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Some weighted Grüss-type inequalities with not necessarily
positive weights on time scales
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Abstract. The aim of this paper is to present weighted versions of some Grüss-type in-
equalities on time scales, using weights that are allowed to take some negative values, these

are Hermite–Hadamard weights, the Steffensen–Popoviciu weights and the Grüss–Popoviciu

weights. The notions of weighted integral mean, weighted variance and weighted covariance
are expanded according to these weights. Some applications of these inequalities are presented.
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1. Introduction

In the last years, the theory of time scales has received new developments and
the applications of dynamic derivatives on time scales emerged. This study provides
an unification and an extension of traditional differential equations and, in the same
time, could be considered an unification of the discrete theory with the continuous
theory, from the scientific point of view. Also, it is a tool of the utmost importance
in many computational and numerical applications.

A combined dynamic derivative, so called 3α (diamond-α) dynamic derivative,
was introduced as a linear combination of the well-known ∆ (delta) and ∇ (nabla)
dynamic derivatives on time scales (see [15]). Starting with delta an nabla derivatives,
the notions of delta and nabla integrals were defined. Throughout this paper, it is
assumed that the basic notions of time scales are well known and understood. For
the basic rules of calculus on time scales, please refer to [1, 3, 8, 15, 24, 26].

The probability theory is the perfect field to grow such an amazing calculus, since
random variables and distributions functions can be either discrete or continuous.
Moreover, negative probabilities and their applications in physics and quantum me-
chanics received a lot of attention during the last years, especially because they helped
us solving and understanding several problems and paradoxes (see [9, 12, 18]).

The classical Grüss inequality gives an estimation, from above, of a product of two
functions compared to the product of the integrals of the two functions (see [14]).

Theorem 1.1. Let f and g be two bounded functions on [a, b] with γ1 ≤ f(x) ≤ Γ1

and γ2 ≤ g(x) ≤ Γ2 , where γ1, γ2,Γ1,Γ2 are four real constants. Then∣∣∣∣∣ 1

b− a

∫ b

a

f(x)g(x)dx− 1

b− a

∫ b

a

f(x)dx
1

b− a

∫ b

a

g(x)dx

∣∣∣∣∣ ≤ 1

4
(Γ1 − γ1)(Γ2 − γ2).

The constant 1/4 is sharp, since it cannot be replaced by a smaller one.
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Many authors obtained a lot of integral Grüss-type inequalities for different classes
of functions. They also used these inequalities to obtain some other sharp inequalities
or to estimate the deviation of the values of the functions from its mean value. See
[5, 6, 10, 11, 13, 16, 17, 19, 25].

In [20], Minculete and Ciurdariu presented several integral inequalities, including
a generalized form of the Grüss-type inequality using some positive weights and they
also rewrote several integral inequalities using the h-integral arithmetic mean for
a Riemann-integrable functions. In [7], Dinu defined some classes of weights that
are allowed to take some negative values, these are the Steffensen–Popoviciu and
Hermite–Hadamard weights and then he proved a complete weighted version of the
Hermite–Hadamard inequality for convex functions on time scales. The connection
between these weights is also presented there.

The aim of this paper is to prove some analogues of many integral inequalities on
time scales, including some Grüss-type inequalities by computing the mean value of
a function using the diamond-α integrals and some not necessarily positive classes of
weights. We shall obtain improved integral inequalities than in [20] by enlarging the
class of weights, and also better discrete inequalities than those obtained by Popoviciu
in [23], improved by Bhatia and Davis in [2].

In section 2 we present some notions of integral mean, variance and covariance
from probability theory, adjusted with the classes of weights that are allowed to take
some negative values, although they have to satisfy some end positivity conditions.
Some of their properties, analogues to the classic notions are also included.

In section 3 we give our main results, regarding the weighted version of some
inequalities on time scales, including the discrete and integral forms of the Grüss-
type inequality.

2. Basic notions

Let T be a time scale and a, b ∈ T with a ≤ b. Also, let g : T→ R be a continuous
function and w : T → R another continuous function, called an α-weight for g on

[a, b]T if
∫ b
a
w(t)3αt > 0.

The w-weighted integral arithmetic mean of the function g on [a, b]T is defined as

Mw[g] =

∫ b
a
g(t)w(t)3αt∫ b
a
w(t)3αt

. (1)

The following property of the w-weighted integral arithmetic mean of the function g
on [a, b]T is straightforward:

Mw[g ± k] = Mw[g]± k,
for every k constant real number.

