
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 43(2), 2016, Pages 200–209
ISSN: 1223-6934

The maximum flows in bipartite dynamic networks. The static
approach

Camelia SCHIOPU

Abstract. In this paper we study maximum flow algorithms for bipartite dynamic networks.

We resolve this problem by rephrasing into a problem in bipartite static network. In a bipartite

static network several maximum flow algorithms can be substantially improved. The basic idea
in this improvement is a two arcs push rule. At the end of the article we present an example.

2010 Mathematics Subject Classification. 0B10, 90C35, 05C35, 68R10.

Key words and phrases. bipartite dynamic network flow, maximum flow, bipartite static
network flow.

1. Introduction

The theory of flow is one of the most important parts of Combinatorial Optimiza-
tion. The static network flow models arise in a number of combinatorial applications
that on the surface might not appear to be optimal flow problems at all. The issue
also arises directly in problems as far reaching as machine scheduling, the assignment
of computer modules to computer processor, tanker scheduling etc. [1]. However, in
some applications, time is an essential ingredient [3], [4], [5]. In this case we need to
use dynamic network flow model. On the other hand, the bipartite static network also
arises in practical context such as baseball elimination problem, network reliability
testing etc. and hence it is of interest to find fast flow algorithms for this class of
networks [1], [2], [6].

The dynamic approach of maximum flows problem in bipartite dynamic networks
with lower bounds zero is treated in the paper [7]. The static approach of maximum
flows problem in bipartite dynamic networks with positive lower bounds is treated in
the paper [8].

In this paper we present the static approach of maximum flows problem in bipartite
dynamic networks with lower bounds zero. This problem has not been treated so far.
Further on, in Section 2 we discuss some basic notions and results for maximum flow
problem in general static networks. Section 3 deals with the maximum flow problem
in general dynamic networks. In Section 4 we present algorithms for flow problems
in bipartite static network and in Section 5 we discuss the maximum flow problem
in bipartite dynamic networks. Section 6 deals with an example for the problem
presented in Section 5.

Received June 2, 2015. Revised October 26, 2016.

200

THE MAXIMUM FLOWS IN BIPARTITE DYNAMIC NETWORKS 201

2. Terminology and preliminaries

In this section we discuss some basic notations and results used throughout the
paper.

Let G = (N,A, u) be a general static network with the set of nodes N = {1, . . . , n},
the set of arcs A = {a1, . . . , ak, . . . , am}, ak = (i, j), i, j ∈ N , the upper bound
(capacity) function u, u : A → N with N the natural number set and with 1 the
source node, n the sink node.

For a given pair of subset X,Y of the set of nodes N of a network G we use the
notation:

(X,Y) = {(i, j)|(i, j) ∈ A, i ∈ X, j ∈ Y }
and for a given function f on set of arcs A we use the notation:

f(X,Y) =
∑

(X,Y) f(x, y)

A flow is a function f : A→ N satisfying the next conditions:

f(i,N)− f(N, i) =

 v, if i = 1
0, if i 6= 1, n
−v, if i = n

(1a)

0 ≤ f(i, j) ≤ u(i, j), (i, j) ∈ A (1b)

for some v ≥ 0. We refer to v as the value of the flow f .
The maximum flow problem is to determine a flow f for which v is maximum.
We further assume, without loss of generality, that if (i, j) ∈ A then (j, i) ∈ A (if

(j, i) /∈ A we consider that (j, i) ∈ A with u(j, i) = 0).
A preflow f is a function f : A→ N satisfying the next conditions:

f(N, i)− f(i,N) ≥ 0, i ∈ N − {1, n} (2a)

0 ≤ f(i, j) ≤ u(i, j), (i, j) ∈ A (2b)

For a preflow f the excess of each node i ∈ N is

e(i) = f(N, i)− f(i,N) (3)

and if e(i) > 0, i ∈ N − {1, n} then we say that the node i is an active node.
Given a flow (preflow) f , the residual capacity r(i, j) of any arc (i, j) ∈ A is

r(i, j) = u(i, j) − f(i, j) + f(j, i). The residual network with respect to the flow

(preflow) f is G̃ = (N, Ã, r) with Ã = {(i, j)|(i, j) ∈ A, r(i, j) > 0}. In the residual

network G̃ = (N, Ã, r) we define the distance function d : N → N. We say that a
distance function is valid if it satisfies the following two conditions:

d(n) = 0 (4a)

d(i) ≤ d(j) + 1, (i, j) ∈ Ã (4b)

We refer to d(i) as the distance label of node i. We say that an arc (i, j) ∈ Ã is
admissible if satisfies the condition that d(i) = d(j) + 1; we refer to all other arcs
as inadmissible. We also refer to a path from node 1 to node t consisting entirely of
admissible arcs as an admissible path.

