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Existence of renormalized solutions for a nonlinear elliptic
equation in Musielak framework and L' data
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ABSTRACT. In this paper, we prove existence result of renormalized solutions in the setting of
Musielak-Orlicz spaces W&LW(Q) for the following strongly nonlinear Dirichlet problem

A(w) + g(2,u, V) = [ in 9,
where A is a Leray-Lions operator acting from its domain D(A) C Wg L, (Q) into its dual,
while g(z,u, Vu) is a nonlinear term having a growth conditions with respect only to Vu, and

does not satisfy any sign condition. The right-hand side f belongs to L! ().
A modular-inequality of Poincaré type in this setting is also proved (see Lemma 2.5).

2010 Mathematics Subject Classification. 39A14; 35J25.
Key words and phrases. Musielak-Orlicz spaces, Dirichlet problem, Musielak-Orlicz function,
renormalized solution.

1. Introduction

We consider a bounded open subset Q of RY, (N > 2). Let
A(u) = —diva(z, u, Vu),

be a Leray-Lions operator defined from the space Wy L, () into its dual W' L ().
Our aim is to prove the existence of renormalized solutions u to the non-linear elliptic
problem
{ A(u) + g(z,u, Vu) = f € L}), in Q, (1)
u=0, 09,

where f € L'(2) and g is a non-linear lower order term satisfying a growth condition
of the following from

l9(z,5,8)| < e(x) + b(|s])p(x, [€])-
And without any sign condition, in the setting of the Musielak-Orlicz space Wy L, (),
without any restriction on the Musielak-Orlicz function ¢ (i.e., without the As-
Condition).

We recall that the notion of renormalized solutions was introduced by Lions and
Diperna [18] for the study of Boltzmann equations. This notion was then adapted to
the study of the problem (1) by Boccardo, Giachetti, Diaz and Murat in [14], Lions
and Murat [25] and Murat [28,27] to non-linear elliptic problem and by Lions [26] to
evolution problems in fluids mechanics. Recently we refer to [16,14,12,13,17] for more
details.
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In the classical Sobolev space W,*(f2), Benkirane and Youssfi have studied (1)
where the non linearity term ¢ depends only on = and w and the right hand side f
belongs to the dual space, Porretta in [30] has studied the problem (1) where the
right hand side is a measure, Boccardo, Murat and Puel, have studied the problem
(1) without sign condition in the particular case where g(x,s,&) = As — [£[2, A > 0,
also in [31] Rakotoson and Temam have proved the existence of a weak solution for
the problem (1).

In the sitting of Lebesgue of variable exponent, Bendahmane and Wittbold in [6]
proved the existence and uniqueness of renormalized solution to the problem (1) in
the particular case a(x,s,§) = |§|p($)72§, g = 0, Azroul, Benboubker, and Rhoudaf
in [5] have studied the problem (1) where the right hand side is measure.

In the Orlicz spaces framework, various authors have studied the existence of so-
lution of (1). In the variational case, Gossez [21] solved the problem (1) in the case
where g depends only on z and u, Benkirane and Elmahi in [9,8] have studied (1)
by making some restriction and g depends also on Vu, Elmahi and Meskine in [20]
proved the existence of solutions for the problem (1), without assuming the Ay condi-
tion on the N-function. In the case where f € L'(Q), Aharouch, Benkirane, Rhoudaf
have proved, in [2] the existence of solutions of problem (1) without assuming the Ay
condition and the sign condition on the non linearity g.

In Musielak-Orlicz spaces, Benkirane and Sidi El Vally in [10] have proved the
existence results of (1) where the nonlinearity g depends only on x and u, recently
Benkirane, Blali and Sidi El Vally in 7] have solved (1) in the case where the Musielak-
Orlicz complementary function to ¢ satisfies the As-condition, Ait Khellou, Benki-
rane, Douiri in [4,3] have proved the existence of solution of (1), without assuming
the As-condition.

The paper is organized as follows: after introduction in section 1, we give in section
2 some preliminaries and some technical lemmas needed in our paper, in the section
3 we state the essential assumptions and our main result and his prove.

2. Preliminary

Let Q be an open set in RY and let ¢ be a real-valued function defined in Q x R,
and satisfiying the following conditions:

a): ¢(z,-) is an N-function (convex, increasing, continous, ¢(z,0) = 0, p(z,t) > 0,
Vvt >0, lim SupM =0, lim inf M = oo)
t—0 20 t—o0ozeQ T

b): (-, t) is a measurable function.
A function ¢, which satisfies the conditions a) and b) is called Musielak-Orlicz func-
tion.
For a Musielak-Orlicz function ¢ we put ¢.(t) = ¢(x,t) and we associate its nonneg-
ative reciprocal function ¢} ! with respect to ¢ that is

o, Hp(x, 1) = oz, 0, ' (1) =t.

The Musielak-Orlicz function ¢ is said to satisfy the As-condition if for some k > 0;
and a non negative function h; integrable in ) we have

o(x,2t) < ko(z,t) + h(z) for all z € Q and ¢t > 0. (2)
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When (2) holds only for ¢ >ty > 0; then ¢ said satisfies Ay near infinity.

Let ¢ and v be two Musielak-Orlicz functions, we say that ¢ dominate v, and we
write v < ¢, near infinity (resp. globally) if there exist two positive constants ¢ and
to such that for almost all x €

v(z,t) < @(x,ct) for all t > ¢y, (resp. forallt>01ie. tog=0).

We say that -y grows essentially less rapidly than ¢ at 0 (resp. near infinity), and we
write v << ¢, If for every positive constant ¢ we have

t t
lim (sup e )> =0, (resp. lim (sup (e )) =0).
t—0 \ zeq ©(2,1) t—o0 \ zeq @(2,1)

Remark 2.1. [10] If ¥ << ¢ near infinity, then Ve > 0 there exist k(g) > 0 such that
for almost all z € Q2 we have

Y(z,t) < k(e)p(x,et), forallt > 0. (3)

We define the functional
poat) = [ ol fu(o))ds.

where u : 2 — R a Lebesgue measurable function. In the following the measurability
of a function u :  — R means the Lebesgue measurability.
The set

K, (Q) = {u Q—R measurable/p%g(u) < +oo}.

is called the generalized Orlicz class.