The w-weighted variance of the function g on [a, b]T is also defined as

Varw(g) = Mw

[
(g −Mw[g])

2
]
, (2)

but it can be easily expanded in the following manner:

Varw(g) =
1∫ b

a
w(t)3αt

∫ b

a

(
g(t)−

∫ b
a
g(t)w(t)3αt∫ b
a
w(t)3αt

)2

w(t)3αt.

As in the usual case, the w-variance has another form, given by:

Varw(g) = Mw

[
g2
]
−M2

w [g] ,
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and the following property is straightforward

Varw(g ± k) = Varw(g),

for every constant real number k.
The w-weighted covariance of the function g and h on [a, b]T is a “measure” of how

much two functions change together and it is defined as

Covw(g, h) = Mw [(g −Mw[g]) (h−Mw[h])] , (3)

but it can be expanded thus:

Covw(g, h) = Mw [gh]−Mw [g]Mw [h] ,

or

Covw(g, h) =

∫ b
a
g(t)h(t)w(t)3αt∫ b
a
w(t)3αt

−
∫ b
a
g(t)w(t)3αt∫ b
a
w(t)3αt

·
∫ b
a
h(t)w(t)3αt∫ b
a
w(t)3αt

.

Using the notions of covariance, the Grüss inequality can be restated as:

Covw(g, h) ≤ 1

4
(Γ1 − γ1)(Γ2 − γ2), (4)

where w is a constant positive function and [a, b]T = [a, b].
Let x1, x2, ..., xn be real numbers, with γ ≤ xi ≤ Γ for all i = 1, n and their mean

x = 1
n

∑n
i=1 xi. Popoviciu proved in [23] the following discrete inequality:

1

n

n∑
i=1

(xi − x)2 ≤ 1

4
(Γ− γ)2, (5)

improved by Bhatia and Davis in [2] thus:

1

n

n∑
i=1

(xi − x)2 ≤ (Γ− x)(x− γ). (6)

Using our notations, inequalities (5) and (6) have the following forms:

Varw(g) ≤ 1

4
(Γ− γ)2, (7)

and

Varw(g) ≤ (Γ−Mw [g])(Mw [g]− γ), (8)

where [a, b]T = {1, 2, ..., n+ 1} , α = 1 and w is a constant positive function.
We also recall here the notions of α-Steffensen–Popoviciu weight for g on [a, b]T and

α-Hermite–Hadamard weight for g on [a, b]T from [7]. Thus, the continuous function
w : T → R is an α-Steffensen–Popoviciu weight for g on [a, b]T (abbreviated α-SP
weight) if ∫ b

a

w(t)3αt > 0 and

∫ b

a

f(g(t))+w(t)3αt ≥ 0, (9)

while, the continuous function w : T→ R is an α-Hermite–Hadamard weight for g on
[a, b]T (abbreviated α-HH weight) if∫ b

a

w(t)3αt > 0 and

∫ b
a
f(g(t))w(t)3αt∫ b
a
w(t)3αt

≤ Γ−Mw[g]

Γ− γ
f(γ) +

Mw[g]− γ
Γ− γ

f(Γ).

(10)
for every f : [γ,Γ] → R continuous convex function, where γ = inft∈[a,b]T g(t) and
Γ = supt∈[a,b]T g(t).
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The connection between these two classes of weights is given in [7, Theorem 3] to-
gether with a full characterization of each kind of weights. That is, every α-Steffensen–
Popoviciu weight for g on [a, b]T is an α-Hermite–Hadamard weight for g on [a, b]T,
for every α ∈ [0, 1]. Obviously, all the positive weights are α-SP weights for any
continuous function g and every α ∈ [0, 1]. But there are some α-SP weights that are
allowed to take negative values. For instance, if [a, b]T = [−1, 1], then w(t) = t2 + a
is an α-SP weight for g(t) = t on [−1, 1] if a > −1/3.

3. Main results

We give the integral and discrete versions of the inequalities (4), (7) and (8) im-
proved not only by allowing the weight w to take nonconstant values, but also to take
some negative ones.