In the next presentation we assume familiarity with maximum flow algorithms, and
we omit many details. The reader interested in further details is urged to consult the
book [1].

202 C. SCHIOPU

3. Maximum flows in dynamic networks

Dynamic network models arise in many problem settings, including production
distribution systems, economic planning, energy systems, traffic systems, and building
evacuation systems.

Let G = (N,A, u) be a static network with the set of nodes N = {1, . . . , n}, the set
of arcs A = {a1, . . . , am}, the upper bound (capacity) function u, 1 the source node
and n the sink node. Let N be the natural number set and let H = {0, 1, . . . , T} be
the set of periods, where T is a finite time horizon, T ∈ N. We use state the transit
time function h : A×H → N and the time upper bound function q : A×H → N. The
parameter h(i, j; t) is the transit time needed to traverse an arc (i, j). The parameter
q(i, j; t) represents the maximum amount of flow that can travel over arc (i, j) when
the flow departs from node i at time t and arrives at node j at time θ = t+ h(i, j; t).

The maximal dynamic flow problem for T time periods is to determine a flow
function g : A×H → N, which should satisfy the following conditions in the dynamic
network D = (N,A, h, q) :

T∑
t=0

(g(1, N ; t)−
∑
τ

g(N, 1; τ)) = w (5a)

g(i,N ; t)−
∑
τ

g(N, i; τ) = 0, i 6= 1, n, t ∈ H (5b)

T∑
t=0

(g(n,N ; t)−
∑
τ

g(N,n; τ)) = −w (5c)

0 ≤ g(i, j; t) ≤ q(i, j; t), (i, j) ∈ A , t ∈ H (6)

max w, (7)

where τ = t− h(k, i; τ), w =
T∑
t=0

v(t), v(t) is the flow value at time t and g(i, j; t) = 0

for all t ∈ {T − h(i, j; t) + 1, . . . , T}.
Obviously, the problem of finding a maximum flow in the dynamic network D =

(N,A, h, q) is more complex than the problem of finding a maximum flow in the
static network G = (N,A, u). Fortunately, this issue can be solved by rephrasing
the problem in the dynamic network D into a problem in the static network R1 =
(V1, E1, u1) called the reduced expanded network.

The static expanded network of dynamic network D = (N,A, h, q) is the network
R = (V,E, u) with V = {it|i ∈ N, t ∈ H}, E = {(it, jθ)|(i, j) ∈ A, t ∈ {0, 1, . . . , T −
h(i, j; t)}, θ = t + h(i, j; t), θ ∈ H}, u(it, jθ) = q(i, j; t), (it, jθ) ∈ E. The number of
nodes in the static expanded network R is n(T + 1) and number of arcs is limited

by m(T + 1) −
∑
A

◦
h(i, j), where

◦
h(i, j) = min{h(i, j; 0), . . . , h(i, j;T)}. It is easy to

see that any flow in the dynamic network D from the source node 1 to the sink node
n is equivalent to a flow in the static expanded network R from the source nodes
10, 11, . . . , 1T to the sink nodes n0, n1, . . . , nT and vice versa. We can further reduce
the multiple source, multiple sink problem in the static expanded network R to a
single source, single sink problem by introducing a supersource node 0 and a supersink
node n+ 1 constructing the static super expanded network R2 = (V2, E2, u2), where

THE MAXIMUM FLOWS IN BIPARTITE DYNAMIC NETWORKS 203

V2 = V ∪{0, n+1}, E2 = E∪{(0, 1t)|t ∈ H}∪{(nt, n+1)|t ∈ H}, u2(it, jθ) = u(it, jθ),
(it, jθ) ∈ E, u2(0, 1t) = u2(nt, n+ 1) =∞, t ∈ H.

