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Localization of semi-Heyting algebras

ALDO V. FIGALLO AND GUSTAVO PELAITAY

ABSTRACT. In this note, we introduce the notion of ideal on semi-Heyting algebras which
allows us to consider a topology on them. Besides, we define the concept of F—multiplier,
where § is a topology on a semi-Heyting algebra L, which is used to construct the localization
semi-Heyting algebra Lz. Furthermore, we prove that the semi-Heyting algebra of fractions
Lg associated with an A—closed system S of L is a semi-Heyting of localization. Finally, in the
finite case we prove that Lg is isomorphic to a special subalgebra of L. Since Heyting algebras
are a particular case of semi-Heyting algebras, all these results generalize those obtained in
[11].

Key words and phrases. localization, §—multipliers, semi-Heyting algebras, A—closed
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1. Introduction

Starting from the example of the ring, J. Schmid introduces in [20], [21] the notion
of maximal lattice of quotients for a distributive lattice. The central role in this
construction is played by the concept of multipliers, defined by W. H. Cornish in [13],
[14]. Using the model of localization ring, in [15] is defined for a bounded distributive
lattice L the localization lattice Lz of L with respect to a topology § on L and is
proved that the maximal lattice of quotients for a distributive lattice is a lattice of
localization (relative to the topology of regular ideals). The same theory is also valid
for the lattice of fractions of a distributive lattice with 0 and 1 relative to an A—closed
system. A theory of localization for Hilbert and Hertz algebras was developed in [5];
for the case of commutative bounded BCK-algebras see [17]; for the case of n—valued
Lukasiewicz-Moisil algebras see [12]; for the case of Heyting algebras see [11], for
the case of MV and pseudo MV —algebras see [6, 7], for the case of BL and pseudo
BL-algebras see [8, 9, 10] and for the case of hoop-algebras see [16].

On the other hand, semi-Heyting algebras were introduced as a new equational
class by H. P. Sankappanavar in [19] (see also [1, 2, 3]). These algebras represent a
generalization of Heyting algebras. Nevertheless the behavior of semi-Heyting alge-
bras is much more complicated than that of Heyting algebras.

An algebra £ = (L,V,A,—,0,1) is a semi-Heyting algebra if the following condi-
tions hold:

(sH1) £ =(L,V,A,0,1) is a lattice with 0 and 1.
(sH2) z A (z —y) =z Ay.
(sH3) zA(y—=2)=xA[(zAhy) = (zA2)].
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(sH4) z —» x = 1.

We will denote by SH the variety of semi-Heyting algebras. The variety H of
Heyting algebras is the subvariety of SH characterized by the equation (x Ay) — z =
1.

These new algebras share with Heyting algebras some important properties (see
[19]). For instance, they are pseudocomplemented, with the pseudocomplement given
by z* = x — 0, congruences on them are determined by filters and the variety of semi-
Heyting algebras is arithmetic. But, at the same time, semi-Heyting algebras present
strong diferences with Heyting algebras. For example, the operation of implication on
a semi-Heyting algebra L is not determined by the order of the underlying structure
of lattice of L: there are two non-isomorphic structures of semi-Heyting definable on
the two-element lattice and ten on the three-element lattice. That is, we can have
many operations of semi-Heyting implications on a given lattice. Among all these
implications, the Heyting implication is the biggest one.

The aim of this paper is to generalize some of the results established in [11], using
the model of bounded distributive lattices from [15] to semi-Heyting algebras. To this
end, we introduce the notion of ideal on semi-Heyting algebras, dual to that of filter,
which allows us to consider a topology on them. Besides, we define the concept of
§—multiplier, where § is a topology on an semi-Heyting algebra L, which is used to
construct the localization semi-Heyting algebra Lgz. Furthermore, we prove that the
semi-Heyting algebra of fractions Lg associated with an A—closed system S of L is an
semi-Heyting algebra of localization. In the last part of this paper we give an explicit
description of the semi-Heyting algebras Lz and Lg in the finite case.

