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Maximum flows in parametric dynamic networks with lower
bounds

Nicoleta Avesalon (Grigoras)

Abstract. This paper presents and solves the problem of the maximum flow in parametric
dynamic networks with nonzero lower bounds. It also provides a rigorous formulation of the

problem of the maximum flow in dynamic networks and in static parametric networks, both

with nonzero lower bounds. The aim of this paper is to present a novel and efficient algorithm
which is developed for solving the problem of maximum flow in parametric dynamic networks

with nonzero lower bounds. The proposed approach consists in applying an algorithm for

finding the maximum parametric flow in a reduced expanded network, i.e. the static network
obtained by expanding the original dynamic network. The article also presents a numerical

example on how the algorithm works in a dynamic network having dynamic upper bounds

which vary linearly with a parameter.
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1. Introduction

The classical model of the static flows in networks arises in many combinatorial
applications, some of which might not appear to be maximum flow problems. The
static flows model arises directly in problems as machine scheduling, assignment of
computer modules to computer processors, tanker scheduling [1] etc. In several other
applications [2], [3], [4], [6], [7], [8], [9], [12], [16], where time is an essential ingredient,
the related model of dynamic flow in networks needs to be use. While in the static
problems, where there is no change of situation, the challenge is to find out more
efficient and faster algorithms in order to tackle the large scale problems, within
dynamic problems, the challenge is to respond faster to the changes which take place
while the new problem is solved. A generalization of the dynamic maximum flow
problem, in which the capacities of certain arcs are not only varying in time but also
depend of a parameter [5], [9], is known as the problem of the maximum flow in
parametric dynamic networks.

The present paper addresses the case of the maximum flows in parametric dynamic
networks with nonzero lower bounds and proposes an approach for solving it which
consists in transforming the maximum flow in the parametric dynamic network into
the maximum flow in a related parametric static network. The algorithm developed in
this paper solves the problem which arises by generalization of the dynamic network
flow problem and of the parametric network flow problem, through the following
assumptions:(1) both the dynamic network and the corresponding static expanded
network have nonzero lower bounds, (2) the problem of the maximum flow will be
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addressed in a non-stationary dynamic network, i.e. with time-varying transit times,
as well as with lower and upper bounds of arcs which are also time-varying.

We mention that the static approach of the problem of the maximum flows in
parametric dynamic networks with nonzero lower bounds has not been investigated
so far by other researchers.

The remainder of this paper is organized as follows. Section 2 presents some basic
notations and the terminology used for describing dynamic networks. Then, in Section
3, we expose the problem of the maximum flow in static parametric networks with
nonzero lower bounds. The problem of the maximum flow in parametric dynamic
networks with nonzero lower bounds is presented in Section 4. Finally, in Section 5
we give an example on how the algorithm works. In the presentation to follow, some
familiarity with flow problems is assumed and therefore many details are omitted.

2. The maximum flows in dynamic networks.

Let G = (N,A, l, u) be a static network with the set of nodes N = {1, ..., i, ..., j, ..., n},
the set of arcs A = {a1, ..., ak, ..., am}, ak = (i, j) the lower bound function l : A→ R+

and the upper bound (capacity) function u : A → R+, where R is the set of real
numbers. To define the maximal static flow problem, we distinguish two special
nodes in the static network G = (N,A, l, u): a source node 1 and a sink node n.

Let N be the set of natural numbers and let H = {0, 1, ...T} be the set of periods,
where T is a finite time horizon, T ∈ N. Let h : A × H → N be the transit
time function, lh : A × H → R+ the time-dependent lower bound function and
uh : A×H → R+ the time-dependent upper bound function. For each arc (i, j) ∈ A,
h(i, j; t) represents the transit time of arc (i, j) at time t, t ∈ H.