We construct the static reduced expanded network R1 = (V1, E1, u1) as follows:
we define the function h2 : E2 −→ N, with h2(0, 1t) = h2(nt, n + 1) = 0, t ∈ H,
h2(it, jθ) = h(i, j; t), (it, jθ) ∈ E. Let d2(0, it) be the length of the shortest path
from the source node 0 to the node it, and d2(it, n + 1) the length of the shortest
path from node it to the sink node n + 1, with respect to h2 in the network R2.
The computation of d2(0, it) and d2(it, n+ 1) for all it ∈ V are performed by means
of the usual shortest path algorithms. The network R1 = (V1, E1, u1) have V1 =
{0, n + 1} ∪ {it|it ∈ V, d2(0, it) + d2(it, n + 1) ≤ T}, E1 = {(0, 1t)|d2(1t, n + 1) ≤
T, t ∈ H} ∪ {(it, jθ)|(it, jθ) ∈ E, d2(0, it) + h2(it, jθ) + d2(jθ, n + 1) ≤ T} ∪ {(nt, n +
1)|d2(0, nt) ≤ T, t ∈ H} and u1 are restrictions of u2 at E1.

Next, we construct the static reduced expanded network R1 = (V1, E1, u1) using
the notion of dynamic shortest path. The dynamic shortest path problem is presented
in [3]. Let d(1, i; t) be the length of the dynamic shortest path at time t from the source
node 1 to the node i, and let d(i, n; t) be the length of the dynamic shortest path at
time t from the node i to the sink node n, with respect to h in the dynamic network D.
Let us consider Hi = {t|t ∈ H, d(1, i; t) ≤ t ≤ T − d(i, n; t)}, i ∈ N , and Hi,j = {t|t ∈
H, d(1, i; t) ≤ t ≤ T − h(i, j; t) − d(j, n; θ)}, (i, j) ∈ A. The multiple source, multiple
sinks static reduced expanded network R0 = (V0, E0, u0) has V0 = {it|i ∈ N, t ∈ Hi},
E0 = {(it, jθ)|(i, j) ∈ A, t ∈ Hi,j}, u0(it, jθ) = u1(i, j; t), (it, jθ) ∈ E0. The static
reduced expanded network R1 = (V1, E1, u1) is constructed from the network R0

as follows: V1 = V0 ∪ {0, n + 1}, E1 = E0 ∪ {(0, 1t)|1t ∈ V0} ∪ {(nt, n + 1)|nt ∈
V0}, u1(0, 1t) = u1(nt, n+ 1) =∞, 1t, nt ∈ V0 and u1(it, jθ) = u0(it, jθ), (it, jθ) ∈ E0.

We notice that the static reduced expanded network R1(R0) is always a partial
subnetwork of the static super expanded network R2(R). In references [4], [5] it is
shown that a dynamic flow for T periods in the dynamic network D is equivalent with
a static flow in a static reduced expanded network R1. Since an item released from
a node at a specific time does not return to the location at the same or an earlier
time, the static networks R,R2, R0, R1 cannot contain any circuit, and therefore, are
always acyclic.

In the most general dynamic model, the parameter h (i) = 1 is the waiting time at
node i, and the parameter q(i; t) is the upper bound for flow g(i; t) that can wait at
node i from time t to t+ 1. This most general dynamic model is not discussed in this
paper.

The maximum flow problem for T time periods in the dynamic network D formu-
lated in conditions (5), (6), (7) is equivalent with the maximum flow problem in the
static reduced expanded network R0 as follows:

f0(it, V0)− f0(V0, it) =

 vt, if it = 1t, t ∈ H1

0, if it 6= 1t, nt, t ∈ H1, t ∈ Hn

−vt, if it = nt, t ∈ Hn

(8a)

0 ≤ f0(it, jθ) ≤ u0(it, jθ), (it, jθ) ∈ E0 (9)

max
∑
H1

vt, (10)

where by convention it = 0 for t = −1 and it = n+ 1 for t = T + 1.

204 C. SCHIOPU

In stationary case the dynamic distances d(1, i; t), d(i, n; t) become static distances
d(1, i), d(i, n).

4. Flows in bipartite static networks

In this section we consider that the static network G = (N,A, u) is a bipartite static
network. A bipartite network has the set of nodes N partitioned into two subsets N1

and N2, so that for each arc (i, j) ∈ A, either i ∈ N1 and j ∈ N2 or i ∈ N2 and
j ∈ N1. Let n1 = |N1| and n2 = |N2|. Without any loss of generality, we assume that
n1 ≤ n2. We also assume that the source node 1 belongs to N2 (if the source node 1

belonged to N1, then we could create a new source node 1
′ ∈ N2, and we could add an

arc (1
′
, 1) with u(1

′
, 1) = ∞). A bipartite network is called unbalanced if n1 << n2

and balanced otherwise.
The observation of Gusfield, Martel, and Fernandez-Baca [6] that time bounds

for several maximum flow algorithms automatically improves when the algorithms
are applied without modification to unbalanced networks. A careful analysis of the
running times of these algorithms reveals that the worst case bounds depend on the
number of arcs in the longest node simple path in the network. We denote this length
by L. For general network, L ≤ n−1 and for a bipartite network L ≤ 2n1 +1. Hence,
for unbalanced bipartite network L << n. Column 3 of Table 1 summarizes these
improvements for several network flow algorithms.