The Musielak-Orlicz space (the generalized Orlicz spaces) L, () is the vector space
generated by K, (), that is, L,(2) is the smallest linear space containing the set
K, ().

Equivalently

L,(Q) = {u :Q—R measurable/p%g(@) < 400, for some A > 0}.

Let
P(z,s) =sup{st — p(x,t)}.

>0
that is, ¥ is the Musielak-Orlicz function complementary to ¢ in the sens of Young
with respect to the variable s.
In the space L, (£2) we define the following two norms :

||u|w9—1nf{A>0// |)d <1}

which is called the Luxemburg norm and the so called Orlicz norm by :

llalloa = s | ju(ep(o)ds.
lv|l4<1

where 1 is the Musielak-Orlicz function complementary to ¢. There two norms are

equivalent [29].

The closure in L (€2) of the bounded measurable functions with compact support in

Q is denoted by E,(2). It is a separable space.
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We say that sequence of functions u,, € L,(€) is modular convergent to u € L, () if
there exists a constant k£ > 0 such that
) Up — U\
Jmopea(F) =0

For any fixed nonnegative integer m we define

WL, () = {u € L,(Q) : Vo] <m, Du e Lw(Q)}.

and
WME,(Q) = {u € E,(Q) :V]a| <m, Du e EW(Q)}.

where o = (v, ..., @, ) With nonnegative integers «;, |a| = |a1| + ... + |ay| and D%
denote the distributional derivatives. The space W™L, () is called the Musielak-
Orlicz Sobolev space.

Let

= a m . _ u
Ppo(u) = Z P, (D u) and ||ul|g' o = inf {/\ >0: p%9<x> < 1}.
la|<m
For u € W™L, () there functionals are a convex modular and a norm on W™ L, (),
respectively, and the pair (Wme (), |l - HZZQ) is a Banach space if ¢ satisfies the
following condition [29] :

there exist a constant ¢ > 0 such that ingf)gp(x, 1) >e (4)
IS

The space W™ L, () will always be identified to a subspace of the product
H L,(2) =1Ly, this subspace is o(IIL,,IIEy) closed.

loe| <mm

We denote by D(2) the space of infinitely smooth functions with compact support
in Q and by D(Q)) the restriction of D(RY) on €.

Let Wi"Lp(Q) be the o(I1L,, IIEy,) closure of D(€2) in W™ L, (£2).
Let W™ Ep(Q) the space of functions u such that u and its distribution derivatives up
to order m lie in E,(Q2), and Wi" E@(Q) is the (norm) closure of D(2) in W™L, ().
The following spaces of distributions will also be used :

W Lu(@) = {£ € D@ [ = 3 (-0 o with £ € Lu(@)
la|<m
and
W"E,(Q) = {f eD(Q); f= Y (-1)lIDf, with f, € Ew(Q)}.
la<m

We say that a sequence of functions u,, € W™ L,(f2) is modular convergent to u €
W™ L, (Q) if there exists a constant k& > 0 such that

lim 7,0 (=) = 0.

n—oo
For two Musielak-Orlicz functions ¢ and 1 the following inequality is called the Young
inequality [29]:
tsﬁ@(%ﬂ*d’(z,«s), Vt,SZO,wéﬁ (5)
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This inequality implies the inequality
[ulllg.0 < ppa(u) + 1. ©)
In L,(€2) we have the relation between the norm and the modular
Hu”so,ﬂ < pgp,Q(U) if ||U||%Q > 1. (7)

lullg.o 2 poa(u) if [lullpo < 1. (®)
For two complementary Musielak-Orlicz functions ¢ and ¢ let u € L,(2) and v €
Ly (£2) we have the Holder inequality

/Q u(x)v(x)dx

Lemma 2.1. [11] Let Q be a bounded Lipschitz domain in RY and let ¢ and 1 be
two complementary Musielak-Orlicz functions which satisfy the following conditions:
i): There exist a constant ¢ > 0 such that inggo(x, 1) >ec.
xE

< ullg.ellvlly.0- (9)

1
i1): There exist a constant A > 0 such that for oll z,y € Q with |z — y| < 5 we

have

. V> 1 10)
o(y.t) (
i)z
If D C Q is a bounded measurable set, then / p(z,1)dr < co. (11)
D

iv): There exist a constant C' > 0 such that ¥ (z,1) < C a.e in Q.
Under this assumptions, D(Q) is dense in L,(Q) with respect to the modular topol-
ogy, D(Q) is dense in Wy L,(Q) for the modular convergence and D(Q) is dense in
W'L,(Q) the modular convergence.

Consequently, the action of a distribution S in W™ L, (92) on an element u of
Wy Ly,(Q) is well defined. It will be denoted by < S,u >.

Truncation operator. For k > 0 we define the truncation at height k: T : R — R
by:

s if |s| < k.
Ti(s) = kﬁ if |s] > k. (12)
s
Lemma 2.2. [10] Let F' : R — R be uniformly Lipschitzian, with F(0) = 0. Let

¢ be a Musielak- Orlicz function and let uw € Wy Ly(Q). Then F(u) € Wy Ly(Q).
Moreover, if the set D of discontinuity points of F' is finite, we have

88‘F(u): 14"'(@5)—;Z a.e in{x € Q:u(z) € D}.
5 0 aein{xeQ:ulx)¢D}.

Lemma 2.3. [4] Let (f,), f € L*(Q) such that
i): fn>0a.einQ.
ii): fr, — f a.e in Q.

iii): /an(x)d;v—>‘/Qf(x)dx
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then f, — f strongly in L* ().

195

Lemma 2.4. [10] If a sequence g, € L,(2) converges in measure to a measurable

function g and if g, remains bounded in L,(Q), then g € L,(Q) and g, — g
o(I1L,, IIEy,).