A dynamic flow from source node 1 to sink node n is any flow from 1 to n in which
not less than lh(i, j; t) and not more than uh(i, j; t) flow units are starting from node
i at time t and are arriving at node j at time θ = t+ h(i, j; t) for all arcs (i,j) and for
all t values. The maximal dynamic flow problem for T time periods is to determine
a flow function fh : A × H → N, which should satisfy the following conditions in
dynamic network Gh = (N,A, h, lh, uh):

T∑
t=0

(
∑
j

fh(i, j; t)−
∑
k

∑
τ

fh(k, i; τ)) = vH , (2.1.a)∑
j

fh(i, j; t)−
∑
k

∑
τ

fh(k, i; τ)) = 0, i 6= 1, n, t ∈ H, (2.1.b)

T∑
t=0

(
∑
j

fh(n, j; t)−
∑
k

∑
τ

fh(k, n; τ)) = −vH , (2.1.c)

lh(i, j; t) ≤ fh(i, j; t) ≤ uh(i, j; t), for all (i, j) ∈ A and for all t ∈ H (2.2)
max vH , (2.3)

where τ = t−h(k, i; τ), vH =

T∑
t=o

v(t), v(t) is the flow value at time t and fh(i, j; t) =

0, (i, j) ∈ A, t ∈ {T − h(i, j; t) + 1, ..., T}.
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Obviously, the problem of finding a maximum dynamic flow is more complex than
the problem of finding a maximum static flow. Happily, this complication can be
solved by rephrasing the dynamic flow problem into a static flow problem in a static
network G′ = (N ′, A′, l′, u′) which is called reduced expanded network. First, we form
the expanded network GH = (NH , AH , lH , uH) with NH = {it|i ∈ N, t ∈ H},AH =
{(it, jθ)|(i, j) ∈ A, t = 0, 1, ..., T−h(i, j; t)}, lH(it, jθ) = lh(i, j; t),uH(it, jθ) = uh(i, j; t),

(it, jθ) ∈ AH . We have |NH | = n(T + 1) and |AH | ≤ m(T + 1) −
∑
A

h̄(i, j), where

h̄(i, j) = min{h(i, j; 0), ..., h(i, j;T )}. Clearly, any dynamic flow from the source
node 1 to the sink node n in dynamic network Gh is equivalent to a static flow
from the source nodes 10, 11, ..., 1T to the sink nodes n0, n1, ..., nT in static network
GH and vice versa. We can further reduce the multiple source, multiple sink prob-
lem in network GH to the single source, single sink problem by introducing a su-
pernode 1∗ and a supersink node n∗ and by building the superexpanded network
G∗H = (N∗H , A

∗
H , l
∗
H , u

∗
H), where N∗H = NH ∪ {1∗, n∗}, A∗H = AH ∪ {(1∗, 1t)|t ∈

H} ∪ {(nt, n∗)|t ∈ H} , l∗H(it, jθ) = lH(it, jθ), u
∗
H(it, jθ) = uH(it, jθ), (it, jθ) ∈ AH ,

l∗H(1∗, 1t) = l∗H(nt, n
∗) = 0, u∗H(1∗, 1t) = u∗H(nt, n

∗) =∞, t ∈ H. Next, we build the
reduced expanded network G′ = (N ′, A′, l′, u′) as follows. We define the function h∗,
h∗ : A∗H → N, h∗(1∗, 1t) = h∗(nt, n

∗) = 0, t ∈ H, h∗(it, jθ) = h(i, j; t), (it, jθ) ∈ AH .
Let d∗(1∗, it) be the length of the shortest path from the source node 1∗ to the node
it and d∗(it, n

∗) the length of the shortest path from node it to the sink node n∗

with respect to h∗ in network G∗H . The computation of d∗(1∗, it) and d∗(it, n
∗),

it ∈ N∗H is performed by means of the usual shortest path algorithms [1]. In network
G′ we rewrite the nodes 1∗, n∗ by 1′ respectively n′. We obtain N ′ = {1′, n′}∪{it|it ∈
NH , d

∗(1∗, it)+d∗(it, n
∗) ≤ T}, A′ = {(1′, 1t)|1t ∈ NH , d∗(1t, n∗) ≤ T}∪{(nt, n′)|nt ∈

