A Quasi-Uniformity On BCC-algebras

S. Mehrshad and N. Kouhestani

ABSTRACT. We introduce a quasi-uniformity \mathcal{U} on a BCC-algebra X by a family of ideals of X. If $T(\mathcal{U})$ is the topology induced by \mathcal{U} , we study some conditions under which $(X, T(\mathcal{U}))$ becomes a (semi)topological BCC-algebra. Also, we show that bicompletion of the quasi-uniformity \mathcal{U} can be considered a $T(\mathcal{U}^*)$ -topological BCC-algebra which contains X as a sub-dense space.

2010 Mathematics Subject Classification. 06F35, 22A26 . Key words and phrases. BCC-algebra, (semi)topological BCC-algebra, filter, Quasi-uniforme space, Bicompletion.

1. Introduction

In 1966, Y. Imai and K. Iséki in [13] introduced a class of algebras of type (2,0)called BCK-algebras which generalizes on one hand the notion of algebra of sets whit the set subtraction as the only fundamental non-nullary operation, on the other hand the notion of implication algebra. K. Iséki posed an interesting problem whether the class of BCK-algebras form a variety. In connection with this problem Y. Komori in [14] introduced a notion of BCC-algebras which is a generalization of notion BCKalgebras and proved that class of all BCC-algebras is not a variety. W.A. Dudek in [9] redefined the notion of BCC-algebras by using a dual form of the ordinary definition. Further study of BCC-algebras was continued [3, 6, 7, 8]. In 1937, André Weil in [17] introduced the concept of a uniform space as a generalization of the concept of a metric space in which many non-topological invariants can be defined. The study of quasi-uniformities started in 1948 with Nachbin's investigations on uniform preordered spaces. In 1960, A. Csaszar introduced quasi-uniform spaces and showed that every topological space is quasi-uniformizable. This result established an interesting analogy between metrizable spaces and topological spaces. quasi-uniform structures were also studied in algebraic structures. See for example [15]. In this paper, in section 3, we use of ideals of a BCC-algebra X to define a quasi-uniformity \mathcal{U} on X. We show that (X, \mathcal{U}) is precompact but it is not T_1 and T_2 . We prove that for each cardinal number α there is a T_0 quasi-uniform BCC-algebra. In section 4, by using of regular ideals we make the uniformity \mathcal{U}^* on X and show that $(X, T(\mathcal{U}^*))$ is compact semi topological BCC-algebra, where $T(\mathcal{U}^*)$ is induced topology by \mathcal{U}^* on X. Finally, we obtain \mathcal{U}^* - Cauchy filters and then construct a bicompletion BCC-algebra (X,\mathcal{U}) of (X,\mathcal{U}) and prove that $(\widetilde{X},T(\widetilde{\mathcal{U}}))$ is a topological BCC-algebra which has X as a sub-dense-BCC-algebra.

Received June 4, 2015.

2. Preliminary

2.1. Topological Space. Recall that a set A with a family \mathcal{T} of its subsets is called a topological space, denoted by (A, \mathcal{T}) , if \mathcal{T} is closed under finite intersections and arbitrary unions. The members of \mathcal{U} are called *open sets* of A and the complement of $A \in \mathcal{U}$, that is $A \setminus U$, is said to be a *closed set*. If B is a subset of A, the smallest closed set containing B is called the *closure* of B and denoted by \overline{B} (or $cl_{\mu}B$). A subfamily $\{U_{\alpha} : \alpha \in I\}$ of \mathcal{T} is said to be a *base* of \mathcal{T} if for each $x \in U \in \mathcal{T}$ there exists an $\alpha \in I$ such that $x \in U_{\alpha} \subseteq U$, or equivalently, each U in \mathcal{T} is the union of members of $\{U_{\alpha}\}$. A subset P of A is said to be a *neighborhood* of $x \in A$, if there exists an open set U such that $x \in U \subseteq P$. Let \mathcal{U}_x denote the totality of all neighborhoods of x in A. Then a subfamily \mathcal{V}_x of \mathcal{U}_x is said to form a fundamental system of neighborhoods of x, if for each U_x in \mathcal{U}_x , there exists a V_x in \mathcal{V}_x such that $V_x \subseteq U_x$. Topological space (A, \mathcal{T}) is said to be *compact*, if each open covering of A is reducible to a finite open covering, *locally compact*, if for each $x \in A$ there exist an open neighborhood U of x and a compact subset K such that $x \in U \subseteq K$. Also (A, \mathcal{T}) is said to be *disconnected* if there are two nonempty, disjoint, open subsets $U, V \subseteq A$ such that $A = U \cup V$, and connected otherwise, totally disconnected if each nonempty connected subset of A has one point only, *locally connected* if each open neighborhood of every point x contains a connected open neighborhood of x. The maximal connected subset containing a point of A is called the *component* of that point [2].

2.2. Quasi-Uniform Space. Let A be a non-empty set and $\emptyset \neq \mathcal{F} \subseteq P(A)$. Then \mathcal{F} is called a *filter* on P(A), if for each $F_1, F_2 \in \mathcal{F}$:

(i) $F_1 \in \mathcal{F}$ and $F_1 \subseteq F$ imply $F \in \mathcal{F}$,

(*ii*) $F_1 \cap F_2 \in \mathcal{F}$,

(*iii*) $\emptyset \notin \mathcal{F}$.

A subset \mathcal{B} of a filter \mathcal{F} on A is a *base* of \mathcal{F} iff, every set of \mathcal{F} contains a set of \mathcal{B} . If \mathcal{F} is a family of nonempty subsets of A, then we denote generated filter by \mathcal{F} with $fil(\mathcal{F})$.

A quasi-uniformity on a set A is a filter Q on $P(X \times X)$ such that (i) $\triangle = \{(x, x) \in A \times A : x \in A\} \subseteq q$, for each $q \in Q$, (ii) For each $q \in Q$, there is a $p \in Q$ such that $p \circ p \subseteq q$ where

 $p \circ p = \{(x, y) \in A \times A : \exists z \in A \ s.t \ (x, z), (z, y) \in p\}.$

The pair (A, Q) is called a *quasi-uniform space*. If Q is a quasi-uniformity on a set A, then $q^{-1} = \{q^{-1} : q \in Q\}$ is also a quasi-uniformity on A called the *conjugate* of Q. It is well-known that if a quasi-uniformity satisfies condition: $q \in Q$ implies $q^{-1} \in Q$, then Q is a *uniformity*. Also Q is a uniformity on A provided

$$\forall q \in Q \; \exists p \in Q \; s.t \; p^{-1} \circ p \subseteq q.$$

Furthermore, $Q^* = Q \vee Q^{-1}$ is a uniformity on A. A subfamily C of quasi-uniformity Q is said to be a base for Q iff, each $q \in Q$ contains some member of C. The topology $T(Q) = \{G \subseteq X : \forall x \in G \; \exists q \in Q \; s.t \; q(x) \subseteq G\}$ is called the topology induced by the quasi-uniformity Q [11].

Proposition 2.1. [11] Let C be a family of subset of $X \times X$ such that (i) $\Delta \subseteq B$, for each $B \in C$; (ii) for $B_1, B_2 \in \mathcal{C}$, there is a $B_3 \in \mathcal{C}$ such that $B_3 \subseteq B_1 \cap B_2$; (iii) for each $B \in \mathcal{C}$, there is a $C \in \mathcal{C}$ such that $C \circ C \subseteq B$. Then there is the unique quasi-uniformity $\mathcal{U} = \{U \subseteq X \times X : \exists B \in \mathcal{C} : B \subseteq U\}$ on X for which \mathcal{C} is a base.

Definition 2.1. [11] (i) A filter \mathcal{G} on quasi-uniform space (A, Q) is called Q^* -Cauchy filter if for each $U \in Q$, there is a $G \in \mathcal{G}$ such that $G \times G \subseteq U$.

(*ii*) A quasi-uniform space (A, Q) is called *bicomplete* if each Q^* -Cauchy filter converges with respect to the topology $T(Q^*)$.

(*iii*) A bicompletion of a quasi-uniform space (A, Q) is a bicomplete quasi-uniform space (Y, \mathcal{V}) that has a $T(\mathcal{V}^*)$ -dense subspace quasi-unimorphic to (A, Q).

(*iv*) A Q^* -Cauchy filter on a quasi-uniform space (A, Q) is *minimal* provided that it contains no Q^* -Cauchy filter other than itself.

