database. In this
paper we discussed the concepts of data mining, cluster analysis and primarily we
focused on presenting thoroughly the k -means algorithm, both from the mathematical
point of view and from the point of view of its implementation.

Despite the problems presented in Section 3, k -means remains the most widely used
partitional clustering algorithm in practice. The algorithm is simple, easily under-
standable and reasonably scalable, and can be easily modified to deal with streaming
data. To deal with very large datasets, substantial effort has also gone into further
speeding up k -means, most notably by using kd-trees or exploiting the triangular
inequality to avoid comparing each data point with all the centroids during the as-
signment step. Continual improvements and generalizations of the basic algorithm
have ensured its continued relevance and gradually increased its effectiveness as well.

In the future we aim to focus on the comparison of statistically viewpoint of the
clustering method which includes k -means algorithm with the classification method
which includes k -nearest neighbors algorithm. We also started investigating an ap-
proach to applying the k -means algorithm in the domain of the topographic engineer-
ing, especially for developing topographical maps.
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