
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 43(2), 2016, Pages 210–217
ISSN: 1223-6934

Localization of semi-Heyting algebras

Aldo V. Figallo and Gustavo Pelaitay

Abstract. In this note, we introduce the notion of ideal on semi-Heyting algebras which

allows us to consider a topology on them. Besides, we define the concept of F−multiplier,

where F is a topology on a semi-Heyting algebra L, which is used to construct the localization
semi-Heyting algebra LF. Furthermore, we prove that the semi-Heyting algebra of fractions

LS associated with an ∧−closed system S of L is a semi-Heyting of localization. Finally, in the

finite case we prove that LS is isomorphic to a special subalgebra of L. Since Heyting algebras
are a particular case of semi-Heyting algebras, all these results generalize those obtained in

[11].

Key words and phrases. localization, F−multipliers, semi-Heyting algebras, ∧−closed
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1. Introduction

Starting from the example of the ring, J. Schmid introduces in [20], [21] the notion
of maximal lattice of quotients for a distributive lattice. The central role in this
construction is played by the concept of multipliers, defined by W. H. Cornish in [13],
[14]. Using the model of localization ring, in [15] is defined for a bounded distributive
lattice L the localization lattice LF of L with respect to a topology F on L and is
proved that the maximal lattice of quotients for a distributive lattice is a lattice of
localization (relative to the topology of regular ideals). The same theory is also valid
for the lattice of fractions of a distributive lattice with 0 and 1 relative to an ∧−closed
system. A theory of localization for Hilbert and Hertz algebras was developed in [5];
for the case of commutative bounded BCK-algebras see [17]; for the case of n−valued
 Lukasiewicz-Moisil algebras see [12]; for the case of Heyting algebras see [11], for
the case of MV and pseudo MV−algebras see [6, 7], for the case of BL and pseudo
BL-algebras see [8, 9, 10] and for the case of hoop-algebras see [16].

On the other hand, semi-Heyting algebras were introduced as a new equational
class by H. P. Sankappanavar in [19] (see also [1, 2, 3]). These algebras represent a
generalization of Heyting algebras. Nevertheless the behavior of semi-Heyting alge-
bras is much more complicated than that of Heyting algebras.

An algebra L = 〈L,∨,∧,→, 0, 1〉 is a semi-Heyting algebra if the following condi-
tions hold:

(sH1) L = 〈L,∨,∧, 0, 1〉 is a lattice with 0 and 1.
(sH2) x ∧ (x→ y) = x ∧ y.
(sH3) x ∧ (y → z) = x ∧ [(x ∧ y)→ (x ∧ z)].
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(sH4) x→ x = 1.
We will denote by SH the variety of semi-Heyting algebras. The variety H of

Heyting algebras is the subvariety of SH characterized by the equation (x∧y)→ x =
1.

These new algebras share with Heyting algebras some important properties (see
[19]). For instance, they are pseudocomplemented, with the pseudocomplement given
by x∗ = x→ 0, congruences on them are determined by filters and the variety of semi-
Heyting algebras is arithmetic. But, at the same time, semi-Heyting algebras present
strong diferences with Heyting algebras. For example, the operation of implication on
a semi-Heyting algebra L is not determined by the order of the underlying structure
of lattice of L: there are two non-isomorphic structures of semi-Heyting definable on
the two-element lattice and ten on the three-element lattice. That is, we can have
many operations of semi-Heyting implications on a given lattice. Among all these
implications, the Heyting implication is the biggest one.

The aim of this paper is to generalize some of the results established in [11], using
the model of bounded distributive lattices from [15] to semi-Heyting algebras. To this
end, we introduce the notion of ideal on semi-Heyting algebras, dual to that of filter,
which allows us to consider a topology on them. Besides, we define the concept of
F−multiplier, where F is a topology on an semi-Heyting algebra L, which is used to
construct the localization semi-Heyting algebra LF. Furthermore, we prove that the
semi-Heyting algebra of fractions LS associated with an ∧−closed system S of L is an
semi-Heyting algebra of localization. In the last part of this paper we give an explicit
description of the semi-Heyting algebras LF and LS in the finite case.

2. F−multipliers and localization of semi-Heyting algebras

Taking into account the notion of topology for bounded distributive lattices in-
troduced in [15], we will consider this concept in the particular case of semi-Heyting
algebras.

Definition 2.1. Let L = 〈L,∨,∧,→, 0, 1〉 be a semi-Heyting algebra. A non-empty
subset I of L is an ideal of L, if I is an ideal of the bounded lattice 〈L,∨,∧, 0, 1〉.