2. §—multipliers and localization of semi-Heyting algebras

Taking into account the notion of topology for bounded distributive lattices in-
troduced in [15], we will consider this concept in the particular case of semi-Heyting
algebras.

Definition 2.1. Let £ = (L,V,A,—,0,1) be a semi-Heyting algebra. A non-empty
subset I of L is an ideal of L, if I is an ideal of the bounded lattice (L, V, A, 0, 1).

It is worth noting that {0} and L are ideals of L. We will denote by I(L) the set
of all ideals of L.

If X is a non-empty subset of L, we will denote by (X) the ideal generated by

X. In particular, if X = {a} we will write (a) instead of ({a}). We have that (X) =

k

{y € L : there are 1, -+ ,x, € X such that y < \/ z;}. Moreover, if a € L then

=1

7=

(a) ={zx € L:z<a}.

Definition 2.2. Let L be a semi-Heyting algebra. A nomempty set § of elements
I € I(L) will be called a topology on L if the following properties hold:

(1) f I, €F, I, € I(L) and I; C I, then Iy € § (hence L € §),

(2) If Il,IQ S 37 then 1 NI € §.

Clearly, if § is a topology on L, then (L,§ U {0}) is a topological space. Any
intersection of topologies on L is a topology, hence the set T (L) of all topologies of
L is a complete lattice with respecto to inclusion.
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§ is a topology on L iff § is a filter of the lattice of power set of L, for this reason
a topology on L is usually called a Gabriel filter on I(L).

Definition 2.3. Let § be a topology on a semi-Heyting algebra L. Define the relation
05 on L as follows: (z,y) € Oz iff there exists I € F such that e Az = e Ay for any
ecl forall z,y € L.

Theorem 2.1. 03z is a congruence on L.

Proof. The proofs of reflexivity and the symmetry of 0z are straightforward. We
show that 0z is transitive. Suppose that (x,y), (y, 2) € 0z. Then there exist I1,I5 € §
such that e Ax = e Ay for every e € I1, and f Ay = f Az for every f € I5. Put
I=I NI €F. Then for every g € I, we have g Az = g A z. Hence (z,z) € 05.
Now suppose that (z,y), (z,w) € 05. Then there exist I, I5 € § such that e Az =
eNy foreveryeec Iy, and fAz= fAwforevery f € lo. Put I =1, NI, € §. Then
ghx=gAyand gAz=gAw, for every g € I. Hence, we get that g A (z A z) =
(ghy)Nz=(gANw)ANy=gA(yAw). Then (z A z,y Aw) € 3. On the other hand,
gh(xVz) = (gAz)V(gAz) = (gAy)V(gAw) = gA(yVw). Then (zVz,yVw) € 0z. By
(sH3), we have gA(z — 2) = gA[(ghx) — (gAz)] = gA[(gAy) — (9Aw)] = gA(y — w)
Thus (x — 2,y — w) € O5. Hence 05 is a congruence on L. O

Remark 2.1. Theorem 2.1 proves that L/0z is a semi-Heyting algebra. We will
denote by [z]p, the congruence class of an element 2 € L and by pg : L — L /03 the
canonical morphism of semi-Heyting algebras.

Definition 2.4. Let § be a topology on a semi-Heyting algebra L. An §F—multiplier
is a mapping f : I — L/0z where I € § and for every z € I and e € L: f(eAz) =

[e]os A f(2).

Example 2.1. (a) The map 1: L — L /0y defined by 1(x) = [z]g, for every z € L
is an §F—multiplier.
(b) The map 0 : L — L/fz defined by 0(x) = [0]p, for every x € L is an
F—multiplier.
(c) Forae Land I €3, fo:I — L/0z defined by fq(x) = [a]s, A [z]g, for every
x € I, is an F—multiplier. If dom(f,) = L, we denote f, by f,.