Lemma 3.1. Let g : T → R be a continuous function with γ ≤ g(t) ≤ Γ for all
t ∈ [a, b]T and w : T→ R an α-Hermite–Hadamard weight for g on [a, b]T. Then, we
have

Varw(g) ≤ 1

4
(Γ− γ)2. (11)

Proof. Taking into account the aforementioned properties of the w-variance of a func-
tion, we obtain

Varw(g) = Varw

(
g − Γ + γ

2

)
= Mw

[(
g − Γ + γ

2

)2
]
−M2

w

[
g − Γ + γ

2

]

≤Mw

[(
g(t)− Γ + γ

2

)2
]

=
1∫ b

a
w(t)3αt

∫ b

a

(
g(t)− Γ + γ

2

)2

w(t)3αt

≤ (Γ− γ)2

4
.

The last inequality is true by considering the convex function f : [γ,Γ]→ R, f(x) =(
x− Γ+γ

2

)2

in the definition of the α-HH weight. �

Lemma 3.2. Let g : T → [γ,Γ] be a continuous function and w : T → R an α-
Steffensen–Popoviciu weight for g on [a, b]T. Then, we have

Varw(g) ≥ 0. (12)

Proof. We have

Varw(g) =
1∫ b

a
w(t)3αt

∫ b

a

(
g(t)−

∫ b
a
g(t)w(t)3αt∫ b
a
w(t)3αt

)2

w(t)3αt ≥ 0,

using the complete weighted Jensen inequality for the convex function f : [γ,Γ]→ R,

f(x) = (x−Mw[g])
2
, (see [7, Theorem 2]). �

In order to obtain our next result, we need to derive a new class of α-weights from
the class of α-SP weights of a function on a time scale.
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Definition 3.1. Let T be a time scale and g : T → R a continuous function and
w : T → R an α-Steffensen–Popoviciu weight for g on [a, b]T. The function w is an
α-Grüss–Popoviciu weight for g on [a, b]T (abbreviated α-GP weight) if∫ b

a

(Γ− g(t))(g(t)− γ)w(t)3αt ≥ 0. (13)

Recalling the above example, we notice that if [a, b]T = [−1, 1], then w(t) = t2 + a
is an α-GP weight for g(t) = t on [−1, 1] if a > −1/5.

Now, we can state an important result of this paper.

Lemma 3.3. Let g : T → R be a continuous function with γ ≤ g(t) ≤ Γ for all
t ∈ [a, b]T and w : T→ R an α-GP weight for g on [a, b]T. Then, we have

Varw(g) ≤ (Γ−Mw[g])(Mw[g]− γ). (14)

Proof. As we noticed before,

Varw(g) =

∫ b
a
g2(t)w(t)3αt∫ b
a
w(t)3αt

−

(∫ b
a
g2(t)w(t)3αt∫ b
a
w(t)3αt

)2

and adjusting the computational methods used in [10] and [20], we get∫ b
a

(Γ− g(t))(g(t)− γ)w(t)3αt∫ b
a
w(t)3αt

= −Γγ + (Γ + γ)

∫ b
a
g(t)w(t)3αt∫ b
a
w(t)3αt

−
∫ b
a
g2(t)w(t)3αt∫ b
a
w(t)3αt

= −Γγ + (Γ + γ)

∫ b
a
g(t)w(t)3αt∫ b
a
w(t)3αt

−Varw(g)−

[∫ b
a
g(t)w(t)3αt∫ b
a
w(t)3αt

]2

=

(
Γ−

∫ b
a
g(t)w(t)3αt∫ b
a
w(t)3αt

)(∫ b
a
g(t)w(t)3αt∫ b
a
w(t)3αt

− γ

)
−Varw(g).

But, since w is an α-GP weight for g on [a, b]T, then
∫ b
a

(Γ−g(t))(g(t)−γ)w(t)3αt ≥ 0

and
∫ b
a
w(t)3αt > 0, and so, the proof is complete. �

We should also remember the equality founded above, in terms of random variables,
that is:

Covw(Γ− g, g − γ) = (Γ−Mw[g])(Mw[g]− γ)−Varw(g). (15)

Now, adapting some ideas from [20], we improve some relations between w-variance
and w-covariance.