Lemma 2.2. [11] Let \mathcal{G} be a Q^* -Cauchy filter on a quasi-uniform space (A, Q). Then, there is exactly one minimal Q^* -Cauchy filter coarser than \mathcal{G} . Furthermore, if \mathcal{B} is a base for \mathcal{G} , then $\{q(B) : B \in \mathcal{B} \text{ and } q \text{ is a symetric member of } Q^*\}$ is a base for the minimal Q^* -Cauchy filter coarser than \mathcal{G} .

Lemma 2.3. [11] Let (A, Q) be a T_0 quasi-uniform space and \tilde{A} be the set of all minimal Q^* -Cauchy filters on it. For each $q \in Q$, let

$$\widetilde{q} = \{ (\mathcal{G}, \mathcal{H}) \in \widetilde{A} \times \widetilde{A} : \exists G \in \mathcal{G} and H \in \mathcal{H} s.t \ G \times H \subseteq q \},\$$

and $\widetilde{Q} = fil\{\widetilde{q} : q \in Q\}$. Then the following statements hold:

(i) (A, Q) is a T_0 bicomplete quasi-uniform space and (A, Q) is a quasi-uniformly embedded as a $T((\widetilde{Q^*}))$ -dense subspace of $(\widetilde{A}, \widetilde{Q})$ by the map $i: X \to \widetilde{A}$ such that, for each $x \in A$, i(x) is the $T(Q^*)$ -neighborhood filter at x. Furthermore, the uniformities $(\widetilde{Q})^*$ and $(\widetilde{Q^*})$ coincide.

(ii) Any T_0 bicomplete of (A, Q) is a quasi-unimorphic to $(\widetilde{A}, \widetilde{Q})$.

In Lemma 2.3, (A, Q) is T_0 if $(x, y) \in \bigcap_{B \in \mathcal{C}} B$ and $(y, x) \in \bigcap_{B \in \mathcal{C}} B$ imply x = y, for each $x, y \in A$. Also (A, Q) is T_0 quasi-uniform space if and only if (A, T(Q)) is a T_0 topological space.

2.3. BCC- Algebra. A BCC-algebra is a non empty set X with a constant 0 and a binary operation * satisfying the following axioms, for all $x, y, z \in X$:

(1) ((x * y) * (z * y)) * (x * z) = 0,

(2) 0 * x = 0,

(3) x * 0 = x,

(4)x * y = 0 and y * x = 0 imply x = y.

A non empty subset S of BCC-algebra X is called subalgebra of X if it is closed under BCC-operation. For a BCC-algebra X, we denote $x \wedge y = y * (y * x)$ for all $x, y \in X$. On any BCC-algebra X one can define the natural order \leq putting

$$x \le y \Leftrightarrow x * y = 0$$

it is not difficult to verify that this order is partial and 0 is its smallest element.

In BCC-algebra X, following hold: for any $x, y, z \in X$

(5) $(x * y) * (z * y) \le x * z$,

(6) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$,

(7) $x \land y \le x, y$ (8) $x * y \le x$ (9) $(x * y) * z \le x * (y * z)$ (10) x * x = 0, (11) (x * y) * x = 0. [8]

Definition 2.2. [4] Let X be a BCC-algebra and $\emptyset \neq I \subseteq X$. I is called an ideal of X if it satisfies the following conditions: (12) $0 \in I$, (13) $x * y \in I$ and $y \in I$ imply $x \in I$.

If I is an ideal in BCC-algebra of X, then I is a subalgebra. Moreover, if $x \in I$ and $y \leq x$, then $y \in I$. An ideal I is said to be *regular ideal* if the relation

$$x \equiv^{I} y \Longleftrightarrow x * y, y * x \in I$$

is a congruence relation. In this case we denote $x/I = \{y : x \equiv^I y\}$ and $X/I = \{x/I : x \in X\}$. X/I is a BCC-algebra by x/I * y/I = (x * y)/I.

3. A quasi-uniformity in BCC-algebras

In this section we let X be a *BCC*-algebra and η be an arbitrary family of ideals of X which is closed under intersection.

Definition 3.1. Let \mathcal{T} be a topology on a BCC-algebra X. Then:

(i) * is continuous in (first)second variable if $x * y \in U \in \mathcal{T}$, then there is a (V) $W \in \mathcal{T}$ such that $(x \in V) \ y \in W$ and $(V * x \subseteq U) \ x * W \subseteq U$. In this case, we also say $(X, *, \mathcal{T})$ is (right) left topological BCC-algebra.

(*ii*) $(X, *, \mathcal{T})$ is semitopological BCC-algebra if it is left and right topological BCCalgebra, i.e. if $x * y \in U \in \mathcal{T}$, then there are $V, W \in \mathcal{T}$ such that $x \in V, y \in W$ and $x * W \subseteq U$ and $V * y \subseteq U$.

(*iii*) $(X, *, \mathcal{T})$ is topological BCC-algebra if * is continuous, i.e. if $x * y \subseteq U \in \mathcal{T}$, then there are two neighborhoods V, W of x, y, respectively, such that $V * W \subseteq U$.

Definition 3.2. A *quasi-uniform BCC-algebra* is a BCC-algebra endowed with a quasi-uniformity.

Theorem 3.1. Let X be a BCC-algebra. The set $C = \{I_L : I \in \eta\}$ is a base for a quasi-uniformity U on X, where $I_L = \{(x, y) \in X \times X : y * x \in I\}$.

Proof. Let $I \in \eta$. Then $\Delta \subseteq I$, because for any $x \in X$, $x * x = 0 \in I$. Now we prove that $I_L \circ I_L \subseteq I_L$. Let $(x, y) \in I_L \circ I_L$. Then there exists $z \in X$ such that $(x, z) \in I_L$ and $(z, y) \in I_L$. Hence z * x and y * z are in I. Since $((y * x) * (z * x)) * (y * z) = 0 \in I$ and $y * z \in I$, $(y * x) * (z * x) \in I$. Again since $z * x \in I$, we get that $y * x \in I$. This implies that $(x, y) \in I_L$ and so $I_L \circ I_L \subseteq I_L$. Since η is closed under intersection for each $I, J \in \eta$, $I_L \cap J_L = (I \cap J)_L \in \mathcal{C}$. Thus, \mathcal{C} satisfies in conditions (i), (ii), (iii) from Proposition 2.1. Hence \mathcal{C} is a base for the quasi-uniformity $\{U \in X \times X : \exists I \in \eta \text{ s.t } I_L \subseteq U\}$. \Box

Notation. From now on, \mathcal{U} is the unifomity in Theorem 3.1 and $T(\mathcal{U}) = \{G \subseteq X : \forall x \in G \exists I \in \eta \text{ s.t } I_L(x) \subseteq G\}$ is induced topology by it.

Example 3.1. Let $X = \{0, 1, 2, 3\}$ be a BCC-algebra with the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	1	0	1
3	3	3	3	0

Then obviously $I_1 = \{0\}, I_2 = \{0, 1, 2\}$ and $I_3 = X$ are ideals of X. Clearly,

$$(I_1)_L = \triangle \cup \{(1,0), (2,0), (3,0), (2,1)\},\$$
$$I_2)_L = \triangle \cup \{(1,0), (2,0), (3,0), (2,1), (0,1), (0,2)\}$$

 $(I_2)_L = \triangle \cup \{(1,0), (2,0), (3,0), (2,1), (0,1), (0,2)\}$ and $(I_3)_L = X \times X$. Therefore, by Theorem 3.1, $\mathcal{B} = \{(I_i)_L : i = 1, 2, 3\}$ is a base of the quasi-uniformity $\mathcal{U} = \{U \subseteq X \times X : \exists i \in \{1, 2, 3\} \ s.t \ (I_i)_L \subseteq U\}$ on X. Moreover $(I_1)_L(0) = \{0\}, \ (I_1)_L(1) = \{0, 1\}$ and $(I_1)_L(3) = (I_2)_L(3) = \{0, 3\}$. Also,

$$I_2)_L(0) = (I_2)_L(1) = (I_1)_L(2) = (I_2)_L(2) = \{0, 1, 2\},\$$

$$(I_3)_L(0) = (I_3)_L(1) = (I_3)_L(2) = (I_3)_L(3) = X,$$

Therefore $T(\mathcal{U}) = \{ U \subseteq X \times X : \forall x \in U \exists i \in \{1, 2, 3\} \ s.t \ (I_i)_L(x) \subseteq U \}.$

Recall subset I of BCC-algera X is called BCC-ideal if $0 \in I$ and $(x*y)*z \in I, y \in I$ imply $x*z \in I$. In a BCC-algebra any BCC-ideal is an ideal. [7]

Lemma 3.2. For any $I \in \eta$ and $x \in X$, define $I_L(x) = \{y \in X : y * x \in I\}$. Then following holds:

(i) $0 \in I_L(x)$, (ii) if $x \leq y$, then $I_L(x) \subseteq I_L(y)$, (iii) if $y \in I_L(x)$, then $I_L(y) \subseteq I_L(x)$, (iv) if $x \in I$, then $I_L(x) = I$, (v) if $y \in I$, then $I_L(x * y) \subseteq I_L(x)$ for each $x \in X$, (vi) if I is a BCC-ideal and $x \in I$, then for any $y \in X$, $I_L(x * y) \subseteq I_L(y)$.