NH , d
∗(1∗, nt) ≤ T}∪{it, jθ)|(it, jθ) ∈ AH , d∗(1∗, it)+h∗(it, jθ)+d∗(jθ, n

∗) ≤ T} and
l′, u′ are restriction of l∗H , u

∗
H at A′. It is easy to see that the network G′ is always a

partial subnetwork of G∗H . Since an item released from a node at a specific time does
not return to that location at the same or an earlier time, the networks GH , G∗H , G′

cannot contain any circuit, and are therefore acyclic always.
In the most general dynamic model, the parameter h(i) = 1 is the waiting time

at node i, and the parameters lh(i, t), uh(i, t) are defined as lower bound and upper
bound, which represents the minimum respectively the maximum amount of flow
that can wait at node i from time t to t+1. This most general dynamic model is not
discussed in this paper.

The maximum dynamic flow problem for T time periods in dynamic network Gh
formulated in conditions (2.1), (2.2), (2.3) is equivalent with the maximum static flow
problem in static network G′ as follows:

∑
jθ

f ′(it, jθ)−
∑

f ′(kτ , it) =

 v′, if it = 1′, (2.4.a)
0, if it 6= 1′, n′, (2.4.b)
−v′, if it = n′, (2.4.c)

l′(it, jθ) ≤ f ′(it, jθ) ≤ u′(it, jθ), (it, jθ) ∈ A′, (2.5)
max v′, (2.6)

where by convention it = 1′ for t= -1 and it = n′ for t=T+1.
For further details we recommend the works [2], [3], [4], [6], [7], [10].
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3. The maximum flow in parametric static networks

A natural generalization of the problem of the maximum flow in static networks
can be obtained by making the upper bounds (capacities) of some arcs functions of a
single parameter. Since the maximum flow value function in a parametric network is a
continuous piecewise linear function of the parameter, the problem of the parametric
maximum flow can alternately be defined as to find all the breakpoints and their
corresponding maximum flows and minimum cuts. There are more approaches for
solving the problem of the maximum flow in parametric static network [5],[8], [9].
The approach presented in this section is the one presented in [8].

A static network G = ( N, A, l, u) with the upper bounds u(i, j) of some arcs
(i, j) ∈ A, functions of a real parameter λ is referred to as a parametric static network
and is denoted by Ḡ = (N,A, l, ū). The upper bound function ū : A ×R+ → R+ is
defined by relation:

ū(i, j;λ) = u0(i, j) + λ · U(i, j), λ ∈ [0,Λ] = I (3.1)

where U : A→ R is the parametric part of the upper bound function ū and u0 : A→
R+ is the non parametric part of the function ū, ū(i, j; 0) = u0(i, j), (i, j) ∈ A. The
U(i, j) must satisfy U(i, j) ≥ (l(i, j)− u0(i, j)/Λ, (i, j) ∈ A.

The problem of the maximum flow in parametric static network Ḡ = (N,A, l, ū) is
to compute all maximum flows for every possible value of λ in I :∑

j

f̄(i, j;λ)−
∑
k

f̄(k, i;λ) =

 v̄(λ), if i=1 (3.2.a)
0, if i 6= 1, n (3.2.b)

−v̄(λ), if i=n (3.2.c)

l(i, j) ≤ f̄(i, j;λ) ≤ ū(i, j;λ), (i, j) ∈ A , (3.3)

max v̄(λ) (3.4)

For the maximum flow problem in parametric static network Ḡ = (N,A, l, ū),
the subintervals Ik = [λk, λk+1], k = 0, 1, ...,K of the parameter λ values can be
determined such as a minimum 1-n cut in the nonparametric static network Gk =
(N,A, l, uk), uk(i, j) = ū(i, j;λk), remains the minimum 1-n cut for all λ ∈ Ik. A
parametric 1-n cut in parametric static network Ḡ = (N,A, l, ū) can be defined as a
finite set of cuts [Sk, Tk], k = 0, 1, ...,K together with a partitioning of the interval I
in disjoints subintervals Ik, k = 0, 1, ...,K, such that I = I0∪I1∪ ...∪IK . The [Sk, Tk]
is denoted by [Sk; Ik] for each k, k = 0, 1, ...,K The capacity of [Sk; Ik] is defined as:

c̄[Sk; Ik] =
∑

(Sk,Tk)