Algorithm Running time, Running time, Running time

general network bipartite network modified version

Maximumflows

Dinic n2m n2
1m does not apply

Karazanov n3 n2
1n n1m+ n3

1

FIFOpreflow n3 n2
1n n1m+ n3

1

Highestlabel n2√m n1n
√
m n1m

Excessscaling nm+ n2 log ū n1m+ n1n log ū n1m+ n2
1 log ū

Table 1. Several maximum flows algorithms.

Ahuja, Orlin, Stein, and Tarjan [2] obtained further running time improvements by
modifying the algorithms. This modification applies only to preflow push algorithms.
They called it the two arcs push rule. According to this rule, always push flow from
a node in N1 and push flow on two arcs at a time, in a step called a bipush, so
that no excess accumulates at nodes in N2. Column 4 of Table 1 summarizes the
improvements obtained using this approach.

5. Maximum flows in bipartite dynamic networks

In this Section the dynamic network D = (N,A, h, q) is bipartite.
We construct the static reduced expanded network R0 = (V0, E0, u0) with V0 =

W1 ∪W2, W1 = {kτ |k ∈ N1, τ ∈ Hk}, W2 = {kτ |k ∈ N2, τ ∈ Hk}.

THE MAXIMUM FLOWS IN BIPARTITE DYNAMIC NETWORKS 205

Theorem 5.1. If the dynamic network D = (N,A, h, q) is bipartite, then the static
reduced expanded network R0 = (V0, E0, u0) is bipartite.

Proof. If the dynamic network D = (N,A, h, q) is bipartite we have N = N1 ∪ N2

and for each arc (i, j) ∈ A, either i ∈ N1 and j ∈ N2 or i ∈ N2 and j ∈ N1.
For the static reduced expanded network R0 = (V0, E0, u0) we have V0 = W1 ∪W2,
W1 = {kτ |k ∈ N1, τ ∈ Hk}, W2 = {kτ |k ∈ N2, τ ∈ Hk}. It results that for each arc
(it, jθ) ∈ E0, either it ∈ W1 and jθ ∈ W2 or it ∈ W2 and jθ ∈ W1. Therefore the
network R0 = (V0, E0, u0) is bipartite. �

Let w1, w2, ε0 be w1 = |W1| w2 = |W2|, ε0 = |E0|. If n1 << n2 then obvious that
w1 << w2. In the static bipartite network R0 we determine a maximum flow f0 with
a generalization of bipartite FIFO preflow algorithm.

We recall that the FIFO preflow algorithm might perform several saturating pushes
followed either by a nonsaturating push or relabeled operation. We refer to this
sequence of operations as a node examination. The algorithm examines active nodes
in the FIFO order. The algorithm maintains the list Q of active nodes as a queue.
Consequently, the algorithm selects a node i from the front of Q, performs pushes
from this node, and adds newly active nodes to the rear of Q. The algorithm examines
node i until either it becomes inactive or it is relabeled. In the latter case, we add
node i to the rear of the queue Q. The algorithm ends when the queue Q of active
nodes is empty. The reader interested in further details is urged to consult paper [2].

The modified version of FIFO preflow algorithm for maximum flow in bipartite is
called bipartite FIFO preflow algorithm. A bipush is a push over two consecutive
admissible arcs. It moves excess from a node it ∈W1 to another node kτ ∈W1. This
approach means that the algorithm moves the flow over the path D̃ = (it, jθ, kτ), jθ ∈
W2, and ensures that no node in W2 ever has any excess. A push of α units from
node it to node jθ decreases both e(it) and r0(it, jθ) by α units and increases both
e(jθ) and r0(jθ, it) by α units.

We specify that maintain the arc list E+
0 (it) = {(it, jθ)|(it, jθ) ∈ E0}. We can

arrange the arcs in these lists arbitrarily, but the order, once decided, remains un-
changed throughout the algorithm. Each node i has a current arc, which is an arc
in E+

0 (it) and is the next candidate for admissibility testing. Initially, the current
arc of node it is the first arc in E+

0 (it). Whenever the algorithm attempts to find
an admissible arc emanating from node it, it tests whether the node’s current arc is
admissible. If not, it designates the next arc in the arc list as the current arc. The
algorithm repeats this process until it either finds admissible arc or it reaches the end
of the arc list.

