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Properties of stratified languages

Irina Tudor

Abstract. A new mechanism to generate formal languages is intuitively described in [7] and
[8]. Two families of formal languages were defined: stratified languages of first type and

stratified languages of second type. In this paper we present several algebraic properties of

these families. Several open problems are relieved in the last section.
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1. Introduction

The concept of labeled stratified graph (LSG) was introduced in [9] related by
the concept of knowledge base with output. The existence of this structure was
proved in [10]. Since then many results and applications have been obtained. We can
enumerate some applications: semantics of communication ([13]), geometrical image
generation ([13]), reconstruction of geometrical image by extracting the semantics of
a linguistic spatial description given in a natural language ([14]) obtained by a remote
connection, application to attribute graphs in order to find the paths satisfying several
restrictions ([12]), problem solving ([9]), a model of cooperation between two or more
companies ([11], [12]), the use of stratified graphs in optimal planning ([16]). A recent
research line refers to a new mechanism to generate formal languages (named stratified
languages) given by stratified graphs ([7], [8]) and natural languages ([15]), thus the
stratified graphs belong to the set of mechanisms that generate formal languages:
automata, formal grammars, Lindenmayer systems, basic and recursive transition
networks.

As it is shown in [7] and [8], there are two kinds of stratified languages. These are
named stratified languages of first type and stratified languages of second type. In this
paper we present several basic properties of these families of formal languages.

The paper is organized as follows: Section 2 presents the basic concepts and re-
sults to understand the next sections; Section 3 defines the erasing morphism and
establishes several algebraic properties of this operator; Section 4 treats the family
of the stratified languages of first type; Section 5 is devoted to the description of the
stratified languages of second type; Section 6 lists several open problems.

2. Preliminary results and concepts

Let M be an arbitrary nonempty set and consider the Peano σ-algebra M generated
by M ([1], [2], [5]). In order to obtain this structure we consider an operator symbol
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σ of arity 2 and the set B given by

B =
⋃
n≥0

Bn, (1)

where {
B0 = M,
Bn+1 = Bn ∪ {σ(x1, x2) | (x1, x2) ∈ Bn ×Bn}, n ≥ 0,

(2)

We suppose that σ(x1, x2) is the word σx1x2 over the alphabet {σ} ∪M . The pair
(B, σ) becomes a Peano σ-algebra over M ([1], [2]). It is often said that B is the
Peano σ- algebra generated by M and this fact is specified by writing B = M .

A labeled graph is a tuple G = (S,L0, T0, f0) where S is the set of nodes, L0 is a
finite set of labels, T0 ⊆ 2S×S is a set of binary relations on S and f0 : L0 −→ T0 is
a surjective mapping.
We recall that if ρ1, ρ2 ∈ 2S×S then

ρ1 ◦ ρ2 = {(x, y) ∈ S × S | ∃z ∈ S : (x, z) ∈ S × S, (z, y) ∈ S × S}.

We define the mapping prodS : dom(prodS) −→ 2S×S as follows:
• dom(prodS) = {(ρ1, ρ2) ∈ 2S×S × 2S×S | ρ1 ◦ ρ2 6= ∅}
• prodS(ρ1, ρ2) = ρ1 ◦ ρ2 for (ρ1, ρ2) ∈ dom(prodS)

We denote R(prodS) = {u | u � prodS}, where u � prodS designates the property ”u
is a restriction of prodS”. If u ∈ R(prodS) then we denote by Clu(T0) the closure of
T0 in the partial algebra (2S×S , u) ([17]).

A stratified graph G over G ([9], [10]) is a tuple (G,L, T, u, f) where
◦ G = (S,L0, T0, f0) is a labeled graph;
◦ L ∈ Initial(L0), that is L0 ⊆ L ⊆ L0 and if σ(α, β) ∈ L for some arbitrary

elements α, β ∈ L0 then α ∈ L and β ∈ L;
◦ u ∈ R(prodS) and T = Clu(T0);
◦ f : (L, σL) −→ (2S×S , u) is a morphism of partial algebras such that f0 � f ,
f(L) = T and if (f(x), f(y)) ∈ dom(u) then (x, y) ∈ dom(σL), where dom(σL) =
{(α, β) ∈ L0 × L0 | σ(α, β) ∈ L} and σL(α, β) = σ(α, β) for every (α, β) ∈
dom(σL).