Proof. (i) Since $0 = 0 * x \in I$, $0 \in I_L(x)$. (ii) Let $z \in I_L(x)$. Then $z * x \in I$. Since $x \leq y$, by (2), $z * y \leq z * x$. Hence $z * y \in I$, which implies that $z \in I_L(y)$.

(*iii*) Let $z \in I_L(y)$. Then $z * y \in I$. Since $y \in I_L(x)$, $y * x \in I$. Now from ((z * x) * (y * x)) * (z * y) = 0 we conclude that $z * x \in I$ and so $z \in I_L(x)$. (*iv*) Since $x \in I$,

$$y \in I_L(x) \Leftrightarrow (x, y) \in I_L \Leftrightarrow y * x \in I \Leftrightarrow y \in I.$$

(v) Let $z \in I_L(x * y)$. Then $z * (x * y) \in I$. By (9), $(z * x) * y \leq z * (x * y)$. Therefore $(z * x) * y \in I$. Since $y \in I$, $z * x \in I$. Hence $z \in I_L(x)$. (vi) Let $z \in I_L(x * y)$. Then $(z * x) * y \in I$. Since $x \in I$ and I is a BCC-ideal, $z * y \in I$. Hence $z \in I_L(y)$.

Theorem 3.3. $T(\mathcal{U})$ is the smallest topology on X which includes η and $(X, *, T(\mathcal{U}))$ is a right topological BCC-algebra.

Proof. By Lemma 3.2 (*iii*), it is easy to prove that $I_L(x) \in T(\mathcal{U})$, for each $x \in X$ and $I \in \eta$. Now let $x, y \in X$ and $x * y \in G \in T(\mathcal{U})$. Then there exists $I \in \eta$ such that $I_L(x * y) \subseteq G$. Let $z \in I_L(x)$. Since $z * x \in I$ and $((z * y) * (x * y)) * (z * x) = 0 \in I$, (z * y) * (x * y) is in I and so $z * y \in I_L(x * y)$. Hence $I_L(x) * y \subseteq I_L(x * y)$. This implies

that * is continuous in first variable. Now suppose \mathcal{T} is a topology on X such that * is continuous in first variable and $\eta \subseteq \mathcal{T}$. We show that $T(\mathcal{U}) \subseteq \mathcal{T}$. For this, given $x \in G \in T(\mathcal{U}^*)$. Then there exists $I \in \eta$ such that $I_L(x) \subseteq G$. Since $x * x = 0 \in I \in \mathcal{T}$, there exists $V \in \mathcal{T}$ such that $x \in V$ and $V * x \subseteq I$. If $z \in V$, then $z * x \in I$ and so $z \in I_L(x)$. Hence $x \in V \subseteq I_L(x) \subseteq G$. Thus $T(\mathcal{U}) \subseteq \mathcal{T}$.

Recall a non zero element $a \in X$ is called an *atom* of a BCC-algebra if $x \leq a$ implies x = 0 or x = a. It is easy to see if $a \neq b$ are atoms, then a * b = a. [6]

Proposition 3.4. If all non zero elements of BCC-algebra X are atoms, then:

(i) for each $I \in \eta$ and $x \in X$, $I_L(x) = I$,

(ii) $(X, *, T(\mathcal{U}))$ is a topological BCC-algebra,

(iii) (X, \mathcal{U}) is a uniform space,

Proof. (i) The proof is obvious.

(ii) Let $x, y \in X$ and $x * y \in G \in T(\mathcal{U})$. Then there exists $I \in \eta$ such that $I_L(x * y) = I \subseteq G$. Now

$$x * y \in I_L(x) * I_L(y) = I * I \subseteq I \subseteq G.$$

(*iii*) Let $U \in \mathcal{U}$. Then there exists, $I \in \eta$ such that $I_L \subseteq U$. We claim that $I_L^{-1} \circ I_L \subseteq U$. Let $(x, y) \in I_L^{-1} \circ I_L$. For some a $z \in X$ we have $(x, z) \in I_L^{-1}$ and $(z, y) \in I_L$. Hence $x * z \in I$ and $y * z \in I$. Since x, y are atoms, $x, y \in I$. Therefore, $(x, y) \in I_L \subseteq U$.

Recall that a quasi-uniform space (A, Q) is said to be *precompact* if for each $q \in Q$ there exist $x_1, x_2, ..., x_n \in A$ such that $A = \bigcup_{i=1}^n q(x_i)$. [11]

Proposition 3.5. Let X be a BCC-algebra. The following conditions are equivalent: (i) the topological space $(X, T(\mathcal{U}))$ is compact,

(ii) the quasi-uniform space (X, \mathcal{U}) is precompact,

(iii) there exists $S = \{x_1, x_2, ..., x_n\} \subseteq X$ such that for all $a \in X$ and $I \in \eta$, $a * x_i \in I$, for some $x_i \in S$.

Proof. $(i) \Rightarrow (ii)$ it is clear.

 $(ii) \Rightarrow (iii)$ Let $I \in \eta$. Since (X, \mathcal{U}) is precompact, there exist $x_1, x_2, ..., x_n \in X$ such that $X = \bigcup_{i=1}^n I_L(x_i)$. If $a \in X$, then there exists x_i such that $a \in I_L(x_i)$. Therefore $a * x_i \in I$.

 $(iii) \Rightarrow (i)$ Let $X = \bigcup_{\alpha \in \Omega} G_{\alpha}$, where each G_{α} is an open set of X. Then for any $x_i \in S$ there exists $\alpha_i \in \Omega$ such that $x_i \in G_{\alpha_i}$. Since G_{α_i} is an open set, there exists $I \in \eta$ such that $I_L(x_i) \subseteq G_{\alpha_i}$, For any $a \in X$ by hypothesis $a * x_i \in I$ for some $x_i \in S$. Hence $a \in I_L(x_i) \subseteq G_{\alpha_i}$. Therefore, $X = \bigcup_{i=1}^n I_L(x_i) \subseteq \bigcup_{i=1}^n G_{\alpha_i}$. So $(X, T(\mathcal{U}))$ is compact.

Proposition 3.6. Let $\eta = \{I\}$. Then:

(i) if I^c is a finite set, then topological space $(X, T(\mathcal{U}))$ is compact,

(ii) the set I is compact in topological space $(X, T(\mathcal{U}))$,

(iii) for any $x \in X$, $I_L(x)$ is compact set in topological space $(X, T(\mathcal{U}))$.

Proof. (i) Let $\{G_{\alpha} : \alpha \in \Omega\}$ be an open cover of X and $I^{c} = \{x_{1}, x_{2}, ..., x_{n}\}$. Then there exist $\alpha_{0}, \alpha_{1}, ..., \alpha_{n} \in \Omega$ such that $0 \in G_{\alpha_{0}}, x_{1} \in G_{\alpha_{1}}, x_{2} \in G_{\alpha_{2}}, ..., x_{n} \in G_{\alpha_{n}}$. By (3), $I = I_{L}(0) \subseteq G_{\alpha_{0}}$, so $X = I \cup I^{c} \subseteq G_{\alpha_{0}} \cup G_{\alpha_{1}} ... \cup G_{\alpha_{n}}$.

(*ii*) Let $I \subseteq \bigcup_{\alpha \in \Omega} G_{\alpha}$, where each G_{α} is an open set of X. Since $0 \in I$, there is $\alpha \in \Omega$

such that $0 \in G_{\alpha}$. Then $I = I_L(0) \subseteq G_{\alpha}$. Hence I is a compact set in topological space $(X, T(\mathcal{U}))$.