ū(i, j;λ)−
∑

(Tk,Sk)

l(i, j), k = 0, 1, ...,K (3.5)

A parametric minimum 1-n cut in network Gk is denoted by [S∗k ; Ik], k = 0, 1, ...,K.
For a given flow f̄ in the parametric network Ḡ = (N,A, l, ū) the parametric residual
capacity r̄(i, j;λ), (i, j) ∈ A is given by:

r̄(i, j;λ) = ū(i, j;λ)− f̄(i, j;λ) + f̄(j, i;λ)− l(j, i), (3.6)

for λ ∈ Ik, k = 0, 1, ...,K.
For a flow f̄ in the parametric static network Ḡ , we define the set s̄(i, j) =

{λ|r̄(i, j;λ) > 0}, (i, j) ∈ A. The static network ˜̄G = (N, Ã, r̄), with Ã =
{(i, j)|(i, j) ∈ A, s̄(i, j) 6= φ} is called the parametric residual static network. If
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(i, j) ∈ A and (i, j) /∈ Ã, then s̄(i, j) = φ. Let ˜̄P be a directed path from the source

node 1 to the sink node n in the parametric residual static network ˜̄G. If ˜̄P verifies
the restriction:

s̄( ˜̄P ) =
⋂
˜̄P

s̄(i, j) 6= φ (3.7)

then ˜̄P is called a conditional augmenting directed path. The parametric residual

capacity of a conditional augmenting directed path ˜̄P is

r̄( ˜̄P ;λ) = min{r̄(i, j;λ)|(i, j) ∈ ˜̄P, λ ∈ s̄( ˜̄P )}.
From paper [8] we have the theorem

Theorem 3.1. A flow f̄ is a maximum flow in parametric static network Ḡ if and

only if the parametric residual static network ˜̄G contains no conditional augmenting

directed path ˜̄P .

If residual static network ˜̄G contains no conditional augmenting path ˜̄P , then the
maximum flow in parametric network Ḡ is computed as:

f̄(i, j;λ) = l(i, j) +max{ū(i, j;λ)− r̄(i, j;λ)− l(i, j), 0} (3.8)

The first phase of finding a maximum flow in network Ḡ consist in establishing
a feasible flow, if one exists, in the nonparametric network Ḡ = (N,A, l, û) with
û(i, j) = u0(i, j) for U(i, j) ≥ 0 and û(i, j) = u0(i, j) + Λ · U(i, j) for U(i, j) < 0.

After a nonparametric feasible flow f̂ (see [1]) is obtained, we compute the parametric

residual network ˜̄G0 for this flow f̂ .

The parametric residual capacities in ˜̄G0 can be written as r̄0(i, j;λ) = α0(i, j) +

λβ0(i, j), where α0(i, j) = u0(i, j)− f̂(i, j) + f̂(j, i)− l(j, i) and β0(i, j) = U(i, j).

The second phase of the algorithm starts with the parametric residual network ˜̄G0,
λ0 = 0 and I0 = [0,Λ].

The algorithm for computing the maximum flow in a parametric static network
with lower bounds (the algorithm MFPSNLB) is presented in Figure 3.1.

(01) Algorithm MFPSNLB;
(02) BEGIN
(03) compute a feasible flow f0 in network G0;

(04) compute the parametric residual network ˜̄G0;
(05) B:={0}; k := 0;λk := 0;
(06) REPEAT
(07) SADP( k, λk, B);
(08) k:=k+1;
(09) UNTIL( λk = Λ);
(10) END.