Lemma 2.2. For each F—multiplier f : I — L/0z the following properties hold:
(a) f(z) < [z]og, for all x € I,

(b) flzny)=fz) A fy),

(c) flxVvy)=flz)V f(y),

(d) [z]o; = [ylog A f(2).

Proof. 1t is straightforward. O

We denote the set of all the F—multipliers having the domain I € § by M (I, L/05)
and M(L/0z)= U M(I,L/63).
I€F
If 1,1, € § and I; C I, we have a canonical mapping ¢y, 1, : M(Iz,L/05) —
M(I1,L/83), defined by @1, 1,(f) = f |1, for f € M(I3,L/65).
Consider the directed system of sets ({M(I,L/05)}1e5, {¥n. 1.} 11, 1e5,1C1,) and
denote the inductive limit (in the category of sets) by Lz :
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Lg = hmM(I,L/Qg)
res

For any §—multiplier f : I — L/0z, we denote by (I, f) the equivalence class of
f in Lg
Remark 2.2. If f; : I, — L/0z, i = 1,2 are F—multipliers, then (ﬁ) = (m)
(in Lg) iff there exists I € § and I C I; N I3 such that fi [;= f2 |1 .

Let fi1 € M(I1,L/0p;), f2 € M(I2,L/03) two §—multipliers and we consider the
mappings f1 V fa, fi A fo, fi = fa: 1 NI — L/05 defined by:

o (fiVfo)(z)= fi(z)V fa(x)

o (finf2)(z) = fi(x) A fo(w)

o (fi = fo)(z) =[fr(x) = fa2(x)] A pz(z) for any = € I1 N Is.

The fact that f; V fo and fi A fo are F—multipliers is proved in [15].

Proposition 2.3. f; — fo defined as before is a §—multiplier.

Proof. Let x € I NI and e € L. Then by (sH3) we have
(fi = f)@Ay) =pz(zAy) Afi(z Ay) = falz Ay)]
= p3(2) Apz(y) A [(f1(@) Aps(y) = (fa(2) Aps(y))]
= p3(2) Aps(y) A [fi(z) = fao(2)]
= (fi = f2)(@) Apz(y).
Hence f1 *)fg GM(Il ﬂ[g,L/HS:) O

We will define on Lz the following operations:
o (0 f) A (o) = (h 1 ofi A 1)
o (I, f1)V(Iz, f2) = (LN I, f1V fa)

—

and for (I, f1), (I2, f2) we define the element

o (I, fr) = (T2, f2) = (LN Iz, fr = [f2).
We denote by 0 the equivalence class of (L,0) and by 1 the equivalence class of
(L, 1).

Lemma 2.4. For each I € §, (M(I,L/03),A\,V,—,0,1) is a semi-Heyting algebra.

Proof. Tt is easy to verify that (M (I, L/05),A,V,0,1) is a bounded lattice. To prove
that it is a semi-Heyting algebra, we have for all f1, fa, fs € M(I,L/0z) and = € I,
(sHL) (fiA(fi = f2))(2) = fi(x) A (fr = f2)(2)
= fi(@) A (fi(z) = fa(2)) A [z]o
fi(@) A (filz) = fa(z))
fi(z) A fa()
= (fiA fo)(z)
(sH2) (fin[(finf2) = (fiAf3)])(x) =

(@) A(fL A f2) = (fr A f3)]()

A A f2) () = (fr A f3)(@)] A flos
A (f2(x) = f3(2)) A [2]ox

A (fa = f3)(x)

(fa = f3))(2).

S e
)

5

=
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(sH3) (f1 = fi)(z) = (fi(z) = fri(z)) A [
= [o» A []o
= [1 /\:L‘]g}.
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Theorem 2.5. (Lg,V,A,—,0,1) is a semi-Heyting algebra.