To build G we follow this steps:
• Take {Bn}n≥0 as in (2) for M = L0.
• Take D0 = L0 and, dom(f0) = D0.
• Define for every natural number n ≥ 0:

Dn+1 = {σ(p, q) ∈ Bn+1 \Bn | p, q ∈ dom(fn), (fn(p), fn(q)) ∈ dom(u)}, (3)

dom(fn+1) = dom(fn) ∪Dn+1, (4)

fn+1(x) =

 fn(x) if x ∈ dom(fn),

u(fn(p), fn(q)) if x = σ(p, q) ∈ Dn+1.
(5)

• Define the mapping f : dom(f) −→ T as follows:

dom(f) =
⋃
n≥0

dom(fn) =
⋃
k≥0

Dk, (6)

f(x) = fk(x) if x ∈ Dk, k ≥ 0. (7)
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• Take the set L defined as follows:

L = dom(f). (8)

3. The erasing morphism

We define the operator εσ : M −→ M∗, where M∗ is the set of all words over M ,
as follows: {

εσ(a) = a for a ∈M,
εσ(σ(α, β)) = εσ(α)εσ(β) if σ(α, β) ∈M,α ∈M,β ∈M.

For example,

εσ(σ(σ(σ(a, b), b), σ(b, a))) = εσ(σ(σ(a, b), b)εσ(σ(b, a)) = εσ(σ(a, b))εσ(b)εσ(b)εσ(a)

= εσ(a)εσ(b)εσ(b)εσ(b)εσ(a) = abbba.

For every X ⊆M we denote

εσ(X) = {w ∈M∗ | ∃x ∈ X : w = εσ(x)}. (9)

Thus the mapping εσ becomes an application of the form εσ : 2M −→ 2M
∗
. The next

property uses the concept of morphism of universal algebras ([3], [4], [6]). First we
remark that the pairs (M,σ) and (M∗, •), where • is the concatenation operation,
are universal algebras.

Proposition 3.1. The mapping εσ : (M,σ) −→ (M∗, •) is a morphism of universal
algebras.

Proof. This means that if we consider the graphical representation from Figure 1 then
we have the following property: if we go along the path (M ×M,M,M∗) and along
the path (M ×M,M∗ ×M∗,M∗) then we obtain the same result. Really, suppose
that (α, β) ∈ M ×M . We have σ(α, β) ∈ M and εσ(σ(α, β)) = εσ(α)εσ(β). But
εσ × εσ(α, β) = (εσ(α), εσ(β)) and •(εσ(α), εσ(β)) = εσ(α)εσ(β). Thus

εσ(σ(α, β)) = •(εσ(α), εσ(β))

and the proposition is proved. �

M∗ ×M∗ -
• M∗

M ×M -
σ

M

? ?

εσ × εσ εσ

Figure 1. The morphism condition.

Remark 3.1. Based on the previous property the mapping εσ can be named the
σ-erasing morphism.

Proposition 3.2. The mapping εσ : (2M ,⊆) −→ (2M
∗
,⊆) is an isotone application.

In other words, if A ⊆M , B ⊆M and A ⊆ B then εσ(A) ⊆ εσ(B).
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Proof. Immediate from (9). �

Proposition 3.3. The mapping εσ : (2M ,∪) −→ (2M
∗
,∪) is a morphism of universal

algebras.

Proof. We prove that for every A ⊆M and B ⊆M we have

εσ(A ∪B) = εσ(A) ∪ εσ(B).

Take w ∈ εσ(A ∪ B). There is x ∈ A ∪ B such that w = εσ(x). If x ∈ A then
w ∈ εσ(A). If x ∈ B then w ∈ εσ(B). Thus

εσ(A ∪B) ⊆ εσ(A) ∪ εσ(B).

By Proposition 3.2 we have εσ(A) ⊆ εσ(A ∪B) and εσ(B) ⊆ εσ(A ∪B). Thus

εσ(A) ∪ εσ(B) ⊆ εσ(A ∪B).

�
Remark 3.2. The previous property shows that the diagram from Figure 2 is com-
mutative.