Lemma 2.5. [19] Under the assumptions of Lemma 2.1, that exists a constant ¢
depends only of Q such that

/Qcp(x, \u(m)l)dwg/<p(x,c|vU(x)|)dx.

Q
Proof. The proof is more detailed in [19]. It suffices to show that

[ ot i < [ o(e2d @), e wiLa)

where d = max (diam(ﬂ), ﬁ) and diam(§?) is the diameter of Q.
iam

First suppose that u € D(2), then

oz, ju(zy, ..,2n)]) = gp(aa/_ﬂ:} 673:1‘(07332""7;6“”0)’
< Cll/_+oo<p<x,d‘§;1‘(U,xg,...,xn))dm

(x, |u(z)|)dx </ (:B d‘a o Ddaz Yu € D(Q).

For u € W3 L,(9) according to Lemma 2.1, we have that exists u, € D(2) and
such that

and thus

05,0 (y) =0, asn— o0,

hence

/gp(x, |un/\_u|)d:ﬂ—>0, as n — +00,

Q
/QO(SU,M)CILE—)O, as n — 400,
Q A

u, —u  a.ein ), (for a subsequence still denote uy,).
Then, we have

/Q@(I’ ‘ggi)')dx = iiﬂifoﬁ/ (”“" |u;d)\ )

N

< it [ o(e gyl s

= Jmint [ oo gl - g0+ oo

< e f oo 20 - 2
+%/Q<p(x,§ %@)de

;

/ng(x?% %(x)))dw

for

>0

(13)

(14)

(15)

>0
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Hence 5
/(p(x,|u(x)|)dx§/cp(x,2d‘a—u(x)‘>dx, Vu € Wy Ly,(Q).
Q Q 1
U

Lemma 2.6. [The Nemytskii Operator] [4] Let Q be an open subset of R™ with finite
measure and let ¢ and ¥ be two Musielak-Orlicz functions. Let f: Q x RP — R? be
a Carathéodory function such that for a.e. x € Q and all s € R :

|z, 8)] < @) + kg (@, kals]). (16)
where ki and ko are real positives constants and c(-) € Ey ().
Then the Nemytskii Operator Ny defined by Ny(u)(z) = f(z,u(x)) is continuous from

(P(Ew(Q), klz)p “T1 {u € L(Q) : d(u, B, (Q)) < le}

into (Ly(Q2))? for the modular convergence.
Furthermore if ¢(-) € E,(2) and v << 9 then Ny is strongly continuous from

(P ) 1o (B @)

3. Essential assumptions and some main results

Let © be a bounded open subset of RV, N > 2, satisfying the segment property.
Let
A:D(A) C Wi L,(Q) — WLy (Q)
be a mapping given by A(u) = —div(a(z,u, Vu)), where a is a function satisfying the
following conditions :
a(r,s,6) : QA x R x RY — RY is a Carathéodory function. (17)

There exist two Musielak-Orlicz functions ¢ and ~« such that v << ¢, a positive
function d(-) € Ey(€2) and positive constants v, 8 such that for a.e. 2 € Q and for all
seR, £ €RY

la(z, s,6)| < B(d(z) + vz y(x,vIs]) + ¥7 el v[E])). (18)
(a(az,s,f) 70’(503535/))(675/) > 0. (19)
a(z,s,£).§ > ap(, [€]). (20)

Furthermore, let g(z,s,£&) : © x R x RY — R be a Carathéodory function such that
for a.e. z € Q and for all s € R, ¢ € RV, the following growth condition

l9(z, 5,€)| < e(x) + b(|s|)e(, [€]) (21)
is satisfied, where b : RT — R™ is a continuous positive function which belongs to
LYR™) and ¢(-) € L*(Q).

We consider the following boundary value problem
P) A(u) + g(.,u, Vu) = f € L}(Q), inQ
u=0, 0N.
Lemma 3.1. [Technical Lemma] Assume that (17)...(20) are satisfies and let (zy)n
be a sequence in Wy L, () such that
i) 2z — 2z in Wi Ly (Q) for o(TIL,, TIEy).
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i1): (al-, 2n, Von))n is bounded in (L, (Q)N.

14i): / (a(z, 2n, Vzn) — a(z, 2n, V2xs)) (Vzn — Vaxs)de — 0 as n, s — oo.
Q

where s is the characteristic function of Qs = {x € Q:|Vz| < s}.
Then, we have

2y, — 2 for the modular convergence in Wy L, ().

Proof. Let s > 0 and Qs = {x € Q: |Vz| < s} and denote by x; the Characteristic
function of €.
Fix r > 0 and let s > r, we have

0 < / (a(aj, Zn, Vin) — a(z, 2y, Vz))(Vzn — Vz)dz
Q.
< / (a(a:, Zns Vin) — al(x, zp, Vz))(Vzn — Vz)dz
Qg
= / (a(m, Zn, Vzn) — a(z, 2, VZXS))(Vzn — Vazys)dz
Qs

< / (a(a:, Zn, Vzn) — a(x, 2y, VZXS))(Vzn — Vzxs)de.
Q
By iii), we obtain

lim (a(z, 2n, Vn) — a(x, 2, V2)) (Vz, — V2)dz = 0.

n—oo Jq

So as in [22], we have
Vz, — Vz ae. in Q. (22)

On the other hand, we have

/ a(x, zn, Vz,)Vapde = / (a(x, Zn, Vi) — alz, 2y, szs)) (Vz, — Vzyxs)dx
Q Q

+/ a(x, zn, Vzxs)(Van —szs)dx+/ a(x, zn, Vz,)Vzxsdr. (23)
Q Q

Since (a(-, zn, Vzn))n is bounded in (L, ()Y and using the almost every where
convergence of the gradients we obtain

a(x, 2n, V2n) = a(z, 2, Vz) weakly in (L, (Q)N for o(TILy, TIE,,).
Which implies that
/Qa(x, Zn, Van)Vzxsdr — /Qa(x,z, Vz)Vzysdx. (24)
Letting s — o0, we obtain
/Qa(z, z,Vz)Vzxsdr — /Qa(:z:7 z,Vz)Vzdx. (25)