Lemma 3.4. Let g, h : T → R be continuous functions and w : T → R an α-weight
on [a, b]T. Then, we have

Varw(ag + bh) = a2Varw(g) + b2Varw(h) + 2abCovw(g, h), (16)

where a, b are constant real numbers.
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Proof. Using the properties of the variance, we obtain

Varw(ag + bh) = Mw

[
(ag + bh)2

]
−M2

w [ag + bh]

= Mw

[
a2g2 + 2abgh+ b2h2

]
− (aMw[g] + bMw[h])

2

= a2Mw

[
g2
]

+ 2abMw [gh] + b2Mw

[
h2
]

− a2M2
w [g]− 2abMw [g]Mw [h]− b2M2

w [h]

= a2Varw(g) + b2Varw(h) + 2abCovw(g, h)

and so, the statement is true. �

Taking a = b = 1 and a = 1, b = −1 in (16), we get

Corollary 3.5. In the above conditions, we have

Varw(g + h) = Varw(g) + Varw(h) + 2Covw(g, h), (17)

and

Varw(g − h) = Varw(g) + Varw(h)− 2Covw(g, h). (18)

Lemma 3.6. Let g, h, p, q : T → R be continuous functions and w : T → R an
α-weight on [a, b]T. Then, we have

Covw(ag + bh, cp+ dq)

= acCovw(g, p) + adCovw(g, q) + bcCovw(h, p) + bdCovw(h, q),
(19)

where a, b, c, d are constant real numbers.

Proof. It suffices to recall the above mentioned properties of covariance to get

Covw(ag + bh,cp+ dq)

= Mw[(ag + bh)(cp+ dq)]−Mw[ag + bh]Mw[cp+ dq]

= Mw[acgp+ adgq + bchp+ bdhq]

− (aMw[g] + aMw[h]) (cMw[p] + dMw[q])

= ac (Mw[gp]−Mw[g]Mw[p]) + ad (Mw[gq]−Mw[g]Mw[q])

+ bc (Mw[hp]−Mw[h]Mw[p]) + bd (Mw[hq]−Mw[h]Mw[q])

= acCovw(g, p) + adCovw(g, q) + bcCovw(h, p) + bdCovw(h, q).

�

The next statement is a version of the weighted inequality of Cauchy–Schwartz for
random variables, but we improve it using α-SP weights.

Proposition 3.7. Let g, h : T → R be continuous functions and w : T → R
an α-SP weight for the function f , g and h, where f : T → R, f(t) = g(t) −
h(t)Covw(g, h)/Varw(h) on [a, b]T, if Varw(h) 6= 0. Then, we have

Cov2
w(g, h) ≤ Varw(g)Varw(h). (20)

Proof. If Varw(g) = 0 or Varw(h) = 0 then the relation (20) is valid. If Varw(h) 6= 0,
then using Lemma (3.2) and the fact that w is an α-SP weight for the function f ,
where f : T→ R, f(t) = g(t)− h(t)Covw(g, h)/Varw(h) on [a, b]T, we get

Varw(f) = Varw(g)− Cov2
w(g, h)

Varw(h)
≥ 0.

�
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Now, we are able to give an improvement of the Grüss inequality, using not neces-
sarily positive weights.

Theorem 3.8. Let g, h : [a, b]T → R be two continuous functions with γ1 ≤ g(t) ≤ Γ1

and γ2 ≤ h(t) ≤ Γ2 , where γ1, γ2,Γ1,Γ2 are four constants and w : [a, b]T → R an
α-GP weight for g and h on [a, b]T and an α-SP weight for the function f , where
f : [a, b]T → R, f(t) = g(t) − h(t)Covw(g, h)/Varw(h) on [a, b]T, if Varw(h) 6= 0.
Then

|Covw(g, h)| ≤
√

(Γ1 −Mw[g])(Mw[g]− γ1)(Γ2 −Mw[h])(Mw[h]− γ2)

≤ 1

4
(Γ1 − γ1)(Γ2 − γ2).

(21)

The proof is straightforward by applying Proposition 3.7 and Lemma 3.3.
Taking some well-known time scales, (T = R, T = N and T = qN) we find interesting

inequalities.