2M
∗ × 2M

∗ -
∪ M∗

2M × 2M -
∪

2M

? ?

εσ × εσ εσ

Figure 2. Commutative diagram.

Proposition 3.4. For every A ⊆M and B ⊆M we have

εσ(A ∩B) ⊆ εσ(A) ∩ εσ(B).

Proof. From A ∩B ⊆ A and A ∩B ⊆ B and Proposition 3.2 we obtain εσ(A ∩B) ⊆
εσ(A) ∩ εσ(B). �

It is not difficult to show that the reverse inclusion is not true. Really, consider
A = {a, b, σ(a, σ(a, b))} and B = {a, b, σ(σ(a, a), b)}. We have εσ(A ∩ B) = {a, b},
εσ(A) = {a, b, aab}, εσ(B) = {a, b, aab}. It follows that εσ(A) ∩ εσ(B) ⊃ εσ(A ∩B).

4. Stratified languages of first type

In this section we show a method to generate formal languages using stratified
graphs. These languages are named stratified language of first type. In what follows
we present several properties of these languages. Another method to generate for-
mal languages by stratified graphs is given in the next section. The corresponding
languages are named stratified language of second type.

Definition 4.1. Let us suppose that G = (G,L, T, u, f) is a stratified graph and L0

is the label set of G. The language X ⊆ L∗0 is represented or recognized by G if
X = εσ(L). If this is the case then we denote X = R(G). The set L0 is an alphabet
of X.
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Definition 4.2. The set X is a stratified language of first type if there is a
stratified graph G such that X = R(G).

Remark 4.1. The name of stratified language comes from the following fact. Let
G = (G,L, T, u, f) be a stratified graph, where G = (S,L0, T0, f0). We define{

Layer(L, 0) = L0,
Layer(L, n+ 1) = L ∩ (Bn+1 \Bn), n ≥ 0,

(10)

where B0 = L0 and B = B0 ∪
⋃
i≥0(Bi+1 \ Bi) is the Peano σ-algebra generated by

L0. The set Layer(L, n) is called the nth layer of L. The set L of labels is divided into
several layers; the first layer is given by L0; each element of the layer i is obtained by
means of two elements, one of them belonging to the layer i− 1 and the other being
in the union of the layers 0, 1, . . . , i− 1. We obtain a stratified structure of the set L
of labels. This structure induces a stratified structure of the language X generated
by G.

Proposition 4.1. Let us suppose that G = (G,L, T, u, f) is a stratified graph and L0

is the label set of G. If X = R(G) then X ⊇ L0.

Proof. We have X = εσ(L). But L ⊇ L0, therefore X = εσ(L) ⊇ εσ(L0) = L0. �

Proposition 4.2. A stratified language of first type can be recognized by distinct
stratified graphs. More precisely, there are G1 = (G,L1, T1, u1, f

1) ∈ Llsg and G2 =
(G,L2, T2, u2, f

2) ∈ Llsg such that L1 6= L2 and X = εσ(L1) = εσ(L2).

Proof. We show that the language {a, b, ab, bb, abb} is recognized by two distinct strati-
fied graphs. Consider the labeled graphG = (S,L0, T0, f0), where S = {x1, x2, x3, x4},
L0 = {a, b}, T0 = {ρ1, ρ2}, ρ1 = {(x1, x2)}, ρ2 = {(x2, x3), (x3, x4)} and f0(a) = ρ1,
f0(b) = ρ2. This graph is represented in Figure 3.

x1 x2 x3 x4- - -a b b

Figure 3. The labeled graph G.

We consider u1 ∈ R(prodS) defined by u1(ρ2, ρ2) = ρ3, u1(ρ1, ρ2) = ρ4 and
u1(ρ1, ρ3) = ρ5, where ρ3 = {(x2, x4)}, ρ4 = {(x1, x3)}, ρ5 = {(x1, x4)}. We build
the stratified graph over G generated by u1:
• L0 = {a, b}, f0(a) = ρ1, f0(b) = ρ2;
• T1 = Clu1

(T0) = {ρ1, ρ2, ρ3, ρ4, ρ5};
• D0 = L0;
• D1 = {σ(b, b), σ(a, b)}; f1(σ(b, b)) = u1(f0(b), f0(b)) = u1(ρ2, ρ2) = ρ3;
f1(σ(a, b)) = u1(f0(a), f0(b)) = u1(ρ1, ρ2) = ρ4;
• D2 = {σ(a, σ(b, b))}, f1(σ(a, σ(b, b))) = u1(f1(a), f1(σ(b, b))) = u1(ρ1, ρ3) = ρ5;
• D3 = ∅.