It is worth noting that {0} and L are ideals of L. We will denote by I(L) the set
of all ideals of L.

If X is a non-empty subset of L, we will denote by 〈X〉 the ideal generated by
X. In particular, if X = {a} we will write 〈a〉 instead of 〈{a}〉. We have that 〈X〉 =

{y ∈ L : there are x1, · · · , xn ∈ X such that y ≤
k∨
i=1

xi}. Moreover, if a ∈ L then

〈a〉 = {x ∈ L : x ≤ a}.

Definition 2.2. Let L be a semi-Heyting algebra. A nomempty set F of elements
I ∈ I(L) will be called a topology on L if the following properties hold:
(1) If I1 ∈ F, I2 ∈ I(L) and I1 ⊆ I2, then I2 ∈ F (hence L ∈ F),
(2) If I1, I2 ∈ F, then I1 ∩ I2 ∈ F.

Clearly, if F is a topology on L, then (L,F ∪ {∅}) is a topological space. Any
intersection of topologies on L is a topology, hence the set T (L) of all topologies of
L is a complete lattice with respecto to inclusion.
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F is a topology on L iff F is a filter of the lattice of power set of L, for this reason
a topology on L is usually called a Gabriel filter on I(L).

Definition 2.3. Let F be a topology on a semi-Heyting algebra L. Define the relation
θF on L as follows: (x, y) ∈ θF iff there exists I ∈ F such that e ∧ x = e ∧ y for any
e ∈ I for all x, y ∈ L.

Theorem 2.1. θF is a congruence on L.

Proof. The proofs of reflexivity and the symmetry of θF are straightforward. We
show that θF is transitive. Suppose that (x, y), (y, z) ∈ θF. Then there exist I1, I2 ∈ F
such that e ∧ x = e ∧ y for every e ∈ I1, and f ∧ y = f ∧ z for every f ∈ I2. Put
I = I1 ∩ I2 ∈ F. Then for every g ∈ I, we have g ∧ x = g ∧ z. Hence (x, z) ∈ θF.

Now suppose that (x, y), (z, w) ∈ θF. Then there exist I1, I2 ∈ F such that e ∧ x =
e ∧ y for every e ∈ I1, and f ∧ z = f ∧ w for every f ∈ I2. Put I = I1 ∩ I2 ∈ F. Then
g ∧ x = g ∧ y and g ∧ z = g ∧ w, for every g ∈ I. Hence, we get that g ∧ (x ∧ z) =
(g ∧ y) ∧ z = (g ∧ w) ∧ y = g ∧ (y ∧ w). Then (x ∧ z, y ∧ w) ∈ θF. On the other hand,
g∧(x∨z) = (g∧x)∨(g∧z) = (g∧y)∨(g∧w) = g∧(y∨w). Then (x∨z, y∨w) ∈ θF. By
(sH3), we have g∧(x→ z) = g∧[(g∧x)→ (g∧z)] = g∧[(g∧y)→ (g∧w)] = g∧(y → w).
Thus (x→ z, y → w) ∈ θF. Hence θF is a congruence on L. �

Remark 2.1. Theorem 2.1 proves that L/θF is a semi-Heyting algebra. We will
denote by [x]θF the congruence class of an element x ∈ L and by pF : L −→ L/θF the
canonical morphism of semi-Heyting algebras.

Definition 2.4. Let F be a topology on a semi-Heyting algebra L. An F−multiplier
is a mapping f : I −→ L/θF where I ∈ F and for every x ∈ I and e ∈ L : f(e ∧ x) =
[e]θF ∧ f(x).

Example 2.1. (a) The map 1 : L −→ L/θF defined by 1(x) = [x]θF for every x ∈ L
is an F−multiplier.

(b) The map 0 : L −→ L/θF defined by 0(x) = [0]θF for every x ∈ L is an
F−multiplier.

(c) For a ∈ L and I ∈ F, fa : I −→ L/θF defined by fa(x) = [a]θF ∧ [x]θF for every

x ∈ I, is an F−multiplier. If dom(fa) = L, we denote fa by fa.

Lemma 2.2. For each F−multiplier f : I −→ L/θF the following properties hold:
(a) f(x) ≤ [x]θF , for all x ∈ I,
(b) f(x ∧ y) = f(x) ∧ f(y),
(c) f(x ∨ y) = f(x) ∨ f(y),
(d) [x]θF = [y]θF ∧ f(x).

Proof. It is straightforward. �

We denote the set of all the F−multipliers having the domain I ∈ F by M(I, L/θF)
and M(L/θF) =

⋃
I∈F

M(I, L/θF).