The generalization bipartite FIFO preflow (GBFIFOP) algorithm is presented in
Figure 1.

1: ALGORITHM GBFIFOP;
2: BEGIN
3: PREPROCESS
4: while Q 6= ∅ do
5: select the node it from the front of Q;
6: BIPUSH/RELABE(it);
7: end while
8: END.

206 C. SCHIOPU

1: PROCEDURE PREPROCESS;
2: BEGIN
3: f0 := 0;Q := ∅;
4: compute the exact distance labels d(it);
5: for t ∈ H1 do
6: f0(1t, jθ) := u0(1t, jθ) and adds node jθ to the rear of Q for all (1t, jθ) ∈ E0

7: d(1t) := 2w2 + 1;
8: end for
9: END.

1: PROCEDURE BIPUSH/RELABEL(it);
2: BEGIN
3: select the first arc (it, jθ) in E+

0 (it) with r0(it, jθ) > 0;
4: β := 1;
5: repeat
6: if (it, jθ) is admissible arc then
7: select the first arc (jθ, kτ) in E+

0 (jθ) with r0(jθ, kτ) > 0;
8: if (jθ, kτ) is admissible arc then
9: push α := min {e(it), r0(it, jθ), r0(jθ, kτ)}

10: units of flow over the arcs (it, jθ), (jθ, kτ);
11: if kτ /∈ Q then
12: adds node kτ to the rear of Q;
13: end if
14: else
15: if (jθ, kτ) is not the last arc in E+

0 (jθ) with r0(jθ, kτ) > 0 then
16: select the next arc in E+

0 (jθ)
17: else
18: d(jθ) := min

{
d(kτ) + 1|(jθ, kτ) ∈ E+

0 (jθ), r0(jθ, kτ) > 0
}

19: end if
20: end if
21: if e(it) > 0 then
22: if (it, jθ) is not the last arc in E+

0 (jθ) with r0(it, jθ) > 0 then
23: select the next arc in E+

0 (it)
24: else
25: d(it) := min

{
d(jθ) + 1|(it, jθ) ∈ E+

0 (jθ), r0(it, jθ) > 0
}

;
26: β := 0;
27: end if
28: end if
29: end if
30: until e(it) = 0 or β = 0
31: if e(it) > 0 then
32: adds node it to the rear of Q;
33: end if
34: END.

Figure 1

THE MAXIMUM FLOWS IN BIPARTITE DYNAMIC NETWORKS 207

We notice that any path in the residual network R̃0 = (V0, Ẽ0, r0) can have at most
2w2 + 1 arcs. Therefore we set d(1t) := 2w2 + 1 in PROCEDURE PREPROCES.

The correctness of the GBFIFOP algorithm results from correctness of the algo-
rithm for maximum flow in bipartite network [2].

Theorem 5.2. The GBFIFOP algorithm which determines a maximum flow into the
bipartite dynamic network D = (N,A, h, q) has the complexity O(n1mT

2 + n3
1T

3).

Proof. In Section 3 we specify that the maximum flow problem for T time periods in
the dynamic network D = (N,A, h, q) is equivalent with the maximum flow problem
in the static reduced expanded network R0 = (V0, E0, u0). The networks D and R0 are
bipartite with N = N1 ∪N2, V1 = W1 ∪W2. We have n1 = |N1|, n2 = |N2|, m = |A|,
w1 = |W1|, w2 = |W2|,ε0 = |E0|. The bipartite FIFO preflow algorithm determines a
maximum flow into the bipartite static network G = (N1 ∪N2, A, u) in O(n1m+ n3

1)
how is specified in table from Section 4. We apply the generalization bipartite FIFO
preflow algorithm in the static reduced expanded bipartite network R0. Hence, the
algorithm has the complexity O(w1ε0 + w3

1). From Section 4 we have w1 = n1T and
ε0 ≤ mT . As a result the algorithm has the complexity O(n1mT

2 + n3
1T

3). �

6. Example

The support digraph of the bipartite dynamic network is presented in Figure 2
and time horizon being set T = 5, therefore H = {0, 1, 2, 3, 4, 5}. The transit times
h(i, j; t) = h(i, j), t ∈ H and the upper bounds (capacities) q(i, j; t) = q(i, j), t ∈ H
for all arcs are indicate in Table 2.