Figure 3.1.a. The algorithm for the maximum flow in parametric static network
with lower bounds

(01) PROCEDURE SADP( k, λk, B);
(02) BEGIN
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(03) compute the network ˜̄Gk;

(04) compute the exact distance labels d̃(i) in ˜̄Gk;

(05) p=( n+1, n+1, ..., n+1); αk( ˜̄P ) := 0; βk( ˜̄P ) := 0;
(06) λk+1 := Λ;i:=1;

(07) WHILE d̃(1) < n DO
(08) BEGIN
(09) IF( exists an admissible arc (i, j))
(10) THEN BEGIN
(11) p( j):=i;
(12) i:=j;
(13) IF( i=n)
(14) THEN BEGIN

(15) RCCADP( p, λk+1, B, αk( ˜̄P ), βk( ˜̄P ));
(16) i:=1;
(17) END;
(18) END
(19) ELSE BEGIN

(20) d̃(i) := min{d̃(j) + 1|(i, j) ∈ Ãk} ;
(21) IF i 6= s
(22) THEN i:= p( i);
(23) END;
(24) END;
(25) compute the flow f̄k;
(26) add λk+1 to the list B;
(27) END;

Figure 3.1.b. The Procedure Shortest Augmenting Directed Path ( SADP)

(01) PROCEDURE RCCADP( p, λk+1, B, αk( ˜̄P ), βk( ˜̄P ));
(02) BEGIN

(03) compute ˜̄P based on p;

(04) αk( ˜̄P ) := min{αk(i, j)|(i, j) ∈ ˜̄P};
(05) βk( ˜̄P ) := min{βk(i, j)|(i, j) ∈ ˜̄P};
(06) i:=n;
(07) WHILE i6= 1 DO;
(08) BEGIN

(09) IF(βk(p(i), i) < βk( ˜̄P )
(10) THEN BEGIN

(11) λ′ := λk + (αk(p(i), i)− αk( ˜̄P ))/(β̄k( ˜̄P )− βk(p(i), i));
(12) IF (λ′ < λk+1)
(13) THEN λk+1 := λ′;
(14) END;

(15) αk(p(i), i) := αk(p(i), i)− αk( ˜̄P ); βk(p(i), i) := βk(p(i), i)− βk( ˜̄P );

(16) αk(i, p(i)) := αk(i, p(i)) + αk( ˜̄P ); βk(i, p(i)) := βk(i, p(i)) + βk( ˜̄P );
(17) i:=p( i);
(18) END;
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(19) END;

Figure 3.1.c. The Procedure Residual Capacity of Conditional Augmenting Directed
Path( RCCADP).

In order to avoid working with piecewise linear functions, the algorithm MFPSNLB
works in parametric residual static networks defined for subintervals of the param-
eter values where the parametric residual capacities of all arcs remain linear func-

tions (and not piecewise linear). The parametric residual network ˜̄G for a subinterval

Ik = [λk, λk+1] is denoted by ˜̄Gk. In k-th step of the algorithm MFPSNLB, the SADP

procedure computes the parametric residual static network ˜̄Gk where r̄k(i, j;λ) =
αk(i, j) + (λ−λk) ·βk(i, j), with αk(i, j) = α0(i, j) +λkβ0(i, j), βk(i, j) = β0(i, j) and

computes the shortest augmenting directed path ˜̄P in network ˜̄Gk. The RCCADP pro-

cedure computes r̄k( ˜̄P, λ), λk+1 and alters αk(i, p(i)), βk(i, p(i)), αk(p(i), i), βk(p(i), i).

It is obvious that in ˜̄Gk we have r̄k( ˜̄P, λ) = αk( ˜̄P ) + (λ− λk) · βk( ˜̄P ).

Theorem 3.2 ( Theorem of Correctness). The algorithm MFPSNLB computes cor-
rectly a maximum flow in parametric static network with lower bounds Ḡ = (N,A, l, ū)
and λ ∈ I = [0,Λ].

Theorem 3.3 (Theorem of Complexity). The algorithm MFPSNLB runs in O(Kn2m)
time, where K+1 is the number of λ value in the set B at the end of the algorithm.