If I1, I2 ∈ F and I1 ⊆ I2, we have a canonical mapping ϕI1,I2 : M(I2, L/θF) −→
M(I1, L/θF), defined by ϕI1,I2(f) = f |I1 for f ∈M(I2, L/θF).

Consider the directed system of sets 〈{M(I, L/θF)}I∈F, {ϕI1,I2}I1,I2∈F,I1⊆I2〉 and
denote the inductive limit (in the category of sets) by LF :
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LF = lim−−→
I∈F

M(I, L/θF).

For any F−multiplier f : I −→ L/θF, we denote by (̂I, f) the equivalence class of
f in LF.

Remark 2.2. If fi : Ii −→ L/θF, i = 1, 2 are F−multipliers, then ̂(I1, f1) = ̂(I2, f2)
(in LF) iff there exists I ∈ F and I ⊆ I1 ∩ I2 such that f1 |I= f2 |I .

Let f1 ∈ M(I1, L/θθF), f2 ∈ M(I2, L/θF) two F−multipliers and we consider the
mappings f1 ∨ f2, f1 ∧ f2, f1 → f2 : I1 ∩ I2 −→ L/θF defined by:
• (f1 ∨ f2)(x) = f1(x) ∨ f2(x)
• (f1 ∧ f2)(x) = f1(x) ∧ f2(x)
• (f1 → f2)(x) = [f1(x)→ f2(x)] ∧ pF(x) for any x ∈ I1 ∩ I2.
The fact that f1 ∨ f2 and f1 ∧ f2 are F−multipliers is proved in [15].

Proposition 2.3. f1 → f2 defined as before is a F−multiplier.

Proof. Let x ∈ I1 ∩ I2 and e ∈ L. Then by (sH3) we have
(f1 → f2)(x ∧ y) = pF(x ∧ y) ∧ [f1(x ∧ y)→ f2(x ∧ y)]

= pF(x) ∧ pF(y) ∧ [(f1(x) ∧ pF(y))→ (f2(x) ∧ pF(y))]
= pF(x) ∧ pF(y) ∧ [f1(x)→ f2(x)]
= (f1 → f2)(x) ∧ pF(y).

Hence f1 → f2 ∈M(I1 ∩ I2, L/θF). �

We will define on LF the following operations:

• ̂(I1, f1) ∧ ̂(I2, f2) = ̂(I1 ∩ I2, f1 ∧ f2)

• ̂(I1, f1) ∨ ̂(I2, f2) = ̂(I1 ∩ I2, f1 ∨ f2)

and for ̂(I1, f1), ̂(I2, f2) we define the element

• ̂(I1, f1)→ ̂(I2, f2) = ̂(I1 ∩ I2, f1 → f2).
We denote by 0 the equivalence class of (L, 0) and by 1 the equivalence class of

(L, 1).

Lemma 2.4. For each I ∈ F, 〈M(I, L/θF),∧,∨,→, 0, 1〉 is a semi-Heyting algebra.

Proof. It is easy to verify that 〈M(I, L/θF),∧,∨, 0, 1〉 is a bounded lattice. To prove
that it is a semi-Heyting algebra, we have for all f1, f2, f3 ∈M(I, L/θF) and x ∈ I,

(sH1) (f1 ∧ (f1 → f2))(x) = f1(x) ∧ (f1 → f2)(x)
= f1(x) ∧ (f1(x)→ f2(x)) ∧ [x]θF
= f1(x) ∧ (f1(x)→ f2(x))
= f1(x) ∧ f2(x)
= (f1 ∧ f2)(x)

(sH2) (f1 ∧ [(f1 ∧ f2)→ (f1 ∧ f3)])(x) = f1(x) ∧ [(f1 ∧ f2)→ (f1 ∧ f3)](x)
= f1(x)∧ [(f1 ∧ f2)(x)→ (f1 ∧ f3)(x)]∧ [x]θF
= f1(x) ∧ (f2(x)→ f3(x)) ∧ [x]θF
= f1(x) ∧ (f2 → f3)(x)
= (f1 ∧ (f2 → f3))(x).

(sH3) (f1 → f1)(x) = (f1(x)→ f1(x)) ∧ [x]θF
= [1]θF ∧ [x]θF
= [1 ∧ x]θF
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= [x]θF
= 1(x).

�

Theorem 2.5. 〈LF,∨,∧,→,0,1〉 is a semi-Heyting algebra.