(*iii*) Suppose $x \in X$ and $\{G_{\alpha} : \alpha \in \Omega\}$ an open cover of $I_L(x)$. Since $x \in I_L(x)$, there exists $\alpha \in \Omega$ such that $x \in G_{\alpha}$. Hence $I_L(x) \subseteq G_{\alpha}$.

Let (A, Q) be a quasi-uniform space and \mathcal{C} be a base for it. Recall (A, Q) is said to be T_1 quasi-uniform space if $\Delta = \bigcap_{B \in \mathcal{C}} B$ and T_2 quasi-uniform space if $\Delta = \bigcap_{B \in \mathcal{C}} B^{-1} o B$. [11]

Proposition 3.7. quasi-uniform space (X, U) is T_0 space iff, $\{0\} \in \eta$. But it is not T_1 and T_2 space.

Proof. Let $(x, y), (y, x) \in \bigcap_{I \in \eta} I_L$. Hence $x * y \in I, y * x \in I$, for all $I \in \eta$. Since $\{0\} \in \eta, x * y = y * x = 0$. By (4), x = y. Hence (X, \mathcal{U}) is T_0 space. Conversely, let (X, \mathcal{U}) be T_0 . Let $x \in \bigcap_{I \in \eta} I$. Then for each $I \in \eta, x * 0 = x$ and 0 * x = 0, both, are in I. So $(x, 0), (0, x) \in \bigcap_{I \in \eta} I_L$. Since (X, \mathcal{U}) is $T_0, x = 0$. Hence $\bigcap_{I \in \eta} I = \{0\}$. Since η is closed under intersection, $\{0\} \in \eta$.

For any $y \in X$, $(y, 0) \in \bigcap_{I \in \eta} I_L$. Hence $\bigcap_{U \in \mathcal{U}} U \neq \Delta$ which implies that (X, \mathcal{U}) is not T_1 and T_2 .

Proposition 3.8. Let for any $a \in X$, $l_a : X \to X$ by $l_a(x) = a * x$ be an open map. Then $(X, T(\mathcal{U}))$ is a T_0 space.

Proof. Let $x, y \in X$ and $x \neq y$. By (iv) of Lemma 3.2, I is in $T(\mathcal{U})$, so x * I and y * I are open neighborhoods of x, y, respectively. We claim that $y \notin x * I$ or $x \notin y * I$. If $y \in x * I$ and $x \in y * I$, then there exist $z_1, z_2 \in I$ such that $x = y * z_1$ and $y = x * z_2$. By (8), $x \leq y$ and $y \leq x$. So x * y = y * x = 0. By(4), x = y. This is a contradiction.

Proposition 3.9. The following conditions are equivalent:

(i) $(X, T(\mathcal{U}))$ is a T_0 space,

(ii) for every $0 \neq x \in X$ there is $I \in \eta$ such that $x \notin I$,

(iii) for each $0 \neq x \in X$ there exists $U \in T(\mathcal{U})$ such that $x \notin U$.

Proof. $(i \Rightarrow ii)$ Let $0 \neq x \in X$. Since $(X, T(\mathcal{U}))$ is T_0 , there is an open neighborhood G of 0 such that $x \notin G$. As $0 \in G$, there is $I \in \eta$ such that $0 \in I \subseteq G$. Clearly $x \notin I$. $(ii \Rightarrow iii)$ Because for each $I \in \eta$, I belongs $T(\mathcal{U})$, the proof is obvious.

(*iii* \Rightarrow *i*) Let $x, y \in X$ and $x \neq y$. Then $x * y \neq 0$ or $y * x \neq 0$. Without the lost of generality, suppose $x * y \neq 0$. By hypothesis there exists $G \in T(\mathcal{U})$ such that $x * y \notin G$. Since $0 \in G$, there exists $I \in \eta$ such that $I = I_L(0) \subseteq G$. Since $(X, *, T(\mathcal{U}))$ is right topological BCC-algebra and 0 * x = 0, there is $J \in \eta$ such that $J_L(0) * x \subseteq I$. Let $K = I \cap J$. We claim that $x \notin K_L(y)$. If $x \in K_L(y)$, then $x * y \in K \subseteq I \subseteq G$. This is a contradiction. Hence $(X, T(\mathcal{U}))$ is a T_0 space. Conversely, Let $0 \neq x \in X$. Since $(X, T(\mathcal{U}))$ is a T_0 space and each open set in $(X, T(\mathcal{U}))$ contains 0, there exists $U \in T(\mathcal{U})$ such that $x \notin U$.

Let (A, Q) and (A^*, R) be quasi-uniform spaces. The map $f : (A, Q) \to (A^*, R)$ is called quasi-uniform continuous if for each $r \in R$ there exists $q \in Q$ such that $(x, y) \in q$ implies $(f(x), f(y)) \in r$. [11],[16]

Proposition 3.10. Let X be a BCC-algebra and $a \in X$. The mapping $r_a : (X, U) \to (X, U)$ given by $r_a(x) = x * a$ for all $x \in X$ is quasi-uniform continuous.

Proof. Let $U \in \mathcal{U}$. Then there exists $I \in \eta$ such that $I_L \subseteq U$. Let $(x, y) \in I_L$. Since $y * x \in I$ and $(y * a) * (x * a) \leq (y * x)$, we get that $(y * a) * (x * a) \in I$ and so

$$(r_a(x), r_a(y)) = ((x * a), (y * a)) \in I_L \subseteq U.$$

Theorem 3.11. For each $n \ge 4$, there exists a quasi uniform BCC-algebra of order n.

Proof. Let (X, *, 0) be a BCC-algebra and η be a family of ideals in X which is closed under intersection. By Theorem 3.1, there is a uniformity \mathcal{U} on X. Suppose $a \notin X$ and $X' = X \cup \{a\}$. Then X' is a BCC-algebra by

$$x \otimes y = \begin{cases} x * y & \text{if } x, y \in X \\ a & \text{if } x = a, y = 0 \\ 0 & \text{if } x = a, y \neq 0 \\ x & \text{if } x \in X, y = a \end{cases}$$
(1)

We prove that for all $I \in \eta$, $I' = I \cup \{a\}$ is an ideal of X'. Clearly, $0 \in I'$. Let $x \otimes y \in I'$ and $y \in I'$. If $x, y \neq a$, then $x * y \in I$. Since I is an ideal in X and $y \in I$, we get that $x \in I \subseteq I'$. If x = a, clearly $x \in I'$. If $x \in X$ and y = a, then $x = x \otimes y \in I'$. Thus $\eta' = \{I' : I \in \eta\}$ is a family of ideals in X' which is closed under intersection. By Theorem 3.1, there is a uniformity \mathcal{U}' on X'.

By Example 3.1, there is a quasi-uniform BCC-algebra of order 4. If $(X, *, 0, \mathcal{U})$ is a quasi-uniform BCC-algebra of order n, then by the above paragraph there is a quasi-uniform BCC-algebra of order n + 1.

Corollary 3.12. For each $n \ge 4$, there is a right topological BCC-algebra of order n.

Proof. By Theorems 3.11 and 3.3, the proof is obvious.

Theorem 3.13. For each $n \ge 4$, there is a T_0 quasi-uniform BCC-algebra of order n.

Proof. Let (X, *, 0) be a BCC-algebra and $a \notin X$. Then $X' = X \cup \{a\}$ is a BCC-algebra by

$$x \otimes y = \begin{cases} x * y & \text{if } x, y \in X \\ 0 & \text{if } x \in X, y = a \\ a & \text{if } x = a, y \in X \end{cases}$$
(2)

First we show that every ideal in X is an ideal in X'. Let I be an ideal in X, $x \otimes y \in I$ and $y \in I$. $x \neq a$ because $a * y = a \notin I$. Since $x * y \in I$, $x, y \in X$ and I is an ideal in X, we get that $x \in I$. Hence if η is a family of ideals in X which is closed under intersection it is in X' so. By Theorem 3.1, there are quasi-uniformities $\mathcal{U}, \mathcal{U}'$ on X, X', respectively. By Proposition 3.7, (X, \mathcal{U}) is a T_0 quasi-uniform space iff $\{0\} \in \eta$ iff (X', \mathcal{U}') is T_0 quasi-uniform space.