We obtain the stratified graph G1 = (G,L1, T1, u1, f
1), where L1 = {a, b, σ(b, b),

σ(a, b), σ(a, σ(b, b))}, therefore εσ(L1) = {a, b, bb, ab, abb}.
We show that we can build another labeled graph over G representing the same
language. We consider ρ1 = {(x1, x2)}, ρ2 = {(x2, x3), (x3, x4)}, ρ3 = {(x2, x4)}
and ρ4 = {(x1, x3)}. We denote ω1 = ρ4 ◦ ρ2 = {(x1, x4)}. Take u2(ρ1, ρ2) = ρ4,
u2(ρ2, ρ2) = ρ3, u2(ρ4, ρ2) = ω1. In this context we obtain the following computations:
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• L0 = {a, b}, f0(a) = ρ1, f0(b) = ρ2;
• T = Clu2(T0) = {ρ1, ρ2, ρ3, ρ4, ω1};
• D0 = L0, f0(a) = ρ1, f0(b) = ρ2;
• D1 = {σ(a, b), σ(b, b)}; f2(σ(a, b)) = u2(f0(a), f0(b)) = u2(ρ1, ρ2) = ρ4;
f2(σ(b, b)) = u2(f0(b), f0(b)) = u2(ρ2, ρ2) = ρ3;

• D2 = {σ(σ(a, b), b)}, f2(σ(σ(a, b), b)) = u2(f2(σ(a, b)), f2(b))) = u2(ρ4, ρ2) =
ω1;

• D3 = ∅.
We obtain the stratified graph G2 = (G,L2, T2, u2, f

2), where L2 = {a, b, σ(a, b),
σ(b, b), σ(σ(a, b), b)}, therefore εσ(L2) = {a, b, bb, ab, abb}. Thus X = εσ(L1) =
εσ(L2). �

In what follows we denote by λ the empty word.

Proposition 4.3. If X is a stratified language of first type and w ∈ X then w 6= λ.

Proof. There is a stratified graph G = (G,L, T, u, f) such that X = εσ(L). If w ∈ X
then there is u ∈ L such that w = εσ(u). If u ∈ L0 then w ∈ M , therefore w 6= λ. If
u ∈ L \ L0 then the length of w is greater than 1, therefore w 6= λ. �

Proposition 4.4. If X is a stratified language of first type then the following property
is satisfied: for every w ∈ X \L0, there are w1 ∈ X and w2 ∈ X such that w = w1w2.

Proof. There is a stratified graph G = (G,L, T, u, f) such that X = εσ(L). Take
w ∈ X \ L0. There is ω ∈ L such that w = εσ(ω). We have two cases:
(1) Suppose ω ∈ L0.

This case is not possible because w = εσ(ω) = ω ∈ L0. But w ∈ X \ L0.
(2) Suppose ω ∈ L \ L0. There are α, β ∈ L such that ω = σ(α, β). We have

w = εσ(σ(α, β)) = εσ(α)εσ(β). Take w1 = εσ(α) and w2 = εσ(β). We have
w1 ∈ X, w2 ∈ X and w = w1w2.

�

We remark that if L is a language over the alphabet A then L ⊆ A∗. If A ⊆ B
then B is also an alphabet for L because L ⊆ B∗. Next we define the alphabet of a
stratified language.

Definition 4.3. If X = R(G) and G is a stratified graph over the labeled graph
G = (S,L0, T0, f0), then L0 is named an alphabet of X.

Proposition 4.5. If X is a stratified language of first type then the alphabet of X is
uniquely determined.