Proof. It follows as a special case of Corollary 2.1 in [18]. Indeed, condition (ii) in
Definition 2.2 is stronger than the property of being dwon directed, the operations
∨,∧,→, 0 and 1 of M(I, L/θF) obviously satisfy conditions (2.1) and (2.2) in [18,
Section 2.1] and M(I, L/θF) is a semi-Heyting algebra by Lemma 2.4. �

The semi-Heyting algebra LF will be called the localization semi-Heyting algebra
of L with respect to the topology F.

3. Semi-Heyting algebra of fractions relative to an ∧−closed system

Definition 3.1. A subset S ⊆ A is called ∧−closed system if 1 ∈ S and if x, y ∈ S
implies x ∧ y ∈ S.

We will denote by S(L) the set of all ∧−closed system of L.

Lemma 3.1. Let S ∈ S(L). Then, the binary relation θS defined by (x, y) ∈ θS ⇔
there is s ∈ S such that x ∧ s = y ∧ s is a congruence on L.

Proof. We will only prove that θS is compatible with→. Suppose that (x, y), (z, w) ∈
θS . Then, there exists s, e ∈ S such that x ∧ s = y ∧ s and z ∧ e = w ∧ e. From these
statements and (sH2), we have that

s ∧ e ∧ (x→ z) = s ∧ e ∧ [(s ∧ e ∧ x)→ (s ∧ e ∧ z)]
= s ∧ e ∧ [(s ∧ e ∧ y)→ (s ∧ e ∧ w)]

= s ∧ e ∧ (y → w).

Thus, (x→ z, y → w) ∈ θS . Hence θS is a congruence on L. �

For x ∈ L we denote the equivalence class of x relative to θS by [x]S and by
L[S] = L/θS . We denote the canonical map pS : L −→ L[S] defined by pS(x) = [x]S
for every x ∈ L. Clearly, L[S] become a semi-Heyting algebra.

Remark 3.1. Since for every s ∈ S, s ∧ s = s ∧ 1, we deduce that [s]S = [1]S , hence
pS(S) = {[1]S}.

Theorem 3.2. If L is a semi-Heyting algebra and f : L −→ L′ is an morphism
of semi-Heyting algebras such that f(S) = {1}, then there is a unique morphism of
semi-Heyting algebras f ′ : L[S] −→ L′ such that f ′ ◦ pS = f.

Proof. If follows from [18, Theorem 4.1] and Remark 3.1. �

Theorem 3.2 allows us to call L[S] the semi-Heyting algebra of fractions relative
to the ∧−closed system S.

Remark 3.2. From Theorem 3.2 we have that
(i) If S = {1}, then θS coincides with the identity congruence on L and so, L[S] ' L.

(ii) If S is an ∧−closed system of L such that 0 ∈ S (for example S = L), then
θS = L× L. Hence, L[S] = {[0]S}.
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Remark 3.3. Let L a semi-Heyting algebra and S ∈ S(L). Then FS = {I ∈ I(L) :
I ∩ S 6= ∅} is a topology on L.

The topology FS will be called the topology associated with the ∧−closed system
S of L.

Lemma 3.3. Let FS be the topology associated with the ∧−closed system S. Then
θFS

= θS .

Proof. Let (x, y) ∈ θFS
. Then there is I ∈ FS such that s∧x = s∧y, for all s ∈ I. Since

there exists so ∈ I ∩ S verifying so ∧ x = so ∧ y, we infer that (x, y) ∈ θS . Conversely,
let (x, y) ∈ θS . Then there is so ∈ S such that x∧so = y∧so. By considering I = 〈so〉
we conclude that (x, y) ∈ θFS

. �

Remark 3.4. From Lemma 3.3, we have that L/θFS
= L[S]. Then an FS−multiplier

can be consider as a map f : I −→ L[S] where I ∈ FS and f(e ∧ x) = [e]S ∧ f(x) for
all x ∈ I and e ∈ I.

Lemma 3.4. Let ̂(I1, f1), ̂(I2, f2) ∈ LFS
be such that ̂(I1, f1) = ̂(I2, f2). Then there

exists I ⊆ I1 ∩ I2 such that f1(so) = f2(so) for all so ∈ I ∩ S.

Proof. From the hypothesis and Remark 2.2, we have that there exists I ∈ FS , I ⊆
I1 ∩ I2 such that f1 |I= f2 |I and so, f1(so) = f2(so) for each so ∈ I ∩ S. �

Theorem 3.5. Let L be a semi-Heyting algebra. If FS is the topology associated with
the ∧−closed system S, then LFS

is isomorphic to L[S].