On the other hand, it is easy to see that second term of the right hand side of (23)
tends to 0, as n — 00, consequently, from #iz), (24) and (25), we have

/a(x,zn,Vzn)Vzndx—>/a(m,z,Vz)Vzdm. (26)
Q Q
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Using (20) and the convexity of ¢, we have
|Vz, — Vz|) 1

1
5 < ia(x, Zn,Vzn) Vz, + za(z,2,Vz) - Vz.

agp(m, 7

Then by (26) we get

lim sup/ go(my M)dm =0.
E

meas(E)—0 neN 2
Then by using Vitali’s theorem one has

2, — z for the modular convergence in Wy L, (Q).

We define
T2 (Q) = {u measurable  such that T} (u) € Wy Ly, (), Vk > 0}.

As in [14], we define the following notion of renormalized solution, which gives a
meaning to a possible solution of (P).

Definition 3.1. Assume that (17)-(20), (21) hold true. A function u is a renormalized
solution of the problem (P) if

u€ 7o P (), g, u, Vu) € LNQ), (. u, Vu)u € L} (Q)
/ a(z,u, Vu)h(u)Vodz —l—/ a(z,u, Vu)h' (u)Vuvdzr +/ g(z,u, Vu)h(uw)vdz
Q Q Q

= / fh(u)vdx

Q
for all h € W1 °°(R) such that i’ has a compact support in R
and for all v € W L,(Q) N L®(Q).

(27)

The weaker problem (27) is obtained by using the test function h(u)v where h €
W (R). and v € Wy L,(Q) N L>¥(Q) in (P).
Remark 3.1. Let us note that in (27) every term is meaningful in the distributional
sense.
Theorem 3.2. Under assumptions (17)-(20), (21), there exists at least a renormal-
ized solution u (in the sense of definition 3.1) of problem (P).
Proof. We devide the proof into seven steps.

Step 1: Approximate problem. Let us define, for each k& > 0, the truncation

s ifls| <k

Tk(s)_{ k|i| if |s| > &
S

and, for each n € N the approximation
gn(@,8,8) = Tu(9(z,5,8)).
Consider the nonlinear boundary elliptic problem
u, € Wi Ly(Q)
—div(a(-,un,Vun)) + gn (s tun, V) = f, in D'().
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where f, be a sequence of regular functions which strongly converge to f in L'(Q)

such that [[fullz1@) < [Ifll210)-
From Benkirane and Ould Mohameden Vall in [10], the problem (28), have at least
one solution u,,.

1 S
Step 2: A priori estimates. Let B(s) = f/ b(|r|)dr, 0 < B(s) < B(+00) =
@ Jo

1 S
—/ b(|7|)dT < oo (b is the function in (21)).
@ Jo

Using o = Tj,(u,)eP(%"D as test function in (P,), we obtain

/a(x,un,Vun)V(Tk(un)eB(lu"l))d:c + /gn(:c,un,Vun)Tk(un)eB(‘“"Ddac
Q Q

= /anTk(un)eB(lu"l)d:v.
Then by using (21) and the fact that
V(Tk(un)eB(‘“"‘)) — VT (uy)eBunD 4 éTk(un)SigH(un)bﬂun|)V’un€B(‘u"|)
= Vi(un)eP D + é|Tk(un)|b(\un\)Vun€B(|“"'),

we have

1
/a(x,un,Vun)VTk(un)eB(‘""Ddx—|—E/a(x,un,Vun)Vunb(\uank(un)|eB(‘""Dd3:
Q Q

< [ (Ul + @) )TeunleP Do+ [ blfual) Tl [Tl

By using (20) in the second integral, we deduce that

/a(m,Tk(unLVTk(un))VTk(un)eB(‘""Ddx+/ oz, [V )b(|tn|) | Th (un ) |21 D da:
Q Q

< ke [ (1l 4l )+ [l 190 DT ) P

Hence
/ a(@, Ti(un), Vi () VT (un )P Ddz - < kePHo0) / (|fn| + \c(z)|)dx
Q Q
< ck. (29)
Using again the condition (20)
/ go(:m |VTk(un)|>dx < k. (30)
Q
By using the Lemma 2.5, we have
T (un
/ cp(x, M)dm < / go(ac, \VTk(un)Ddx < cok. (31)
Q ¢ Q

Then (Ti(un))n and (VIx(uy))n are bounded in L, (€2), hence (T (uy))x is bounded
in Wy L,(Q), there exists some vy, € Wy L, () such that

{ Ty (un) — vi  weakly in Wy L,(Q) for o(T1L,, T1E,,)

Ti(un) — v, strongly in Ey,(€2). (32)
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Step 3: Convegence in measure of (u,),. Assume that exists a function M

M(t
satisfies lim % = o0 and M(t) < ess inégp(l’,t).
TE

t—> o0

Let k > 0 large enough, by using (31), we have

M (k)meas{|u,| > k}

/ M| T ()]
{\u”|>k}

< [ ) < [ el T ds
{lun|>k} Q
S C3]€.
Hence
eas{|u,| > k} < cak — O0as k —
m Up, < 00.
M(k)

For every A > 0, we have

meas{|un — um| > A} < meas{|u,| > k} + meas{|un| > k}
+ meas{|T, (un) — Ti(um)| > A}. (33)

Consequently, by (31) we can assume that (T (u,,)), is a Cauchy sequence in measure
in Q.
Let € > 0, then by (33) there exists some k = k(g) > 0 such that

meas{|un, — um| > A} <e, for all n,m > ho(k(e), N).

This prove that (u,), is a Cauchy sequence in measure in €, thus converge almost
every where to some measurables functions u. Then

{ Ti(up) = Ti(u)  weakly in Wy L, (Q) for o(I1L, [1Ey) (34)

Ti(un) — Tk(u) strongly in Ey(€2).