Now by Example 3.1, (X, \mathcal{U}) is a T_0 quasi-uniform BCC-algebra of order 4. Let $(X, *, 0, \mathcal{U})$ be a T_0 quasi-uniform BCC-algebra of order n. Then by the above paragraph, we can find a quasi-uniform BCC-algebra (X', \mathcal{U}') of order n+1. \Box

Theorem 3.14. Let α be an infinite cardinal number. Then there is a T_0 quasiuniform BCC-algebra of order α .

Proof. Let X be a set with cardinal number α . Consider $X_0 = \{x_0 = 0, x_1, x_2, ...\}$ a countable subset of X. Define

$$x_i * x_j = \begin{cases} 0 & \text{if } i = j \\ x_i & \text{if } i \neq j. \end{cases}$$
(3)

Then $(X_0, *, 0)$ is a BCC-algebra. Let η be a collection of ideals in X_0 which is closed under intersection and contains $\{0\}$. Then by Theorem 3.1 and Proposition 3.7, there is a quasi-uniformity \mathcal{U}_0 on X_0 such that (X_0, \mathcal{U}_0) is a T_0 quasi-uniform BCC-algebra. Now, define the binary operation \otimes on X by

$$x \otimes y = \begin{cases} x * y & \text{if } x, y \in X_0 \\ 0 & \text{if } x \in X_0, y \notin X_0 \\ x & \text{if } x \notin X_0, y \in X_0 \\ 0 & \text{if } x = y \notin X_0 \\ x & \text{if } x \neq y \ x, y \notin X_0. \end{cases}$$
(4)

It is routine to check that X is a BCC-algebra of order α . Let $I \in \eta$ and $x, y \in X$ such that $x \otimes y \in I$ and $y \in I$. Then $y \in X_0$. If $x \in X_0$, then since I is an ideal in X_0 and $x * y = x \otimes y \in I$, we get that $x \in I$. If $x \notin X_0$, then $x = x \otimes y \in I$. This proves that η is a collection of ideals in X which is closed under intersection and contains $\{0\}$. Hence by Theorem 3.1 and Proposition 3.7, there is a T_0 quasi-uniformity \mathcal{U} on X.

Corollary 3.15. If α is a cardinal number, then there is a T_0 right topological BCC-algebra.

4. The bicompletion of topological BCC-algebra

In this section, we let X be a *BCC*-algebra and η be an arbitrary family of regular ideals of X which is closed under intersection and prove that for T_0 quasi-uniform BCC-algebra (X, \mathcal{U}) , the bicompletion $(\tilde{X}, \tilde{\mathcal{U}})$ admits the structure of a topological BCC-algebra such that X is a $T(\tilde{\mathcal{U}})^*$ -dense sub BCC-algebra of \tilde{X} .

Proposition 4.1. Let *I* be a regular ideal of BCC-algebra *X*. Define $I_L^{-1} = \{(x, y) \in X \times X : (y, x) \in I_L\}$ and $I_L^* = I_L \cap I_L^{-1}$. Then following holds: (i) $I_L^{-1} = \{(x, y) \in X \times X : x * y \in I\},$ (ii) $I_L^{-1}(x) = \{y \in X : x * y \in I\},$ (iii) $I_L^{-1}(0) = X,$ (iv) $I_L^* = \{(x, y) \in X \times X : x \equiv^I y\},$ (v) $I_L^*(x) = \{y \in X : x \equiv^I y\} = x/I,$ (vi) if $x \in I$, then $I_L^*(x) = I$, (vii) $I_L^*(I_L^*(0)) = I_L^*(0),$ (viii) $I_L^*(G * H) = I_L^*(G) * I_L^*(H).$

Proof. The proofs (i),(ii),(iv),(v) and (viii) are easy. To prove (iii), let $x \in X$. Since $0 * x = 0 \in I$, by (ii), $x \in I_L^{-1}(0)$. So $X \subseteq I_L^{-1}(0)$. (vi)

$$z \in I_L^{\star}(x) \Leftrightarrow z \equiv^I x \Leftrightarrow x * z \in I, z * x \in I \Leftrightarrow z \in I.$$

(vii) By (iv) we have

$$I_L^{\star}(I_L^{\star}(0)) = I_L^{\star}(I) = \{ y \in X : \exists x \in I \ s.t \ y \equiv^I x \} = \{ y \in X : y \in I \} = I = I_L^{\star}(0). \quad \Box$$

Theorem 4.2. There is a uniformity \mathcal{U}^* on X such that $(X, T(\mathcal{U}^*))$ is a completely regular topological BCC-algebras, where $T(\mathcal{U}^*)$ is the induced topology by \mathcal{U}^* on X.

Proof. Let $\mathcal{B} = \{I_L^* : I \in \eta\}$. As the proof of Theorem 3.1, we can show that \mathcal{B} is a base for the quasi-uniformity $\mathcal{U}^* = \{U \subseteq X \times X : \exists I \in \eta \text{ s.t } I_L^* \subseteq U\}$. We prove \mathcal{U}^* is a uniformity. For this we must show $U^{-1} \in \mathcal{U}^*$, for all $U \in \mathcal{U}^*$. Let $U \in \mathcal{U}^*$. Then $I_L^* \subseteq U$ for some $I \in \eta$. Since $I_L^* = (I_L^*)^{-1}$, $(I_L^*)^{-1} \subseteq U$ and so $I_L^* \subseteq U^{-1}$. This implies that $U^{-1} \in \mathcal{U}^*$. Now suppose $T(\mathcal{U}^*) = \{G \subseteq X : \forall x \in G \exists I \in \eta \text{ s.t } I_L^*(x) \subseteq U\}$ is the induced topology by \mathcal{U}^* on X. We will prove that * is continuous. For this, suppose $x * y \in G \in T(\mathcal{U}^*)$. Then there exists $I \in \eta$ such that $I_L^*(x * y) \subseteq G$. Let $z \in I_L^*(x) * I_L^*(y)$. Then $z = \alpha * \beta$, for some $\alpha \in I_L^*(x)$ and $\beta \in I_L^*(y)$. Since $\alpha \equiv^I x$ and $\beta \equiv^I y$ and \equiv^I is congruence relation, $x * y \equiv^I \alpha * \beta = z$. This implies that $z \in I_L^*(x * y)$ and so $I_L^*(x) * I_L^*(y) \subseteq I_L^*(x * y)$. Finally, since $T(\mathcal{U}^*)$ is the induced topology by uniformity \mathcal{U}^* , it is completely regular on X.

Example 4.1. Let (X, *, 0) be as BCC-algebra in example 3.1. It is easy to see that I_1, I_2 and I_3 are regular ideals of X. Hence $(I_1)_L^* = \Delta$,

 $(I_2)_L^{\star} = \triangle \cup \{(0,1), (1,0), (0,2), (2,0), (1,2), (2,1)\}$

and $(I_3)_L^{\star} = X \times X$. Therefore, $\mathcal{U}^{\star} = \{ U \subseteq X \times X : \exists i \in \{1, 2, 3\} \ s.t \ (I_i)_L^{\star} \subseteq U \}.$

Example 4.2. Let $X = [0, \infty)$. Then X is a BCC-algebra with the following operation

$$x * y = \begin{cases} 0 & \text{if } x \leqslant y \\ x & \text{if } x > y. \end{cases}$$
(5)

Let $I_n = [0, n]$, for each $n \ge 1$. We show that I_n is a regular ideal. Let $(x * y) * z \in I_n$ and $y \in I_n$. If y < x, then $x * z = (x * y) * z \in I_n$. If $y \ge x$, then $x \in I_n$. Since x * zis x or 0, we get that $x * z \in I_n$. Thus, I_n is a BCC-ideal and so is a regular ideal. Moreover,

$$I_{nL}^{\star} = \{(x, y) \in X \times X : x * y, y * x \le n\} = \{(x, y) \in X \times X : x, y \in I_n\} = I_n \times I_n.$$

Now let $\eta = \{I_n : n \ge 1\}$. Then η is a family of regular ideals which is closed under intersection. By Theorem 4.2, $\mathcal{U}^* = \{U \subseteq X \times X : \exists n \ge 1 \text{ s.t } I_n \times I_n \subseteq U\}.$

A topological space A is *connected* if and only if it has only A and \emptyset as closed and open subsets.

Proposition 4.3. The space $(X, T(\mathcal{U}^*))$ is connected if and only if $\eta = \{X\}$.