We remark the fact that the problem of the maximum flow in nonparametric static
network can be solved in O(nm) time (see 7). In this case the algorithm MFPSNLB
runs in O(Knm).

4. The maximum flow in parametric dynamic networks.

A dynamic network Gh = (N,A, h, lh, uh) for which the upper bounds (capacities)
uh(i, j; t) of some arcs (i, j) ∈ A are functions of a real parameter λ ∈ I = [0,Λ] is
referred to as a parametric dynamic network and is denoted by Ḡh = (N,A, h, lh, ūh).
The parametric upper bound function ūh : A×H × I → R+ is defined by relation

ūh(i, j; t;λ) = u0h(i, j; t) + λUh(i, j; t), (i, j) ∈ A, t ∈ H,λ ∈ I, (4.1)

The parametric part Uh(i, j; t) must satisfy the constraint:

Uh(i, j; t) ≥ (lh(i, j; t)− u0h(i, j; t)/Λ, (i, j) ∈ A, t ∈ H.
The problem of the maximum flow in parametric dynamic networkGh = (N,A, h, lh, ūh)
is to compute a flow function f̄h : A ×H × I → R+ that satisfies the following con-
straints:

T∑
t=0

(
∑
j

f̄(i, j; t;λ)−
∑
k

∑
τ

f̄h(k, i; τ ;λ) = v̄H(λ), i=1 (4.2.a)∑
j

f̄(i, j; t;λ)−
∑
k

∑
τ

f̄h(k, i; τ ;λ) = 0, i 6= 1, n, t ∈ H (4.2.b)

T∑
t=0

(
∑
j

f̄(i, j; t;λ)−
∑
k

∑
τ

f̄h(k, i; τ ;λ) = −v̄H(λ), i=n (4.2.c)

lh(i, j; t) ≤ f̄h(i, j; t;λ) ≤ ūh(i, j; t;λ), (i, j) ∈ A, t ∈ H,λ ∈ I (4.3)
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max v̄H(λ), λ ∈ I (4.4)
where f̄h(i, j; t;λ) = 0, (i, j) ∈ A, t ∈ {T − h(i, j; t) + 1, ..., T}, λ ∈ I.

In network Ḡh = (N,A, h, lhūh) we consider the following assumption: if (i, j) ∈ A
then (j, i) ∈ A. This assumption is non-restrictive because if (i, j) ∈ A and (j, i) /∈ A
we consider that (j, i) ∈ A with lh(j, i; θ) = uh(j, i; θ;λ) = 0, θ = t + h(i, j; t), t ∈
H,λ ∈ I, h(j, i; θ) = −h(i, j; t), if 0 ≤ t ≤ T − h(i, j; t) and h(j, i; θ) = ∞, if T −
h(i, j; t) + 1 ≤ t ≤ T .

The parametric dynamic residual capacities with respect to a given flow f̄h are
defined as follow:
r̄h(i, j; t;λ) = ūh(i, j; t;λ)− f̄h(i, j; t;λ) + f̄h(j, i; θ;λ)− lh(j, i; θ), (4.5)
(i, j) ∈ A, t ∈ H,λ ∈ I
For the maximum flow in parametric dynamic network Ḡh = (N,A, h, lh, ūh), the

parametric dynamic residual network with respect to a given flow f̄h is defined as
˜̄Gh = (N, Ã, r̄h), where Ã = {(i, j)|(i, j) ∈ A, r̄h(i, j; t;λ) 0, t ∈ H,λ ∈ I}.

In this paper, the proposed approach consists in applying the algorithm MFP-
SNLB presented in Section 3 in parametric static reduced expanded network Ḡ′ =
(N ′, A′, l′, ū′) which is constructed similar with the construction of the network G′ =
(N ′, A′, l′, u′) presented in Section 2.

The algorithm for the maximum flow in parametric dynamic network with lower
bounds (the algorithm MFPDNLB) is presented in Figure 4.1.