Step 4: Boundness of (a(x, Ty (un), VT (un)))n in (Ly(Q)N. Let w € (B, ()N
be arbitrary such that ||w||,o <1, by (19), one has

(a(m,Tk(un), VT (un)) — a(z, Tio(un), %)) (VTk(un) — %) > 0.

hence

/a(a:,Tk(un),VTk(un))Edm < /a(m,Tk(un),VTk(un))VTk(un)dx
Q v Q

- /Qa(vak(Un),

NS

(Vi (un) = ). (35)
Thanks to (29), we have
/Qa(x,Tk(un), VTk(un)) VT (un)de < ck.

On the other hand, for X large enough (A > (), we have by using (17).

a(xaT (un)a %)
J o (e
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Bld(x) + ;' (v(x, v Ti (un))) + 97 (p(z, [w])))
= /Q%( 3 )z
< é/% d(l’)+¢;1(’7($,V\Tk(;n)|))+¢.{1(90(1’7 |w|)))dz
<

3A(/wx dx—i—/ (x71/|Tk(un)|)dx+/Q¢(x7w|)dx>
< 3/\(/1% d:v+/ (m,uk)der/Qcp(x, |w)dx).

Now, since vy grows essentially less rapidly than ¢ near infinity ad by using the Remark
2.1, there exists r(k) > 0 such that v(x,vk) < r(k)e(z,1) and so we have

(x Tk(un) v )
/Q%< 3\ )dx

< BA(/% dz+r(k)/ﬂgp(:c, 1)dx+/ﬂ<p(x, |w)daz).

hence a(x, T (un), %) is bounded in (Ly(Q))".

Which implies that second term of the right hand side of (35) is bounded, consequently
we obtain

/ a(z, Ti,(un), Vi (up))wdz < cy(k),  for all w € (L?(Q))N with |Jw|,q < 1.
Q

Hence by the theorem of Banach Steinhous the sequence (a(x, Tk (urn), VIk(un)))n
remains bounded in (L, (Q))".
Which implies that, for all k > 0 there exists a function hy € (Ly4(22))" such that

a(z, Ty (un), Vi (un)) — hy weakly in (Ly ()Y for o(IIL,, TIE,). (36)

Step 5: Almost everywhere convergence of gradients
For h > 2k > 0, we set by, = sup{b(s) : |s| < k} and

wl = To(un — T(un) + Til(un) — Ti(vy)),
w) = Top(u—Th(w) + Tu(uw) — Tu(vy)),
wj = Tgk(Tk(u) Tk(v]))

wp = Tgk(u Th( ))

Let v; € D(Q) be a sequence such that v; — u in WjL,(Q) for the modular
convergence.

by \ 2
Let 0y (s) = se’® | with 6 > (2 ) , it is clear to see that
a

Vs € R. (37)

l\D\»—t

0 (s) — *Iﬁk( )| =
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Using o = 6 (wfl’h)eB(lu"‘) as test function in (P,,), we have

/“(x’””’vun)vwiheﬁc(Wih)eB(‘“”‘)d“/gn(xmn,wn)ek(wih)eB“”"Ddx
Q ’ ’ Q s
b(Jun)

(07

+/ a(xaumvun)VunGk(wa’h) S'Lgn(un)eB(‘“nDdx
Q

= [ fubuwl e

Note that 0y (w;, h) have the same sign as u, on the set {|u,| > k}, then by using
(21), we have

/a(x,un,Vun)wal h%(wi h)eB(\un\)dx
Q ; ;

b(lun
+/ a(@, un, Vi) Vg |0 (w, nh)lMeB('“n”dx
{lun|>k} a

_/ fl(ﬂc,umVun)vun|9,€(wg‘hh)|M63(|un|)daj
{lun|<k}

S/Q('fn|+0(x))‘9k( )|e lunl)dx'i_/ﬂb(lu"‘)w(xv|vun|)|9k(w£7h)|eB(‘u"Ddx,

Using (18) in the second integral of the first hand side of last inequality, we obtain

| | e
/a(x’ tns Viin )V, 03 (1 h)eB('u"l)dx—/ (2, Ttn) Ve ()| 202 B g
: 7 ’ {lun|<k} W

+/ o (x, [V )0 (w) ) )b(jun])eP 14D da
{lun|>k}

S/Q(|fn|+C(:ﬂ))|9k(wi7h)|63(|un|)dm+/ b(unl)p (@, [V ) 04 (w?, ) P00 da

{|lun|<k}

[ e Tl bl
{lun|>k}
Hence

. , e
/a(x,un,vun)vw; RO (wy, h)eB(lu"l)dI—/ a(@, U, Vi) Vg |0 (w), h)|w63(‘""‘)dx
: : { ’

¢ fun | <k}

{lun|<k}

olz Blunl) g
é/ﬂ(\fnlJr (2) 65w, B0 g

Using (18) in the third integral of the right hand side, we obtain

) ‘ 9 |
/a(x,un,vun)vw; WOk (Wl Bl da — bk/ a(z, un, V) Vg [0k (w), ,)e B(lunl) gy
“ ’ ’ {lunl <K}

< ew /(|fn‘ + c(x))|9k(wi7h)|d$-
Q
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In the other hand we have, ek(wi,h) — Ok(wi) weakly * in L>(2) as n — oo and

Gk(wi) — O, (wp) by the modular convergence of (v;); in L,(Q2) as j — oo.
Then

/ (1ol + ()00 () —> / (U] + c@))|0h(wn)ldz,  as n,j — oo.
Q Q

So, we have

, , 20 ,
/a(x, U, Vi, ) V!, 05 (w? ,)eBUunD g — —k/ a2, Uy Vit ) Vg [0k (w? )eP 1D dy
Q ’ ’ & J{lun| <k} ’

<e(n,j,h). (38)