Proof. Let $X \neq I \in \eta$ and $x \notin I$. It is clear that $I_L^*(x) \in T(\mathcal{U}^*)$. We show that $I_L^*(x)$ is closed in this space. Let $y \in \overline{I_L^*(x)}$. Then there is a $z \in I_L^*(y) \cap I_L^*(x)$. Hence $y \equiv^I z \equiv^I x$ which implies that $y \in I_L^*(x)$. Obviously, $I_L^*(x)$ is nonempty. If $I_L^*(x) = X$, then 0 is in it and so $x \equiv^I 0$ which implies that $x \in I$, a contradiction. Thus, $I_L^*(x)$ is a nonempty proper subset of X which is closed and open. Hence this space is not connected. Conversely, let $\eta = \{X\}$. Then $T(\mathcal{U}^*) = \{\emptyset, X\}$. Hence $(X, T(\mathcal{U}^*))$ is connected. \Box

Recall quasi-uniform space (A, Q) is totally bounded, if for each $q \in Q$ there exist sets $S_1, S_2, ..., S_n$ such that $A = \bigcup_{i=1}^n S_i$ and for each $1 \le i \le n$, $S_i \times S_i \subseteq q.[11],[16]$

Proposition 4.4. The following conditions are equivalent: (i) for each $I \in \eta$, X/I is finite, (ii) (X, \mathcal{U}) is totally bounded, (iii) $(X, T(\mathcal{U}^*))$ is compact.

Proof. $(i \Rightarrow ii)$ Let for each $I \in \eta$, X/I be finite. We prove that (X, \mathcal{U}) is totally bounded. Let $I \in \eta$. Since X/I is finite, there are $x_1, x_2, ..., x_n \in X$ such that $X = \bigcup_{i=1}^n x_i/I$. For each $1 \le i \le n$, $x_i/I \times x_i/I \subseteq I_L$ because if $(x, y) \in x_i/I \times x_i/I$, then $x \equiv^I x_i \equiv^I y$ and so $(x, y) \in I_L$. This proves that (X, \mathcal{U}) is totally bounded.

 $(ii \Rightarrow iii)$ Let (X, \mathcal{U}) be totally bounded and $I \in \eta$. There exist sets $S_1, S_2, ..., S_n$, such that $\bigcup_{i=1}^n S_i = X$ and for each $1 \leq i \leq n$, $S_i \times S_i \subseteq I_L$. Let $1 \leq i \leq n$ and $x, y \in S_i$. Since (x, y) and (y, x) are in I_L , we get $x \equiv^I y$. This proves that $S_i \subseteq x_i/I$, for some $x_i \in S_i$. Now to prove that $(X, T(\mathcal{U}^*))$ is compact let $X = \bigcup_{\alpha \in \Omega} G_\alpha$, where each G_α is in $T(\mathcal{U}^*)$. Then there are $G_{\alpha_1}, ..., G_{\alpha_n}$ such that $x_i \in G_{\alpha_i}$ for each $1 \leq i \leq n$. Now suppose $x \in X$, then $x \in x_i/I$, for some $1 \leq i \leq n$ and so $x \in I^*_L(x_i) \subseteq G_{\alpha_i}$. Therefore $X \subseteq \bigcup_{i=1}^n G_{\alpha_i}$, which shows that $(X, T(\mathcal{U}^*))$ is compact.

 $(iii \Rightarrow i)$ Let $I \in \eta$. Since $\{I_L^{\star}(x) : x \in X\}$ is an open cover of X in $T(\mathcal{U}^{\star})$, there are $x_1, x_2, ..., x_n \in X$ such that $X \subseteq \bigcup_{i=1}^n I_L^{\star}(x_i)$. Now it is easy to see that $X/I = \{x_1/I, ..., x_n/I\}$.

Theorem 4.5. Let $(X, *, \mathcal{T})$ be a semi topological BCC-algebra. If $\eta \subseteq \mathcal{T}$, then $T(\mathcal{U}^*) \subseteq \mathcal{T}$.

Proof. Let $(X, *, \mathcal{T})$ be a semitopological BCC-algebra which includes η . Given $x \in G \in T(\mathcal{U}^*)$. Then there exists $I \in \eta$ such that $I_L^*(x) \subseteq G$. Since $x * x = 0 \in I \in \mathcal{T}$, there exists $U \in \mathcal{T}$ such that $x \in U$ and $x * U, U * x \subseteq I$. If $z \in U$, then $x * z, z * x \in I$ and so $z \in I_L^*(x)$. Hence $x \in U \subseteq I_L^*(x) \subseteq G$. Thus $T(\mathcal{U}^*) \subseteq \mathcal{T}$.

Lemma 4.6. Let \mathcal{B} be a base for \mathcal{U}^* -Cauchy filter \mathcal{G} on quasi-uniform BCC-algebra (X, \mathcal{U}) . Then the set $\{I_L^*(B) : I \in \eta, B \in \mathcal{B}\}$ is a base for a unique minimal \mathcal{U}^* -Cauchy filter coarser than \mathcal{G} .

Proof. By Lemma 2.2, the set $\{U(B) : B \in \mathcal{B}, U \in \mathcal{U}^*\}$ is a base for the unique minimal \mathcal{U}^* -Cauchy filter \mathcal{G}_0 coareser than \mathcal{G} . Let $U \in \mathcal{U}^*$ and $B \in \mathcal{B}$. Then for some $I \in \eta$, $I_L^* \subseteq U$. So $I_L^*(B) \subseteq U(B)$. Now it is easy to prove that the set $\{I_L^*(B) : I \in \eta, B \in \mathcal{B}\}$ is a base for \mathcal{G}_0 .

Lemma 4.7. η is a base for a minimal \mathcal{U}^* -Cauchy filter \mathcal{I} on quasi-uniform BCCalgebra (X, \mathcal{U}) .

Proof. Let $C = \{S \subseteq X : \exists I \in \eta \text{ s.t } I \subseteq S\}$. It is easy to prove that C is a filter with base η . To prove that C is a \mathcal{U}^* -Cauchy filter, let $U \in \mathcal{U}$. There is a $I \in \eta$ such that $I_L \subseteq U$. If $x, y \in I_L^*(0)$, then $x \equiv^I y$ and so $(x, y) \in I_L^* \subseteq I_L \subseteq U$. This proves that $I_L^*(0) \times I_L^*(0) \subseteq U$. By Proposition 4.1(vi), $I \times I \subseteq U$. Hence C is a \mathcal{U}^* -Cauchy filter. By Lemma 2.2, the set $\{I_L^*(I_L^*(0)) : I \in \eta\}$ is a base for the unique minimal \mathcal{U}^* -Cauchy filter \mathcal{I} coareser than C. But by Proposition 4.1 (vii), $I_L^*(I_L^*(0)) = I_L^*(0) = I$. Therefore, η is a base for $\mathcal{I} = C$.

Lemma 4.8. Let \mathcal{G} and \mathcal{H} be \mathcal{U}^* -Cauchy filters on X. Then $\mathcal{G} * \mathcal{H} = \{G * H : G \in \mathcal{G}, H \in \mathcal{H}\}$ is a \mathcal{U}^* -Cauchy filter base on X.

Proof. Let $I \in \eta$. Since \mathcal{G} and \mathcal{H} are \mathcal{U}^* -Cauchy filters, there are $G \in \mathcal{G}$ and $H \in \mathcal{H}$ such that $G \times G \subseteq I_L$ and $H \times H \subseteq I_L$. We show that $G * H \times G * H \subseteq I_L$. Let $g_1, g_2 \in G$ and $h_1, h_2 \in H$. Then, $(g_1, g_2), (g_2, g_1), (h_1, h_2), (h_2, h_1)$ are in I_L . So $g_1 \equiv^I g_2$ and $h_1 \equiv^I h_2$. Since \equiv^I is congruence, $g_1 * h_1 \equiv^I g_2 * h_2$, which implies that $(g_1 * h_1, g_2 * h_2) \in I_L^*$.

Theorem 4.9. There is a quasi-uniform space $(\widetilde{X}, \widetilde{\mathcal{U}})$ of minimal \mathcal{U}^* -Cauchy filers of quasi-uniform BCC-algebra (X, \mathcal{U}) that admits a BCC-algebra structure.