Proof. Tt follows as a special case of Corollary 2.1 in [18]. Indeed, condition (ii) in
Definition 2.2 is stronger than the property of being dwon directed, the operations
V,A,—,0 and 1 of M(I,L/60z) obviously satisfy conditions (2.1) and (2.2) in [18,
Section 2.1] and M (I, L/05) is a semi-Heyting algebra by Lemma 2.4. O

The semi-Heyting algebra Lz will be called the localization semi-Heyting algebra
of L with respect to the topology §.

3. Semi-Heyting algebra of fractions relative to an A—closed system

Definition 3.1. A subset S C A is called A—closed system if 1 € S and if z,y € S
implies x Ay € S.

We will denote by S(L) the set of all A—closed system of L.

Lemma 3.1. Let S € S(L). Then, the binary relation 0g defined by (x,y) € 0s <
there is s € S such that x As =y A s is a congruence on L.

Proof. We will only prove that 6 is compatible with —. Suppose that (z,y), (z,w) €
fs. Then, there exists s,e € S such that tAs=y A s and zAe =wAe. From these
statements and (sH2), we have that

sheAN(x—z)=sNeA[(sheAx) = (sANeAz)
=sAheAN[(sheAy) = (sAheAw)
=sAheA(y— w).
Thus, (z — z,y — w) € 0s. Hence g is a congruence on L. O
For x € L we denote the equivalence class of z relative to g by [z]s and by

L[S] = L/0s. We denote the canonical map pg : L — L[S] defined by ps(x) = [z]s
for every x € L. Clearly, L[S] become a semi-Heyting algebra.

Remark 3.1. Since for every s € S, s A s = s A1, we deduce that [s]s = [1]s, hence
ps(S) = {[1]s}-

Theorem 3.2. If L is a semi-Heyting algebra and f : L — L’ is an morphism
of semi-Heyting algebras such that f(S) = {1}, then there is a unique morphism of
semi-Heyting algebras f': L[S] — L’ such that f' o pgs = f.

Proof. If follows from [18, Theorem 4.1] and Remark 3.1. O

Theorem 3.2 allows us to call L[S] the semi-Heyting algebra of fractions relative
to the A—closed system S.

Remark 3.2. From Theorem 3.2 we have that
(i) If S = {1}, then 05 coincides with the identity congruence on L and so, L[S] ~ L.
(ii) If S is an A—closed system of L such that 0 € S (for example S = L), then
0s = L x L. Hence, L[S] = {[0]s}.
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Remark 3.3. Let L a semi-Heyting algebra and S € S(L). Then §s = {I € I(L) :
INS #0}is a topology on L.

The topology §s will be called the topology associated with the A—closed system
S of L.

Lemma 3.3. Let Fg be the topology associated with the AN—closed system S. Then
Or, =0s.

Proof. Let (z,y) € 0r,. Then thereis I € §g such that sAxz = sAy, for all s € I. Since
there exists s, € I NS verifying s, A x = s, Ay, we infer that (z,y) € 6. Conversely,
let (z,y) € 6s. Then there is s, € S such that x A s, = y A s,. By considering I = (s,,)
we conclude that (z,y) € 0z,. O

Remark 3.4. From Lemma 3.3, we have that L/0z, = L[S]. Then an §s—multiplier
can be consider as a map f : I — L[S] where I € Fg and f(e A x) = [e]s A f(x) for
allz el ande € I

Lemma 3.4. Let (ﬁ), (I/Q,E) € Lz, be such that (ﬁ) = (m) Then there
exists I C Iy N Iz such that f1(s,) = fa(so) for all s, € INS.

Proof. From the hypothesis and Remark 2.2, we have that there exists I € §g, I C
I; N I such that f1 [;= f2 |; and so, f1(s,) = fa(s,) for each s, € INS. O

Theorem 3.5. Let L be a semi-Heyting algebra. If §s is the topology associated with
the A—closed system S, then Lz, is isomorphic to L[S].