Splitting the first integral of the right hand side where {|u,| < k} and {|u,| > k} and
using the fact that Vw), ; = 0 on the set {|u,| > m := h + 4k}, we obtain

/ a($7Tm(“n)7VTm(Un))Vwil,hegc(wa p)e? D de =
i ,
/ a(, Ty (), VT (1)) (VTk(tn) = 9Ty (07) ) 0 (] )P D
{‘un‘gk} ’

‘/ a(@, T (), VT (un)) V!, 0 (w) )P Dz, (39)
{Jun]>k} ' "

The first term of the right hand side of last equality can write as
/ (@, T (), Vi (un) )V, 05 (w? | YeBUunD gz >
{lun|<k} ’ ’

/ (e, Ty (), VT () (Vi) — VT 7)) 0 )P Ve
Q

gt

—e o Hk(Qk')/{l |>k}|a(m7Tk(un),0)||VTk(vj)\dx. (40)

Recalling that |a(z, Tk (un), 0)|X{ju, >k} converge to |a(z, Tk(u),0)[X{ju>k} strongly
in L, (€2), moreover, since |VT}(v;)| converge by the modular convergence to VT, (u),
then

el

eSS0 [ Ja(e D), O VTl = (),
{lunl>k}
For the second term of the right hand side of (39), we can write

/ a(@, T (un), Vi (un)) V), , 05 (w?, )P 1D d >
{lun|>k} ’ ”

HbHLl(]R) ,

—e” = 0.(2k) /{| >k‘}|a(x,Tm(un),VTm(un))HVTk(vjﬂdx. (41)

Since |a(z, T (un), VI (u,))| is bounded in Ly (2) and since also VX |y, |>k} con-
verge to Vu;x{ju|>k} strongly in E,(Q) as n — oo, we obtain by using (36) that the
integral

—0,(2k) /{| G T ), VT ) VT2
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converge as n — oo to the quantity
/
—0k(2k)/ hin | VT (v)|de.
{lul>k}
Using now the modular convergence of (v;);, we get

—0;(214)/ h| VT (vj)|de — —9;(216)/ hn VT (w)|dx = 0.
{lul>k} {lul>k}

Finally, we have
—6;,(2k) /{lu - |a (2, Ton (un ), VT (un))[[VTk (v5)|dx = en(n, 5). (42)
So, we deduce that
/Q a(@, T (tn), V0 (1)) Vd, , 03 (w?, | )eP VD da > (43)
| i), DT (VT 1) = VT304 )PV + .. ).
Which implies by (43)
/Qa(x,Tm(un),VTm(un))szL’hH;C(wi’h)eB(lu"l)da:
> /Q (e, Ta(n), T Ti(n) = (e, T (n), VTi(05)x))
X (VT (un) = VT (v;)x3)0; (w), ;) eP D das
[l Tuun). VT N TTi) = VT 0], Vil
= [ g 2 ), TI ) T 0)00%, )P D o). (4
where xJ is the characteristic function of the set W ={recQ VT (vy)| < s}

By the fact that VT (v;) X001 0k (W}, 1) —> VTk(v;) X0 03 Ok (w},) strongly in (E, (DR
the third term of the right hand side of (44) tends as n — oo to

/hvak(Uj)XQ\Qjek(wi)eB(luDdCC.
0 ]
Letting now j — oo, by using the modular convergence of (v;);, we have

/QthTk(Uj)XQ\QgGZ(U’i)eB(luDdx—>/QthTk(U)XQ\Qsek(wh)eB(lul)dx'
Finally, we have

_ / TV T (1) X, 0 (0)eP WD dz: + (n, 5, ). (45)
Q
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Concerning the second term of the right hand side of (44), we can write

[ i), 9T 02 (V) = VTl O, )00
= [ 0o Tulua). VT (032 VT )4 T ) = TVl

~ |l i), VT ) VTl i ), e Dz (a6)
0 J
The first term of the right hand side of (46) tends as n — oo to the quantity
[ ale, Tuw), T WD VI ()G Ti(w) — Ti(0)e” "
Q

Since a(z, Ty (un), V% (v;)X2) 05 (Th (un) — Ti(vj)) converge strongly as n — oo in
(Ey(2)Y to the quantity a(z, Tk (u), VTk(v;)x2)0, (Tk(v) — Tx(v;)), by the Lemma
2.6 and that VT},(u,) = VTj(u) weakly by o(IIL,,I1E,) in L, ().

For the second term of the right hand side of (46), it is easy to see that

/ a(@, T (un), VT (v;)x2) VT (v7) 3207 (w), )P0 Dz
Q

— Qa(%‘,Tk(ULVTk(vj)Xi)VTk(vj) X105 (wp )PV e (47)

Consequently, we have

[ ate Tuln), VT 030) (Vi) = VT3], )P0
Q

= / a(w, Th(u), VT(v;)xd) (Vi) = VTk(07)x )05 (w] )P D + ().

Since VTi(v;)x20}(w)) — VTi(u)xs05(wp) in (E,(2)N by the modular conver-
gence as j — 00, it is easy to see that

/Qa(aaTk(u),VTk(vj)xg)(VTk(u)—VTk(U]) )%( 1) B gy

- a(z, T (u), 0)V Tk (u) 0 (wp)eB1D dz.
Q\ Qs

Thus
[ 0t Buln), VT 030) (VL) = TTie3)) ], )P0
Q

_ / o, Te(w), 0)V T (1)04 (0)eB D dg + £(n, 5, h). (48)
o\Q
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Combining (44), (45) and (48), we get
/a(x,Tm(un),VTm(un))Vwi’hefc(wfl’h)eB(\un\)dx
Q
> [ [ao. i), V() = oo, Telun), 9T
Q