Proof. Suppose that G1 = (S1, L01, T01, f01) and G2 = (S2, L02, T02, f02) are la-
beled graphs. Consider two stratified graphs G1 = (G1, L1, T1, u1, f1) and G2 =
(G2, L2, T2, u2, f2) such that X = R(G1) = R(G2). We prove that L01 = L02.
Take the entities defined in (1), (2), (3), (4), (5), (6) and (8). We can write:

• Take {Bn}n≥0 as in (2) for M = L01;
• Take T1 = Clu1

(T01);
• Take D1

0 = L01 and f1
0 = f01, dom(f1

0 ) = D1
0;
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• Define for every natural number n ≥ 0:

D1
n+1 = {σ(p, q) ∈ Bn+1 \Bn | p, q ∈ dom(f1

n), (f1
n(p), f1

n(q)) ∈ dom(u)}, (11)

dom(f1
n+1) = dom(f1

n) ∪D1
n+1, (12)

f1
n+1(x) =

 f1
n(x) if x ∈ dom(f1

n),

u(f1
n(p), f1

n(q)) if x = σ(p, q) ∈ D1
n+1;

(13)

• Define the mapping f1 : dom(f1) −→ T1 as follows:

dom(f1) =
⋃
n≥0

dom(f1
n) =

⋃
k≥0

D1
k, (14)

f1(x) = f1
k (x) if x ∈ D1

k, k ≥ 0; (15)

• Take the set L1 defined as follows:

L1 = dom(f1). (16)

Similarly we proceed for G2, and obtain L2, T2 and f2. We obtain

L1 =
⋃
k≥0

D1
k = L01 ∪D1

1 ∪ . . .

L2 =
⋃
k≥0

D2
k = L02 ∪D2

1 ∪ . . .

Applying Proposition 3.3 we obtain

X = εσ(L1) = εσ(L01) ∪ εσ(
⋃
k≥1

D1
k),

X = εσ(L2) = εσ(L02) ∪ εσ(
⋃
k≥1

D2
k).

But εσ(L01) = L01 and εσ(L02) = L02 therefore

X = εσ(L1) = L01 ∪ εσ(
⋃
k≥1

D1
k),

X = εσ(L2) = L02 ∪ εσ(
⋃
k≥1

D2
k).

Suppose that w ∈ L01. It follows that w ∈ X, therefore w ∈ L02 ∪ εσ(
⋃
k≥1D

2
k).

But L01 = L01 ∩X = L01 ∩ (L02 ∪ εσ(
⋃
k≥1D

2
k)) = (L01 ∩ L02) ∪ (L01 ∩

⋃
k≥1D

2
k) =

L01 ∩ L02 because L01 ∩
⋃
k≥1D

2
k = ∅. Similarly we have L02 = L01 ∩ L02, therefore

L01 = L02. �

Proposition 4.6. If L0 is the alphabet of the stratified language of first type X then
the complement L∗0 \X is not a stratified language of first type.

Proof. If X is a stratified language over L0 then the empty word λ is not a member
of X. It follows that λ ∈ L∗0 \X. Applying Proposition 4.3 we deduce that L∗0 \X is
not a stratified language. �

Remark 4.2. If G = (G,L, T, u, f) is a stratified graph over G then we denote
label(G) = L. This notation is explained by the fact that each element of L is a label
of a binary relation of G. If G = (S,L0, T0, f0) then L0 is named the alphabet of G.
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Proposition 4.7. Suppose that L0 is a finite set. There is a stratified graph G of
alphabet L0 such that label(G) = L0.

Proof. We consider the labeled graph G = (S,L0, T0, f0) defined as follows:
• S = {x1};
• T0 = {ρ}, where ρ = {(x1, x1)};
• f0(a) = ρ for every a ∈ L0;

We consider the stratified graph G = (G,L, T, u, f), where u(ρ, ρ) = ρ. Take the
entities defined in (1), (2), (11), (12), (13), (14) and (16). We obtain T = Clu(T0) =
T0 because if we compute the closure of T0 we have

T1 = T0 ∪ {ρ1 ∈ 2S×S | ∃ρ2 ∈ T0 : ρ1 = u(ρ2, ρ2)} = T0.