(1) ALGORITHM MFPDNLB;
(2) BEGIN
(3) construct the network Ḡ′;
(4) apply the algorithm MFPDNLB in network Ḡ′;
(5)END.
Figure 4.1. The algorithm for maximum flow in parametric dynamic network

with lower bounds.

Theorem 4.1 (Theorem of Correctness). The algorithm MFPDNLB computes cor-
rectly a maximum flow in parametric dynamic network with lower bounds Ḡh =
(N,A, h, lh, ūh) and λ ∈ I.

Proof. This theorem results from the fact that the maximum flow in parametric dy-
namic network with lower bounds Ḡh = (N,A, h, lh, ūh) is equivalent with the maxi-
mum flow in parametric static network Ḡ′ = (N ′, A′, l′, ū′) and Theorem 3.2. �

Theorem 4.2 (Theorem of Complexity). The algorithm MFPDNLB runs in O(KT 3n2m)
time, where K+1 is the number for λ values at the end of the algorithm.

Proof. From Theorem 3.3 we have that the algorithm MFPDNLB runs inO(K(n′H)2m′H)
time. From Section 2 we obtain n′ = O(nT ) and m′ = O(mT ). Therefore we obtain
that algorithm MFPDNLB runs in O(KT 3n2m) time. �

In accordance with the remark at Theorem 3.3 we note that the algoritm MF-
PDNLB run in O(KnmT 2) time.
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5. Example.

The parametric dynamic network is presented in Figure 5.1. with the time hori-
zon set to T=3, therefore H={0, 1, 2, 3}. The transit times h(i,j;t), the dynamic lower
bounds lh(i, j; t) and the parametric dynamic upper bounds ( capacities) ūh(i, j; t;λ) =
u0h(i, j; t) + λUh(i, j; t) for all arcs in Ḡh are indicated in Figure 5.1.b. The interval
of parameter λ values is set to [0,1], i.e., Λ=1.

3

(a)

1

2

4

(i, j) h(i, j; t) lh(i, j; t) u0h(i, j; t) Uh(i, j; t)

(1, 2)
1, t = 0
2, t = 1, 2, 3

1, t = 0
0, t = 1, 2, 3

4, t = 0, 1, 2, 3 4, t = 0, 1, 2, 3

(1, 3)
1, t = 0, 1
2, t = 2, 3

2, t = 0, 1
0, t = 2, 3

9, t = 0, 1
6, t = 2, 3

−4, t = 0, 1, 2, 3

(2, 3) 1, t = 0, 1, 2, 3 0, t = 0, 1, 2, 3 3, t = 0, 1, 2, 3 −2, t = 0, 1, 2, 3

(2, 4)
1, t = 0, 1
2, t = 2, 3

0, t = 0, 1, 2, 3 4, t = 0, 1, 2, 3 2, t = 0, 1, 2, 3

(3, 4)
2, t = 0, 1
1, t = 2, 3

0, t = 0, 3
1, t = 1, 2

8, t = 0, 1, 2, 3
0, t = 0, 1
−2, t = 2, 3

(b)

Figure 5.1. The parametric dynamic network Ḡh.

The support graph for parametric superextended network Ḡ∗H is presented in Figure
5.2.

The support graph for parametric reduced expanded network Ḡ′ is showed in Figure
5.3.
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1*

1
0

1

2

3

1

1

2

2

2

2

3

3

3

3

4

4

4

4

4*

1

0 0 0

1 1 1

2 2 2

3 3 3

Figure 5.2. The support graph for parametric superextended network Ḡ∗H .

4′

1′ 

1

10

1 1 1

22

2 3

3 4

4 3

Figure 5.3. The support graph for parametric reduced expanded
network Ḡ′.

The lower bounds l′(it, jθ) and the parametric upper bounds ū′(it, jθ;λ) = u′0(it, jθ)+
λU ′(it, jθ) for all arcs in Ḡ′ are indicated in table from Figure 5.4.