% (VTi(tn) = VTi(0y)xd ) (], )P0 Vel

—/ hi VT (1)8),(0)eP 1D dy:
o\Q

+/ a(z, Tr(u), 0) VT ()8}, (0)eP1*Dde 4 e(n, j, b). (49)
O\Q,

Concerning the second term of the first hand side of (38), we can write

- % a(x u’ﬂvvun)vun‘ek( )|eB(‘un|)d.,L.
& S {Jun|<k}
2
= _% a(@, Ty (un), VI (un))VTk(un)| 0 (w?, )|e (Jun]) g
Q
2b |
— 2k (a($7Tk(Un)> VT (un)) — alx, Ty, (un), VTk(Uj)Xé))
@ Jo
X (VTk(un) VTk(UJ)Xs>I0k( ) eBunD gy
2b _ |
_ jk a(x, Ty (un), VI (v;)x3) (VTk(Un) - VTk(vj)X;> 103 (w? )|e (un]) g
Q
2 . .
_ 2 a(@, Ti (un), VT (un))V Tk (0;)x2 0k (w? )| B0 D dz,
« Q i

As above it is easy to show that

2 | | .
ak/ (z, Tk (un), VTk(UJ)Xs)(VTk(Un)*VTk(Uj)Xi)|9k(wfl7h)|eB(lun\)dx = e(n, j,h),
Q
and
2by, B(jun))
2, Talian), Vi) VT (02104 (], )PV = (5, ).
Q
Then
—% a(x,umVun)Vunwk( )|e (lunD) gy
@ {lun| <K}

2by,

= = Q(a(m,Tk(un),VTk(un))—a(CC,Tk(Un)aVTk(UJ')Xg))

X (VT (un) = VT3 (05)x2) 0k (w), )PV
+e(n, g, h). (50)
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Combining (38), (49) and (50), we obtain
[ Lot T, V7 (00)) = e i), 9T 00 (Vi) = V(1))

2by,

(07

01w, )] ) 2D

< —/ h VT ()0, (0)e B0 g
Q\ Qs
+/ a(z, T (u), 0) VT ()8}, (0)eBU D de 4+ £(n, j, b). (51)
ma.
Which implies by using (37)
| [ot Tiwn), 9Ti(wn)) = e Teun), VT30
Q
X (VTk(un) - VTk(vj)Xg)QZ(wa’h)eB(‘“"Ddx
<2 / B VT ()8, (0)e P dgs 4 2 / o, Ty (1), 0)V T ()8, (0)e B g
Q\QS

Q\Qs
+e(n, j, h). (52)

Now, remark that
/ (@, Te(wn), VTi(un)) = ale, T(un), VTe(w)xs) | (TT(un) = VTr(w)xs ) de
Q
= / (@, Te(wn), VTk(un)) = oz, T(un), VTe(w;)xd) | (FTk(un) = VT4(0)x? ) da
Q
+ /Q a(z, T (un), VT (v;)x3) (VTk(un) - VTk(uj)Xg)dx
- /Q a(e, Ty (un), VTk(u)XS)<VTk(un) - VTk(u)xs)dx

+ /Q a(m,Tk(un),VTk(un))(VTk(vj)Xg —VTk(u)Xs)dx. (53)

We shall pass to the limit as n, j — oo in the last three terms of the right hand side
of the last inequality, we get

/ a@, T, (un), VTk<vj>x§>(VTk<Un> - VTM)X@)“
Q
:/ a(z, T(w), 0)V T}, (w)da + £(n, ),
Q\Qs
and

[ ate, Tuln), VT @) (VT () — V(). ) do
Q

_ / a(w, Ty(u), 0)VT}(u)dz + £(n),
Q\Q,
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similarly, we show that

/Qa(x, T (un), VI (un)) (VTk(vj)xg - VTk(u)Xs>dx =e(n,j).

Which implies that

| 060 Dtun), 9T1 ) = 0o Tua), TTuw)) | (Vi) = VT, )

= /Q {a(x,Tk(un),VTk(un))*a(xaTk(un)vVTk(Uj)Xg)}
% (VT(un) = VTk(0;)x ) do +<(n, )

Combining (52) and (54), we have

) [a(g;,Tk(un), VT (un)) — a(z, T (un), VTk(u)XS)} (VTk(un) - VTk(u)Xs)dm

< 9 / I VT ()6, (0)dz + 2 / a(, T(u), 0)V T (u)6L (0)dax
O\Q, Q

\Q.
+e(n,j, h).

By passing to the lim sup over n and letting j, h, s — co, w obtain

lim lim / [a(:f:,Tk(un),VTk(un))—a(%Tk(Un),VTk(U)Xs)}

S5—00 N—r00

X (VTk(un) - VTk(u)xs>dx —0.

Thus implies by using Lemma 3.1

Ty (un) — Ti(u) for the modular convergence in Wy Ly, (€2).

Then
Vu, — Vu a.e. in Q.

Step 6: The equi-integrability of g, (z, u,, Vuy,).
We shall show that

Gn (T, U, Vi) — g(x,u, Vu)  in L1(Q).

(54)

(55)

(59)

Thanks to Vitali’s theorem, it suffices to prove that g,(z,u,, Vu,) is a uniformly

equi-integrable.

_ 2 [* -
We define the function B(s) = —/ b(|r|)dr and we take Ty (tu, — Tj(up))eP %D as
@ Jo

a test function in (28), we have

/ a(x7un7 vun) N VTl(un — Th(un))eg(‘“n‘) dx
Q

(07

—|—/ In (T, Up, Vun) Ty (u, — Th(un))eﬁ““"‘) dx
Q

= / fnTl(Un - Th(un))eg(lunl) dl'
Q

+g/a(x,un,Vun).Vund(|un|)\T1(un7Th(un))|e§(|u"|) du
Q
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According to (18) and (21), we obtain
OZ/ CL(.’E, Unp, vun)VuneE(WnD dQIJ
{h<|un|<h+1}
+/ o, |Vaun )b(|tn )Ty (tn — T (un)) B da
{h<|un|}