We verify by induction on n ≥ 0 the following properties:

Dn+1 = Bn+1 \Bn, (17)

fn+1(x) = ρ, for x ∈
n+1⋃
k=0

Dk. (18)

For n = 0 we obtain:

D1 = {σ(p, q) ∈ B1 \B0 | p, q ∈ dom(f0), (f0(p), f0(q)) ∈ dom(u)} = B1 \B0,

because dom(f0) = D0 = L0, f0(p) = ρ for every p ∈ L0 and (ρ, ρ) ∈ dom(u). We
have also

f1(x) =

 f0(x) if x ∈ dom(f0) = L0,

u(f0(p), f0(q)) if x = σ(p, q) ∈ D1.

But D0 = L0 and u(ρ, ρ) = ρ therefore (18) is true for n = 0.
Suppose that (17) and (18) are true for n. We have

Dn+2 = {σ(p, q) ∈ Bn+2 \Bn+1 | p, q ∈ dom(fn+1),

(fn+1(p), fn+1(q)) ∈ dom(u)} = Bn+2 \Bn+1,

because fn+1(p) = fn+1(q) = ρ for every p, q ∈ dom(fn+1) and (ρ, ρ) ∈ dom(u).
From (5) we have

fn+2(x) =

 fn+1(x) if x ∈ dom(fn+1),

u(fn+1(p), fn+1(q)) if x = σ(p, q) ∈ Dn+2,

therefore fn+2(x) = ρ for every x ∈
⋃n+2
k=0 Dk. Thus (18) is true for n+ 1.

From (6) and (8) we obtain now L =
⋃
k≥0Dk = D0 ∪

⋃
k≥0(Bk+1 \ Bk) = L0. The

proposition is proved. �

Proposition 4.8. If L0 is the Peano algebra generated by L0 then εσ(L0) = L+
0 .

Proof. If we take L0 =
⋃
n≥0 Ln, where Ln+1 = Ln∪{σ(x1, x2) | (x1, x2) ∈ Ln×Ln},

for n ≥ 0 then

εσ(L0) = L0 ∪
⋃
n≥1

εσ(Ln). (19)
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Let us prove by induction on n ≥ 1 the property

εσ(Ln) =

2n⋃
k=1

Lk0 . (20)

We have L1 = L0 ∪ {σ(x1, x2) | (x1, x2) ∈ L0 × L0}, therefore

εσ(L1) = L0 ∪ {εσ(x1)εσ(x2) | (x1, x2) ∈ L0 × L0}
= L0 ∪ {x1x2 | (x1, x2) ∈ L0 × L0} = L0 ∪ L2

0.

It follows that (19) is true for n = 1. Suppose that (20) is true for n = m and we
verify this property for n = m+ 1. We have

Lm+1 = Lm ∪ {σ(x1, x2) | (x1, x2) ∈ Lm × Lm}

therefore

εσ(Lm+1) = εσ(Lm) ∪ {εσ(x1)εσ(x2) | (x1, x2) ∈ Lm × Lm}

= εσ(Lm) ∪ εσ(Lm)εσ(Lm) =

2m⋃
k=1

Lk0 ∪ (

2m⋃
k=1

Lk0)(

2m⋃
p=1

Lp0)

=

2m⋃
k=1

Lk0 ∪
2m⋃
k,p=1

Lk+p
0 =

2m⋃
k=1

Lk0 ∪
2m+1⋃
k=2

Lk0 =

2m+1⋃
k=1

Lk0

and thus (20) is true for n = m+ 1.

From (19) and (20) we obtain εσ(L0) = L0 ∪
⋃
n≥1

⋃2n

k=1 L
k
0 = L+

0 . �

Proposition 4.9. For every finite set L0 the language L+
0 =

⋃
k≥1 L

k
0 is a stratified

language of first type of alphabet L0.

Proof. We apply Proposition 4.7 and Proposition 4.8. By Proposition 4.7 there is a
stratified graph G of alphabet L0 such that label(G) = L0. By Proposition 4.8 we
deduce that εσ(L0) = L+

0 therefore L+
0 is a stratified language of alphabet L0. The

proposition is proved. �

The next propositions shows that the concept of alphabet for stratified languages
is the minimal alphabet of a formal language.

Proposition 4.10. If X is a stratified language of first type of alphabet L0 then
L0 ⊆ X ⊆ L+

0 .