Proof. Let \widetilde{X} be the family of all minimal \mathcal{U}^* -Cauchy filters of quasi-uniform BCC-algebra (X, \mathcal{U}) . Let for each $U \in \mathcal{U}$,

$$\widetilde{U} = \{ (\mathcal{G}, \mathcal{H}) \in \widetilde{X} \times \widetilde{X} : \exists G \in \mathcal{G} , \ H \in \mathcal{H} \ s.t \ G \times H \subseteq U \}.$$

If $\widetilde{\mathcal{U}} = fil\{\widetilde{U} : U \in \mathcal{U}\}$, then $(\widetilde{X}, \widetilde{\mathcal{U}})$ is a quasi-uniform space of minimal \mathcal{U}^* -Cauchy filters of (X, \mathcal{U}) . Let $\mathcal{G}, \mathcal{H} \in \widetilde{X}$. Since \mathcal{G}, \mathcal{H} are minimal \mathcal{U}^* -Cauchy filters on X, then by Lemma 4.8, $\mathcal{G} * \mathcal{H}$ is \mathcal{U}^* -Cauchy filter base on X. We define $\mathcal{G} * \mathcal{H}$ as the minimal \mathcal{U}^* -Cauchy filter contained $\mathcal{G} * \mathcal{H}$. By Lemma 2.2, the set $\{I_L^*(G * H) : G \in \mathcal{G}, H \in \mathcal{H}, I \in \eta\}$ is a base of $\mathcal{G} * \mathcal{H}$. But by Proposition 4.1 $(viii), I_L^*(G * H) = I_L^*(G) * I_L^*(H)$, so the set $\{I_L^*(G) * I_L^*(H) : G \in \mathcal{G}, H \in \mathcal{H}, I \in \eta\}$ is a base of it. Now we will prove that $(\widetilde{X}, *)$ is a BCC-algebra. For this, we have to prove that:

$$(i) \ ((\mathcal{G}\tilde{*}\mathcal{H})\tilde{*}(\mathcal{K}\tilde{*}\mathcal{H}))\tilde{*}(\mathcal{G}\tilde{*}\mathcal{K}) = \mathcal{I}$$

 $(ii) \quad I \tilde{*} \mathcal{G} = \mathcal{I}$

 $(iii) \ \mathcal{G}\tilde{*}\mathcal{I}=\mathcal{G}$

$$(iv) \ \mathcal{G}\tilde{*}\mathcal{H} = \mathcal{H}\tilde{*}\mathcal{G} = \mathcal{I} \Rightarrow \mathcal{G} = \mathcal{H}$$

where $\mathcal{G}, \mathcal{H}, \mathcal{K} \in \widetilde{X}$, and \mathcal{I} is minimal \mathcal{U}^* -Cauchy filter in Lemma 4.7.

(i) Let $\mathcal{G}, \mathcal{H}, \mathcal{K} \in \widetilde{X}$. By Lemma 4.6, the set S_1 defined by

 $\{I_{1L}^{\star}(I_{2L}^{\star}(G_1*H_1)*I_{4L}^{\star}(K_1*H_2))*I_{5L}^{\star}(G_2*K_2)):I_i \in \eta, \ G_i \in \mathcal{G}, \ H_i \in \mathcal{H}, \ K_i \in \mathcal{K}\}$

is the base of minimal \mathcal{U}^* -Cauchy filter $((\mathcal{G}^*\mathcal{H})^*(\mathcal{K}^*\mathcal{H}))^*(\mathcal{G}^*\mathcal{K})$ and by Lemma 4.7, η is the base of minimal \mathcal{U}^* -Cauchy filter \mathcal{I} . Let $I_{1L}^*(I_{2L}^*(I_{3L}^*(G_1*H_1)*I_{4L}^*(K_1*H_2))*I_{5L}^*(G_2*K_2)) \in S_1$. Put $I = \bigcap_{j=1}^4 I_{jL}$, $G = G_1 \cap G_2$, $H = H_1 \cap H_2$ and $K = K_1 \cap K_2$. Then

$$I_L^{\star}(I_L^{\star}(I_L^{\star}(G * H) * I_L^{\star}(K * H)) * I_L^{\star}(G_*K))$$

is a subset of

$$I_{1L}^{\star}(I_{2L}^{\star}(I_{3L}^{\star}(G_1 * H_1) * I_{4L}^{\star}(K_1 * H_2)) * I_{5L}^{\star}(G_2 * K_2)) \in S_1$$

Now since ((g * h) * (k * h)) * (g * k) = 0, for each $g \in G$, $h \in H$ and $k \in K$, it is easy to prove that

$$I_L^{\star}(0) \subseteq I_L^{\star}(I_L^{\star}(I_L^{\star}(G * H) * I_L^{\star}(K * H)) * I_L^{\star}(G_*K)).$$

Hence $\mathcal{I} \subseteq ((\mathcal{G}\tilde{*}\mathcal{H})\tilde{*}(\mathcal{K}\tilde{*}\mathcal{H}))\tilde{*}(\mathcal{G}\tilde{*}\mathcal{K})$. Minimality $((\mathcal{G}\tilde{*}\mathcal{H})\tilde{*}(\mathcal{K}\tilde{*}\mathcal{H}))\tilde{*}(\mathcal{G}\tilde{*}\mathcal{K})$ implies that

$$\mathcal{I} = ((\mathcal{G}\tilde{*}\mathcal{H})\tilde{*}(\mathcal{K}\tilde{*}\mathcal{H}))\tilde{*}(\mathcal{G}\tilde{*}\mathcal{K}).$$

(*ii*) The sets $S_1 = \{I_L^*(I_L^*(0) * G) : I \in \eta, G \in \mathcal{G}\}$ and $\eta = \{I_L^*(0) : I \in \eta\}$ are bases of minimal \mathcal{U}^* -Cauchy filters $\mathcal{I} \tilde{*} \mathcal{G}$ and \mathcal{I} , respectively. But for each $I \in \eta$ and $G \in \mathcal{G}$, by Proposition 4.1 (*viii*),

$$I_L^{\star}(I_L^{\star}(0) * G) = I_L^{\star}(I_L^{\star}(0)) * I_L^{\star}(G) = I_L^{\star}(0) * I_L^{\star}(G) = I_L^{\star}(0 * G) = I_L^{\star}(0).$$

So $S_1 = \eta$ and $\mathcal{I} = \mathcal{I} \tilde{*} \mathcal{G}$.

(*iii*) The sets $\{I_L^{\star}(G * I_L^{\star}(0)) : G \in \mathcal{G}, I \in \eta\}$ and $\{I_L^{\star}(G) : G \in \mathcal{G}\}$ are the bases of $\mathcal{G} \in \mathcal{I}$ and \mathcal{G} . For each $I \in \eta$ and $G \in \mathcal{G}$, by Proposition 4.1 (*viii*),

$$I_L^{\star}(G * I_L^{\star}(0)) = I_L^{\star}(G) * I_L^{\star}(I_L^{\star}(0)) = I_L^{\star}(G) * I_L^{\star}(0) = I_L^{\star}(G * 0) = I_L^{\star}(G).$$

So $S_1 = S_2$ and hence $\mathcal{G} = \mathcal{G} \tilde{*} \mathcal{I}$.

(iv) The sets $S_1 = \{I_L^{\star}(G) : I \in \eta , G \in \mathcal{G}\}$, $S_2 = \{I_L^{\star}(H) : I \in \eta , H \in \mathcal{H}\}$, $S_3 = \{I_L^{\star}(G * H) : I \in \eta , G \in \mathcal{G}, H \in \mathcal{H}\}$, $S_4 = \{I_L^{\star}(H * G) : I \in \eta , G \in \mathcal{G}, H \in \mathcal{H}\}$ and $\eta = \{I_L^{\star}(0) : I \in \eta\}$ are the bases of \mathcal{G} , \mathcal{H} , $\mathcal{G}\tilde{*}\mathcal{H}$, $\mathcal{H}\tilde{*}\mathcal{G}$ and \mathcal{I} respectively. Let $I_L^{\star}(G') \in S_1$. Since $\mathcal{G}\tilde{*}\mathcal{H} = \mathcal{H}\tilde{*}\mathcal{G} = \mathcal{I}$, $J_L^{\star}(G_0 * H_0) = K_L^{\star}(H_1 * G_1) = I_L^{\star}(0) = I$ for some $J, K \in \eta$. Let $G = G' \cap G_0 \cap G_1$ and $H = H_0 \cap H_1$. Now for each $g \in G$ and $h \in H$,

$$g * h \in J_L^{\star}(g) * J_L^{\star}(h) = J_L^{\star}(g * h) \subseteq J_L^{\star}(G * H) \subseteq J_L^{\star}(G_0 * H_0) = I.$$

Hence $g * h \in I$. With the similar argument we have $h * g \in I$. So $I_L^{\star}(g) = I_L^{\star}(h)$. Therefore, $I_L^{\star}(H) = I_L^{\star}(G) \subseteq I_L^{\star}(G')$. Hence $I_L^{\star}(G') \in \mathcal{H}$. So $\mathcal{G} \subseteq \mathcal{H}$. By minimality, $\mathcal{H} = \mathcal{G}$.