Corollary 3.9. (The continuous case). Let g, h : [a, b] → R be two integrable func-
tions with γ1 ≤ g(x) ≤ Γ1 and γ2 ≤ h(x) ≤ Γ2 , where γ1, γ2,Γ1,Γ2 are four constants
and w : [a, b]→ R an GP weight for g and h on [a, b] and an SP weight for the function
f , where f : [a, b]→ R, f(t) = g(t)−h(t)Covw(g, h)/Varw(h) on [a, b], if Varw(h) 6= 0.
Then ∣∣∣∣∣

∫ b
a
g(t)h(t)w(t)dt∫ b
a
w(t)dt

−
∫ b
a
g(t)w(t)dt∫ b
a
w(t)dt

·
∫ b
a
h(t)w(t)dt∫ b
a
w(t)dt

∣∣∣∣∣
≤

√√√√(Γ1 −
∫ b
a
g(t)w(t)dt∫ b
a
w(t)dt

)(∫ b
a
g(t)w(t)dt∫ b
a
w(t)dt

− γ1

)

·

√√√√(Γ2 −
∫ b
a
h(t)w(t)dt∫ b
a
w(t)dt

)(∫ b
a
h(t)w(t)dt∫ b
a
w(t)dt

− γ2

)

≤ 1

4
(Γ1 − γ1)(Γ2 − γ2).

(22)

Corollary 3.10. (The discrete case). Let T = Z, n ∈ N, α = 1, a = 1, b = n+1, g, h :
{1, ..., n + 1} → R, g(i) = xi, h(i) = yi with γ1 ≤ xi ≤ Γ1 and γ2 ≤ yi ≤ Γ2 , where
γ1, γ2,Γ1,Γ2 are four constants and w : {1, ..., n+1} → R, w(i) = wi, such that wi are
GP weights for xi and yi , but also an SP weight for fi = xi−yiCovw(g, h)/Varw(h),
if Varw(h) 6= 0, for every i ∈ {1, ..., n+ 1}. Then∣∣∣∣∑n

i=1 xiyiwi∑n
i=1 wi

−
∑n
i=1 xiwi∑n
i=1 wi

·
∑n
i=1 yiwi∑n
i=1 wi

∣∣∣∣
≤

√(
Γ1 −

∑n
i=1 xiwi∑n
i=1 wi

)(∑n
i=1 xiwi∑n
i=1 wi

− γ1

)

·

√(
Γ2 −

∑n
i=1 yiwi∑n
i=1 wi

)(∑n
i=1 yiwi∑n
i=1 wi

− γ2

)
≤ 1

4
(Γ1 − γ1)(Γ2 − γ2).

(23)

Corollary 3.11. (The quantum calculus case). Let T = qZ, q > 1, l, n ∈ N, with
l < n, α ∈ [0, 1], a = ql, b = qn, g : {l, ..., n} → R, g(i) = xi, h(i) = yi with γ1 ≤ xi ≤
Γ1 and γ2 ≤ yi ≤ Γ2 , where γ1, γ2,Γ1,Γ2 are four constants and w : {l, ..., n} → R,
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w(i) = wi, such that wi are α-GP weights for xi and yi, but also an α-SP weight for
fi = xi − yiCovw(g, h)/Varw(h), if Varw(h) 6= 0, for every i ∈ {l, ..., n}. Then∣∣∣∣∣α

∑n−1
i=l q

ixiyiwi + (1− α)
∑n
i=l+1 q

ixiyiwi

α
∑n−1
i=l q

iwi + (1− α)
∑n
i=l+1 q

iwi

−
α
∑n−1
i=l q

ixiwi + (1− α)
∑n
i=l+1 q

ixiwi

α
∑n−1
i=l q

iwi + (1− α)
∑n
i=l+1 q

iwi

·
α
∑n−1
i=l q

iyiwi + (1− α)
∑n
i=l+1 q

iyiwi

α
∑n−1
i=l q

iwi + (1− α)
∑n
i=l+1 q

iwi

∣∣∣∣∣
≤

√√√√(Γ1 −
α
∑n−1
i=l q

ixiwi + (1− α)
∑n
i=l+1 q

ixiwi

α
∑n−1
i=l q

iwi + (1− α)
∑n
i=l+1 q

iwi

)

·

√√√√(α∑n−1
i=l q

ixiwi + (1− α)
∑n
i=l+1 q

ixiwi

α
∑n−1
i=l q

iwi + (1− α)
∑n
i=l+1 q

iwi
− γ1

)

·

√√√√(Γ2 −
α
∑n−1
i=l q

iyiwi + (1− α)
∑n
i=l+1 q

iyiwi

α
∑n−1
i=l q

iwi + (1− α)
∑n
i=l+1 q

iwi

)

·

√√√√(α∑n−1
i=l q

iyiwi + (1− α)
∑n
i=l+1 q

iyiwi

α
∑n−1
i=l q

iwi + (1− α)
∑n
i=l+1 q

iwi
− γ2

)

≤ 1

4
(Γ1 − γ1)(Γ2 − γ2).