Proof. Let α : LFS
−→ L[S] be defined by α(̂I, f) = f(s) for all s ∈ I ∩ S. From

Lemma 3.4, we have that α is well-defined. Besides, α is onte-to-one. Indeed, suppose

that α ̂(I1, f1) = α ̂(I2, f2). Then there exist s1 ∈ I1 ∩ S and s2 ∈ I2 ∩ S such that
f1(s1) = f2(s2). Hence, by considering f1(s1) = [x]S and f2(s2) = [y]S , we have
that there is s ∈ S verifying x ∧ s = y ∧ s. If s′ = s ∧ s1 ∧ s2, then we infer that
f1(s′) = f1(s′ ∧ s1) = [s′]S ∧ f1(s1) = [s′]S ∧ f2(s2) = f2(s′). Let I = 〈s′〉. So, I ∈ FS ,

I ⊆ I1 ∩ I2 and f1 |I= f2 |I . Remark 2.2 allows us to infer that ̂(I1, f1) = ̂(I2, f2).
In order to prove that α is surjective, let [a]S ∈ L[S] and fa : L −→ L[S] defined
by fa(x) = [a ∧ x]S for all x ∈ L. It is simple to verify that fa is an FS−multiplier.

Moreover, from Remark 3.1, α(̂L, fa) = fa(s) = [a ∧ s]S = [a]S , being s ∈ S. It is
simple to verify that this map is an morphism of semi-Heyting algebras. �

4. Localization and fractions in finite semi-Heyting algebras

In this section, our attention is focus on considering the above results in the partic-
ular case of finite semi-Heyting algebras. More precisely, we will prove that for each
finite semi-Heyting algebra L and S ∈ S(L) the algebra L[S] is isomorphic to a special
subalgebra of L. In order to do this, the following propositions will be fundamental.

Proposition 4.1. Let L be a finite semi-Heyting algebra and I ⊆ L. Then, the
following conditions are equivalent:
(i) I ∈ I(A),

(ii) I = 〈a〉 for some a ∈ L.

Proof. It is straightforward. �



216 A. V. FIGALLO AND G. PELAITAY

Proposition 4.2. Let L be a finite semi-Heyting algebra and S ∈ S(L). Then FS =
{〈a〉 :

∧
x∈S

x ≤ a}.

Proof. Let us consider T = {〈a〉 :
∧
x∈S

x ≤ a}. Assume that I ∈ FS . Then, by Propo-

sition 4.1 we have that I = 〈a〉 for some a ∈ L. On the other hand, from Remark 3.3
there is s ∈ S∩〈a〉 which implies that

∧
x∈S
≤ s ≤ a. Therefore, I ∈ T. Conversely, sup-

pose that I ∈ T. Hence,
∧
x∈S

x ∈ I ∩ S. Furthermore by Proposition 4.1 we have that

I ∈ I(L). From these last assertions and Remark 3.3 we conclude that I ∈ FS . �

Proposition 4.3. Let L be a finite semi-Heyting algebra and S ∈ S(L). Then, the
following conditions are equivalent:
(i) (x, y) ∈ θFS

(ii) x ∧ b = y ∧ b where b =
∧
x∈S

x.

Proof. It is routine. �

Lemma 4.4. ([19, Lemma 6.2]) Let L be a finite semi-Heyting algebra and 〈a〉 ∈ I(L).
Then, La = 〈〈a〉,∨,∧,→a, 0, a〉 is a semi-Heyting algebra.

Finally, we obtain our desired goal.

Theorem 4.5. Let L be a finite semi-Heyting algebra and S ∈ S(L). Then L[S] is
isomorphic to Lb where b =

∧
x∈S

x.

Proof. Let β : L −→ Lb be the function defined by the prescription β(x) = x ∧ b By
[19, Lemma 6.2] β is a semi-Heyting morphism. It is easy to check that β is surjective.
Therefore, β is an semi-Heyting epimorphism. Moreover, x ∈ [1]θS ⇔ (x, 1) ∈ θS ⇔
there is s ∈ S such that x ∧ s = s ⇔ x ∧ b = b ⇔ β(x) = b ⇔ x ∈ ker(β).
Therefore, taking into account a well-known result of universal algebra (see [4, p. 59])
we conclude that L[S] is isomorphic to Lb. �

Corollary 4.6. Let L be a finite semi-Heyting algebra and S ∈ S(L). Then, LFS
is

isomorphic to Lb where b =
∧
x∈S

x. More precisely, LFS
= { ̂(〈b〉, fx) : x ∈ 〈b〉}.

Proof. It follows as a consequence of Theorem 3.5 and Theorem 4.5. �
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algebras, Order 30 (2013), no. 2, 625–642.

[4] V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu, Lukasiewicz Moisil Algebras, North-

Holland, Amsterdam, 1991.
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