(it, jθ) l′(it, jθ) u′0(it, jθ) U ′(it, jθ) f̂ ′(it, jθ)
(1′, 10) 0 ∞ 0 3
(1′, 11) 0 ∞ 0 2
(10, 21) 1 4 4 1
(10, 31) 2 9 -4 2
(11, 32) 2 9 -4 2
(21, 32) 0 3 -2 0
(21, 42) 0 4 2 1
(31, 43) 1 8 0 2
(32, 43) 1 8 -2 2
(42, 4

′) 0 ∞ 0 1
(43, 4

′) 0 ∞ 0 4

Figure 5.4. The l′(it, jθ), ū
′(it, jθ;λ) = u′0(it, jθ) + λU ′(it, jθ) and f̂ ′(it, jθ)

in network Ḡ′.
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In the first phase we determine in static residual network
˜̂
G′:

˜̂
P ′1 = (1′, 10, 21, 42, 4

′),

r̂′(
˜̂
P ′1) = 1 ;

˜̂
P ′2 = (1′, 10, 31, 43, 4

′), r̂′(
˜̂
P ′2) = 2;

˜̂
P ′3 = (1′, 11, 32, 43, 4

′), r̂′(
˜̂
P ′3) = 2. The

feasible flow f̂ ′ in network Ĝ′ is presented in table from Figure 5.4.
In the second phase, by applying algorithm MFPSNLB in network Ḡ′, we ob-

tain in the parametric static residual network
˜̄
G′ the following directed paths:

˜̄
P ′1 =

(1′, 10, 21, 42, 4
′),

˜̄
P ′2 = (1′, 10, 31, 43, 4

′),
˜̄
P ′3 = (1′, 11, 32, 43, 4

′) in
˜̄
G′0, ˜̄G1 and

˜̄
P ′1 ,

˜̄
P ′2

,
˜̄
P ′3,

˜̄
P ′4 = (1′, 10, 31, 43, 4

′) in
˜̄
G′2. The results of this example are synthetically pre-

sented in table from Figure 5.5. We notice the fact that
˜̂
P ′i =

˜̄
P ′i , i = 1, 2, 3, 4. The

flow f̄k
′

is obtain by f̄k
′
(it, jθ;λ) = r̄k

′(it, jθ;λ) + f̂ ′(it, jθ;λ), (it, jθ) ∈ A, λ ∈ Ik. The

r̄k
′(it, jθ;λ) are obtained from r̄k

′( ¯̃Pi;λ). The graphic of v̄′(λ) is presented Figure 5.6.

k λk
˜̄
P ′i r̄k(

˜̄
P ′i ;λ) λk+1 r̂′(

˜̂
P ′i ) v̄′(λ)

0
˜̄
P ′1 3 + 2λ 1 1

0
˜̄
P ′2 6 1/4 2 20
˜̄
P ′3 6− 2λ 1/4 2

1
˜̄
P ′1 3 + 2λ 1 1

1/4
˜̄
P ′2 7− 4λ 1 2 21− 4λ
˜̄
P ′3 6− 2λ 1/2 2

2
˜̄
P ′1 3 + 2λ 1 1

1/2
˜̄
P ′2 7− 2λ 1 2 21− 4λ
˜̄
P ′3 7− 2λ 1 2
˜̄
P ′4 1 0 2λ− 1

Figure 5.5. Results of applying the algorithm in Ḡ′.

17

19
20

1/4      1/2                 1

v'(λ)

λ

Figure 5.6. The graphic of v̄′(λ).
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6. Conclusions

In this paper, we have presented an original version of the general problem of the
maximum flows in parametric dynamic networks, namely the one with nonzero lower
bounds, a model that is more closely related to real problems. The algorithm which
has been developed proved that the parametric flow in dynamic networks can be more
conveniently addressed in a static way by transforming dynamic networks into related
expanded ones. An example is also given to support this type of approaches.

The question arises whether the approach used in this paper is also adequate for the
parametric problem of the minimum flow in dynamic networks or this new problem
requires a more suitable approach. Another problem requesting a response is related
to the efficiency of the addressed algorithm in relation with the complexity of a genuine
dynamic approach. These problems will orient the future work of the authors.
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