(24)

Our next result is a weighted version of Cauchy inequality for time scales.

Lemma 3.12. Let g, h : T → R be continuous functions and w : T → R an α-SP -
weight for the functions g and λg − h on [a, b]T, for all λ ∈ R. Then, we have

Mw[g2]Mw[h2] ≥M2
w[gh]. (25)

Proof. Since w is an α-SP -weight for g on [a, b]T, then Mw[g2] ≥ 0. If Mw[g2] = 0
then M2

w[gh] = 0 and the inequality (25) is valid. Now, we suppose that Mw[g2] > 0.
Taking into account that w is an α-SP -weight for λg − h on [a, b]T we get

Mw[(λg − h)2] ≥ 0, for all λ ∈ R.
But

Mw[(λg − h)2] = λ2Mw[g2]− 2λMw[gh] +Mw[h2],

which implies

λ2Mw[g2]− 2λMw[gh] +Mw[h2] ≥ 0, for all λ ∈ R.
And so, the discriminant of the above quadratic function in λ is negative and we get
the conclusion. �

Furthermore, we can compare the estimations given by the weighted Cauchy–
Schwartz inequality (20) and the weighted Cauchy inequality (25).

Theorem 3.13. Let g, h : T→ R be continuous functions and w : T→ R an α-SP -
weight for the functions g and h on [a, b]T. Then, we have

0 ≤ Varw(g)Varw(h)− Cov2
w(g, h) ≤Mw[g2]Mw[h2]−M2

w[gh]. (26)
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Proof. The left side of the inequality is obtained from (20). For the right side, we
evaluate the difference

Mw[g2]Mw[h2]−M2
w[gh]−

[
Varw(g)Varw(h)− Cov2

w(g, h)
]

= Mw[g2]M2
w[h]− 2Mw[gh]Mw[g]Mw[h] +Mw[h2]M2

w[g].

Since w is an α-SP -weight for g and h on [a, b]T, then Mw[g],Mw[h] ≥ 0 and we can
apply the classic AM-GM inequality to obtain

Mw[g2]M2
w[h] +Mw[h2]M2

w[g] ≥ 2
√
Mw[g2]Mw[h2]Mw[g]Mw[h].

≥ 2Mw[gh]Mw[g]Mw[h],

that is

Mw[g2]M2
w[h]− 2Mw[gh]Mw[g]Mw[h] +Mw[h2]M2

w[g] ≥ 0

and that ends the proof. �

4. Conclusions

Most of the well known properties for weighted variance and weighted covariance
with positive weights can be “recovered” for weights that are not “entirely” posi-
tive, using powerful inequalities like the weighted Hermite–Hadamard inequality for
α-Steffensen–Popoviciu weights and α-Hermite–Hadamard weights or the complete
weighted Jensen inequality for α-Steffensen–Popoviciu weights (see [7]). The weights
that verify most of the Grüss-type inequalities, called the α-Grüss–Popoviciu weights
are derived from the α-Steffensen–Popoviciu ones, but they are not the same. Al-
though, they are a little more restrictive, they take negative values too.

These weights can be applied in both continuous or discrete time scales, for con-
tinuous or discrete random variables, but the theory beyond both types is an unified
one. Their applications are very important in many fields, such as quantum mechan-
ics where they are associated with negative energies and negative probabilities. In
probability theory, notions like negative probabilities and probabilities above unit are
used more and more in calculations. In convolution quotients of nonnegative definite
functions and algebraic probability theory, random variables are already in use with
signed or quasi distributions where some of the probabilities are negative.

More recently, negative probabilities were applied to mathematical finance. Here,
these are not real probabilities, they are called pseudo-probabilities and they are used
in a series of assumptions to simplify calculations. A more rigorous mathematical
theory of negative probabilities among with their properties were presented in [4],
where the authors use these notions to financial option pricing.
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