Theorem 4.10. If quasi-uniform BCC-algebra (X, \mathcal{U}) is a T_0 , Then (i) $(\widetilde{X}, \widetilde{\mathcal{U}})$ is the bicompletion of (X, \mathcal{U}) . (ii) X is a sub BCC-algebra of \widetilde{X} . (iii) $(\widetilde{X}, T(\widetilde{\mathcal{U}^*}))$ is a topological BCC-algebra.

Proof. (i) By Lemma 2.2 and Lemma 2.3 , $(\widetilde{X}, \widetilde{\mathcal{U}})$ is the unique T_0 bicompletion quasi-uniform of (X, \mathcal{U}) and the mapping $i : X \to \widetilde{X}$ defined by

$$i(x) = \{ W \subseteq X : W \text{ is a } T(\mathcal{U}^{\star}) - neighborhood \text{ of } x \}$$

is a quasi-uniform embedded and $cl_{T(\widetilde{\mathcal{U}^*})}i(X) = \widetilde{X}$. (*ii*) Let $x, y \in X$. We shall prove that $i(x)\tilde{*}i(y) = i(x * y)$. By Lemma 2.3, the set

$$S = \{I_L^{\star}(W_x * W_y) : I \in \eta , W_x W_y \text{ are } T(\mathcal{U}^{\star}) - neighborhoods x, y\}$$

is base for $i(x)\tilde{*}i(y)$. Since $I_L^{\star}(x * y) \subseteq I_L^{\star}(W_x\tilde{*}W_y)$ and $I_L^{\star}(x * y) \in i(x * y)$, we deduced that filter $i(x)\tilde{*}i(y)$ is contained in the filter i(x * y). Since they are minimal \mathcal{U}^{\star} -Cauchy filters, $i(x)\tilde{*}i(y) = i(x * y)$. Hence X is a sub-BCC-algebra of \widetilde{X} . (*iii*) By Lemma 2.3, $(\widetilde{\mathcal{U}})^{\star} = \widetilde{\mathcal{U}^{\star}}$. Hence

$$T(\widetilde{\mathcal{U}^{\star}}) = \{ S \subseteq \widetilde{X} : \forall \mathcal{G} \in S \; \exists I \in \eta \; s.t \; \widetilde{I_L^{\star}}(\mathcal{G}) \subseteq S \}.$$

We prove that $(\widetilde{X}, T(\widetilde{\mathcal{U}^*}))$ is a topological BCC-algebra. Let $\mathcal{G}^*\mathcal{H} \in \widetilde{I_L^*}(\mathcal{G}^*\mathcal{H})$. We show that $\widetilde{I_L^*}(\mathcal{G})^*\widetilde{I_L^*}(\mathcal{H}) \subseteq \widetilde{I_L^*}(\mathcal{G}^*\mathcal{H})$. Let $\mathcal{G}_1 \in \widetilde{I_L^*}(\mathcal{G})$ and $\mathcal{H}_1 \in \widetilde{I_L^*}(\mathcal{H})$. Then, there are $G \in \mathcal{G}, G_1 \in \mathcal{G}_1, H \in \mathcal{H}$ and $H_1 \in \mathcal{H}_1$ such that $G \times G_1 \subseteq I_L^*$ and $H \times H_1 \subseteq I_L^*$. By Lemma 2.3, $I_L^*(G * H) \in \mathcal{G}^*\mathcal{H}$ and $I_L^*(G_1 * H_1) \in \mathcal{G}_1^*\mathcal{H}_1$. We have to prove that $\mathcal{G}_1^*\mathcal{H}_1 \in \widetilde{I_L^*}(\mathcal{G}^*\mathcal{H})$. For this, it is enough to show that $I_L^*(G * H) \times I_L^*(G_1 * H_1) \subseteq I_L^*$. Let $y \in I_L^*(G * H)$ and $y_1 \in I_L^*(G_1 * H_1)$. Then, $y \equiv^I g * h$ and $y_1 \equiv^I g_1 * h_1$ for some $g \in G, g_1 \in G_1, h \in H, h_1 \in H_1$. Since $(g, g_1), (h, h_1)$ are in I_L^* , we get $g * h \equiv^I g_1 * h_1$. Hence $(y, y_1) \in I_L^*$.

5. Conclusion

In this paper on a BCC-algebra of X we introduced the quasi-uniformity \mathcal{U} induced by a family η of BCC-ideals of X. We studied some properties of topological space $(X, T(\mathcal{U}))$. Next researches can study the following assertions:

(1) separation axioms on $(X, T(\mathcal{U}))$ and $(X, T(\mathcal{U}^*))$,

- (2) quasi-uniform continuouty of the operation of X in quasi-uniform space (X, \mathcal{U}) ,
- (3) quasi-uniform continuous homomorphisms on (X, \mathcal{U}) ,
- (4) quasi-uniform quotient BCC-algebras.

References

- R. A. Borzooei, G. R. Rezaei, N. Kouhestani, On (semi)topological BL-algebra, Iranian Journal of Mathematical Sciences and Informatics 6 (2011), no. 1, 59–77.
- [2] N. Bourbaki, *Elements of mathematics general topology*, Addison-Wesley Publishing Company, 1966.
- [3] W.A. Dudek, A new characterization of ideals in BCC-algebras, Novi Sad J. Math. 29 (1999), no. 1, 1–6.
- [4] J. Hao, Ideal theory of BCC-algebras, Sci. Math. Japo. 3 (1998), 373–381.
- [5] W.A. Dudek, Initial segments in BCC-algebras, Mathematica Moravica 4 (2000), 27–34.
- W.A. Dudek, X.Zhang, On atoms in BCC-algebras, Discussiones Mathematicae ser. Algebra and Stochastic Methods 15 (1995), 81–85.
- [7] W.A. Dudek, On ideal and congruences in BCC-algebras, Czecho. Math. J. 48(123) (1998), 21–29.
- [8] W.A. Dudek, On proper BCC-algebras, Bull. Inst. Math. Acad. Sinica 20 (1992), 137–150.
- [9] W.A. Dudek, On BCC-algebras, Logique et Analyse 129-130 (1990),103-111.
- [10] W.A. Dudek, Subalgebras in finite BCC-algebras, Bull. Inst. Math. Acad. Sinica 28 (2000), 201–206.
- [11] P. Fletcher, W.F. Lindgren, Quasi-uniform Spaces, Lecture Notes in Pure and Applied Mathematics 77, Marcel Dekker, New York, 1982.
- [12] M. Haveshki, E. Eslami, A. Borumand Saeid, A topology induced by uniformity on BL-algebras, Math. Log. Quart. 53 (2007), no. 2, 162–169.
- [13] Y. Imai, K. Iséki, On axioms system of propositional calculi XIV, Poc. Japan Acad. 42 (1966), 19–22.
- [14] Y. Komori, The variety generated by BCC-algebras is finitely based, Reports Fac. Sci, Shizuoka Univ. 17 (1983), 13–16.
- [15] H.P.A. Künzi, J. Marin, S. Romaguera, Quasi-Uniformities on Topological semigroups and Bicompletion, Semigroups Forum 62 (2001), 403–422.
- [16] M.G. Murdeshwar, S.A. Naimpally, Quasi-Uniform Topological Spaces, Noordhoff, Groningen, 1966.
- [17] A. Weil, sur les espaces a structuure uniforme et sur la topologibgeneral, Gauthier-Villars, Paris, 1973.

(S. Mehrshad) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ZABOL, ZABOL, IRAN *E-mail address*: smehrshad@uoz.ac.ir

(N. Kouhestani) Fuzzy Systems Research Center, University of Sistan and Baluchestan, Zahedan, Iran

E-mail address: Kouhestani@math.usb.ac.ir