Figure 2. The support digraph of network D = (N,A, h, q).

(i, j) (1, 2) (1, 3) (2, 4) (2, 5) (2, 6) (3, 4) (3, 6) (4, 7) (5, 3) (5, 7) (6, 7)

h(i, j) 1 1 3 1 2 3 1 1 1 1 1

q(i, j) 12 10 8 3 3 4 5 12 3 4 10

Table 2. The functions h, q.

208 C. SCHIOPU

We have N1 = {2, 3, 7} and N2 = {1, 4, 5, 6}.

Figure 3. The network R0 = (V0, E0, f0).

Applying the GBFIFOP algorithm we obtain the flows f0(it, jθ) which are indicated
in Figure 3. We haveW1 = {21, 22, 23, 31, 32, 33, 73, 74, 75} andW2 = {10, 11, 12, 44, 52,
53, 54, 62, 63, 64}. A minimum (10, 11, 12) − (73, 74, 75) cut in the static network
R0 is

[
Y0, Ȳ0

]
= (Y0, Ȳ0)

⋃
(Ȳ0, Y0) with Y0 = {10, 11, 12, 22, 23, 31, 32, 33} and Ȳ0 =

{21, 44, 52, 53, 54, 62, 63, 64, 73, 74, 75}. Hence,
[
Y0, Ȳ0

]
= {(10, 21), (22, 53), (22, 64), (23,

54), (31, 62), (31, 44), (32, 64)} ∪ {(52, 33)}. We have w0 = f0(Y0, Ȳ0) −f0(Ȳ0, Y0) =
40− 0 = 40 = u0(Y0, Ȳ0). Hence, f0 is a maximum flow.

7. Conclusions

In this paper we have developed an algorithm for maximum flows problem in bi-
partite dynamic networks with lower bounds zero. This problem has not been treated
so far. We demonstrate the fact that if the dynamic network D = (N,A, h, q) is
bipartite, then the static reduced expanded network R0 = (V0, E0, u0) is bipartite.
Therefore we solved the maximum flows problem in bipartite dynamic networks with
lower bound zero by rephrasing into a problem in bipartite static network. We have
extended the bipartite FIFO preflow algorithm of Ahuja et al. [2] for the static re-
duced expanded network R0 = (V0, E0, u0) which is a network with multiple source
and multiple sinks. For the generalization bipartite FIFO preflow algorithm we have

THE MAXIMUM FLOWS IN BIPARTITE DYNAMIC NETWORKS 209

presented the complexity. In Section 6 we presented an example for the clarity of
paper.

Many interesting flow problems in bipartite dynamic networks are still open: the
generalization of the highest label preflow push algorithm, the generalization of the
excess scaling algorithm, the parametric maximum flow problem, the minimum cost
flow problem. Other research directions are possible.

References

[1] R. Ahuja, T. Magnanti, J. Orlin,, Network Flows. Theory, algorithms and applications, Prentice

Hall, Englewood Cliffs, New Jersey, 1993.

[2] R. Ahuja, J. Orlin, C. Stein, R. Tarjan, Improved algorithms for bipartite network flows, SIAM
Journal of Computing 23 (1994), 906–933.

[3] X. Cai, D. Sha, C. Wong, Time-varying Nework Optimization, Springer, 2007.

[4] E. Ciurea, Second best temporally repeated flow, Korean Journal of Computational and Applied
Mathematics 9 (2002), no. 1, 77–86.

[5] L. Ford, D. Fulkerson, Flow in Networks, Princeton University Press, Princenton, New Jersey,

1962.
[6] D. Gusfield, C. Martel, D. Fernandez-Baca, Fast algorithms for bipartite network flow, SIAM

Journal of Computing 16 (1987), 237–251.

[7] C. Schiopu, The maximum flows in bipartite dynamic networks, Bulletin of the Transilvania
University of Braşov 7(56) (2014), no. 1, 193–202.

[8] C. Schiopu, E. Ciurea, The maximum flows in bipartite dynamic networks with lower bounds. The
static approach, Proceedings in IEEE Xplore of the 6th International Conference on Computers,

Coumincations and Control (2016), 10–15.

[9] W. Wilkinson, An algorithm for universal maximal dynamic flows in network, Operation Research
19 (1971), 1602–1612.

(Camelia Schiopu) Department of Mathematics and Computer Science, Transilvania
University of Brasov, 29 Eroilor, Brasov, 500036, Romania

E-mail address: camelia.s@unitbv.ro