—

Proof. Let a : Lz, — L[S] be defined by (I, f) = f(s) for all s € I NS. From
Lemma 14’\ we haveihit « is well-defined. Besides, « is onte-to-one. Indeed, suppose
that a(l1, f1) = a(ls, f2). Then there exist s; € I; NS and sy € I NS such that
fi(s1) = fa2(s2). Hence, by considering fi1(s1) = [z]s and fa(s2) = [y]s, we have
that there is s € S verifying x As = y As. If 8 = s A sy A sg, then we infer that
f1(s) = (5 Asy) = 815 A fulsr) = [5ls A fo(s2) = fals'). Let T = {s'). So, I € §s,
I C LNl and f1 |[;= fa |1 . Remark 2.2 allows us to infer that (I3, f1) = (12, f2).
In order to prove that « is surjective, let [a]s € L[S] and f, : L — L[S] defined
by f.(z) = [a A x]g for all z € L. It is simple to verify that f, is an Fs—multiplier.
Moreover, from Remark 3.1, oz(f,-f\a) = fo(s) = [a A s]s = [a]g, being s € S. It is
simple to verify that this map is an morphism of semi-Heyting algebras. O

4. Localization and fractions in finite semi-Heyting algebras

In this section, our attention is focus on considering the above results in the partic-
ular case of finite semi-Heyting algebras. More precisely, we will prove that for each
finite semi-Heyting algebra L and S € S(L) the algebra L[S] is isomorphic to a special
subalgebra of L. In order to do this, the following propositions will be fundamental.

Proposition 4.1. Let L be a finite semi-Heyting algebra and I C L. Then, the

following conditions are equivalent:
(i) I elI(A),
(ii) I = {a) for some a € L.

Proof. 1t is straightforward. O
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Proposition 4.2. Let L be a finite semi-Heyting algebra and S € S(L). Then §s =
{{a): A ©<a}.

zeS

Proof. Let us consider ¥ = {(a) : A z < a}. Assume that I € §s. Then, by Propo-
z€S
sition 4.1 we have that I = (a) for some a € L. On the other hand, from Remark 3.3

there is s € SN (a) which implies that A < s < a. Therefore, I € . Conversely, sup-
€S
pose that I € T. Hence, A z € I NS. Furthermore by Proposition 4.1 we have that
zes
I € I(L). From these last assertions and Remark 3.3 we conclude that I € §sg. O

Proposition 4.3. Let L be a finite semi-Heyting algebra and S € S(L). Then, the
following conditions are equivalent:
(i) (z,y) € 05
(ii) cANb=yAb whereb= A .
€S

Proof. 1t is routine. O

Lemma 4.4. ([19, Lemma 6.2]) Let L be a finite semi-Heyting algebra and (a) € I(L).
Then, L, = ({a),V,A,—=%,0,a) is a semi-Heyting algebra.

Finally, we obtain our desired goal.

Theorem 4.5. Let L be a finite semi-Heyting algebra and S € S(L). Then L[S] is

isomorphic to L, where b=/ .
zesS

Proof. Let : L — L; be the function defined by the prescription S(z) = 2 A b By
[19, Lemma 6.2] S is a semi-Heyting morphism. It is easy to check that j is surjective.
Therefore, S is an semi-Heyting epimorphism. Moreover, z € [1]p, < (2,1) € 05 &
there is s € S such that A s = s & 2 Ab=b< B(xr) =b < v € ker(f).
Therefore, taking into account a well-known result of universal algebra (see [4, p. 59])
we conclude that L[S] is isomorphic to Ly. O

Corollary 4.6. Let L be a finite semi-Heyting algebra and S € S(L). Then, Lg, is

isomorphic to Ly where b=\ x. More precisely, Lz, = {(m) cx e (b}
zes

Proof. 1t follows as a consequence of Theorem 3.5 and Theorem 4.5. O
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