< / (Ul + 1 fo)eB0unD da, (60)
{h<|un|}
it follows that

/ ([t [Vt ) iz < P) / (] + | fol) d.
{h+1<|un|} {h<|unl|}

Thus, for all 5 > 0, there exists h(n) > 1 such that

[ bl V) de <
{h(m <|unl}

o3
—~
D
—
~—

On the other hand, we set
bn(y) = max{b(s) : [s| < h(n)},

for any measurable subset F C (), we have

/E b(Junl) (@, |Vtn]) dz < by /E (s [V T ()] da

+ b(|un|)p(z, V) do.
{h(nm)<|unl}

From (57), there exists A(n) > 0 such that

/ b(|Th () (un) ) (@, [V Th () (un)]) do < g for all E such that meas(E) < A(n).
E
(63)
Finally, by combining (61), (62) and (63), one easily has
[ ualyota, Vunl)do < forall meas(E) < 50, (69
E

using (21), we then deduce that (g,(x, un, Vu,)), are equi-integrable, and since
gn (T, Un, Vuy) = g(z,u, Vu) ae. in Q.

In view of Vitali’s theorem, we conclude (59).

Step 7: Passage to the limit.

Let h(-) € WH°(R) be such that supp »/(-) € [~M, M] for some M > 0. For every
v e D).
We have h(Ths(uy))v € Wi L, (). Indeed, Since Ths(uy,) is bounded in Wy Ly, ()

there exists two constant ¢ > 0 depends on M such that / o(x, VT (uy)])dz < c.
Q
Let ¢ > 0 such that ||A(Tas(un)Vo|leo < c1 and ||/ (Thar(un))v]loo < 1.
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Then, we have by using (11)

[ (s, ML)V 1 o) oV o)

Ty (un
g/go(x, c1+ 1|V (u )|>dx
Q

201

1 1
< f/go(a:,l)dx—kf/ o(x, |V (uy)|)da
2 Jo 2 Jo

<ec.

Taking h(Th(un))v as a test function in (28), we obtain
/Qa(a?,TM(un), VTM(un)) . (h/(TM(un))’UVT]\/[(Un) + h(TM(un))vv)dI
+/ gn(x7 Ty (Un), VTM(Un)) h(TM (un))vdx
Q

:/an hTar (uy))vda. (65)

We start with the first integral in (65), we have
/ a(z, Tag(un), VI (un)) - (B (Tar (un)) vV Tas () + h(Tas (un)) Vo)da
Q
= / a(x, Tas(un), VI (un)) - h(Tar(uy))Vode
Q

T / [a(x, Tt (n)y Vs (un)) — a(z, Tas (un), VTM(u))}
Q
X (VT (un) — VT (w)h' (Ths (uy))vdz

—|—/Qa(:c,TM(un),VTM(U))(VTM(UTL) — VT (u)B (Ths (uy))vde

+ /Q a(z, Tay(un), Vs () VT (w)B' (Tas (uy))vda (66)

In the following we passe to the limit as n — oo, in the each terms of (66), for the
first term, we have a(x, Tas(un), VT (un)) = alz, Tar(u), VT (u)) ae. in Q and
a(z, Tas(un), VT (uy)) is bounded in (Ly(Q))", using Lemma 2.4, we get

a(x, Tar(un), VI (ug)) = a(z, Tar(uw), VI (uw))  in (Lw(Q))N7
and since
h(Tar(un))Vo — h(Tar(u))Vo  strongly in - (E,(Q)N.
we deduce that

lim | a(z, Tar(un), VI (un)) - R(Tar(up))Voda

n—oo Q

= /Qa(:c,TM(u),VTM(u)) - h(Ta(u))Vode

= / a(z,u, Vu) - h(u)Vodz.. (67)
Q
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For the second term on the right hand side of (66), we have an argument as in (56),
thinks to (19) and since

’ /Q [al, Tar(un), VTas (1)) — aler, Tos (), VTns ()]

X (VT (un) — VT (w)h (Thr (uy))vdz

< / [, Tar (), Vs () = al, Tas (), VT ()]
Q
(VT (1) = VTha () |1 (Tar () 0] ez
< e [ [ s 1), VT3r ) = (o, Tas 1), T Thg ()| (9T () = Vs 1)
Then

nli—I>noo A {a(x,TM(un), VT (un)) — a(x, Tar(un), VT (w))
X (VT (un) — VT ()R (Tag (uy))vde = 0. (68)
For the third term on the right hand side of (66), by using Lemma 2.6, we get
a(z, Tpr (un), VI (w) — alx, Tar(u), VT (w))
as n — oo strongly in (Ey(Q))Y and since VT (upn) — VT (u) weakly in L, (Q)
and the fact that Tas(u,) — T (u) strongly in E,(£2), we obtain

lim a(x, Tar(un), VT () (VT () — VT ()R (Ths (uy))vde = 0. (69)

n—=o0 Q
For the third term on the right hand side of (66), as above we have
a(z, Tar(un), VT (un)) = a(z, Tag(w), VI (u))

as n — oo weakly in (L, (€)Y and since Ths(u,) — Tar(u) strongly in E,(Q), we
obtain

lim a(z, Ths (un), VT (un)) VT (w)h' (Tas (uy))vda

= /Qa(x,TM(u),VTM(u))VTM(u)h’(TM(u))vdac
:/Qa(x,u, Vu)Vuh/(u)vdz. (70)

Concerning the other terms, we have h(Ths(uy)) v = h(Ta(u)) v weak—x* in L™ (),
then by using (59)

lim gn (xa TM (un)a VTM (un)) h(TM (un))vdx

n—o0 Q

:/Qg(x,TM(u),VTM(u)) h(Tas (u))vde

:/g(m,u,Vu) h(u)vdx (71)
Q
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/an h(TM(un))vd:v—>/Qf h(Thr (w) v da. (72)

By combining (65) — (72), we deduce that

/ a(z,u, Vu) - (0 (u)oVu + h(u)Vv) dz  + / g(x,u, Vu) h(u) vde
Q Q

= /th(u)vdx.

which is (27) in Definition 3.1. Therefore u is a renormalized solution to problem

(P).

O
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