Proof. There is a stratified graph G = (G,L, T, u, f) over G = (S,L0, T0, f0) such
that X = εσ(L). But L ⊆ L0, where L0 is the Peano algebra generated by L0.
It follows that εσ(L) ⊆ εσ(L0). But X = εσ(L) and by Proposition 4.7 we have
epsilonσ(L0) = L+

0 . By Proposition 4.1 we have L0 ⊆ X and thus L0 ⊆ X ⊆ L+
0 . �

5. Stratified languages of second type

We consider a path d = ([x1, ..., xn+1], [a1, ..., an]) in a labeled graphG = (S,L0, T0, f0).
Consider the least set STR(d) satisfying the following conditions:
• ([xi, xi+1], ai) ∈ STR(d), i ∈ {1, ..., n};
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• if ([xi, ..., xk], b1) ∈ STR(d) and ([xk, ..., xr], b2) ∈ STR(d), where 1 ≤ i < k <
r ≤ n+ 1, then ([xi, ..., xr], [b1, b2]) ∈ STR(d).

The elements of STR(d) are called structured paths over d. We denote

STR2(d) = {α | ∃([x1, . . .], α) ∈ STR(d)}.

Let d be a path. We define the mapping hd : STR2(d) −→ B, where B is defined
in (1), as follows:
• hd(x) = x for x ∈ L0;
• hd([u, v]) = σ(hd(u), hd(v)).

The structured path ds ∈ STR(d) is named an accepted structured path over
G if ds = ([x1, ..., xn+1], c) and hd(c) ∈ L. We denote by ASP (G) the set of all
accepted structured paths over G. We denote by R a set of conditions imposed on
the accepted structured path. An element of ASP (G) which satisfies R is named
R-accepted structured path. We denote by ASPR(G) the set of all R-accepted
structured paths.

For every accepted structured path d = ([x1, . . . , xn+1], σ(v1, v2)) ∈ ASP (G),
where n ≥ 2, there is one and only one i ∈ {2, . . . , n} such that ([x1, . . . , xi], v1) ∈
ASP (G) and ([xi, . . . , xn+1], v2) ∈ ASP (G) ([13]). In other words, this property states
that every accepted structured path over G can be broken into two accepted struc-
tured paths over G. The number i stated in this property is named the break index
for the path d and is denoted by ind(d).

An interpretation for G is a tuple

Σ = (Ob, i,D,P),

where:
• Ob is a finite set of objects such that Card(Ob) = Card(S);
• i : S −→ Ob is a bijective mapping;
• D = (Y, ∗) is a partial algebra, Y is called the domain of Σ and ∗ is a partial

binary operation on Y ;
• P = {Alga}a∈L0

, where Alga : Ob×Ob −→ Y .
The valuation mapping generated by Σ is the mapping valΣ : ASPR(G) −→ Y
defined inductively as follows. valΣ([x, y], a) = Alga(i(x), i(y)),

valΣ(x(1;n+ 1), σ(v1, v2)) = valΣ(x(1; i), v1) ∗ valΣ(x(i;n+ 1), v2),

where i = ind([x1, ..., xn+1], σ(v1, v2)) and x(i; j) = [xi, ..., xj ].
Consider a stratified graph G = (G0, L, T, u, f) over G0 = (S,L0, T0, f0) and Σ =

(Ob, i,D,P) an interpretation for G. A pair (x, y) ∈ S × S is called interrogation.
For a given interrogation (x, y) we designate by ASPR(x, y) the set of all R-accepted
structured paths from x to y in G. The answer mapping is the mapping

Ans : S × S −→ Y ∪ {no},

defined as follows:

{
Ans(x, y) = no if ASPR(x, y) = ∅,
Ans(x, y) = {valΣ(d) | d ∈ ASPR(x, y)} if ASPR(x, y) 6= ∅.

In what follows we consider:
• An alphabet V ;
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• A stratified graph G = (G,L, T, u, f), where G = (S,L0, T0, f0) is a labeled
graph;

• An interpretation Σ = (V ∗, i,D,P), where
◦ V ∗ is the free monoid generated by V ;
◦ i : S −→ V ∗;
◦ D = (V ∗, ∗) is a partial algebra, where ∗ : V ∗ × V ∗ −→ V ∗ is a partial

binary operation;
◦ For each a ∈ L0 we have Alga : V ∗ × V ∗ −→ V ∗ and P = {Alga}a∈L0 ;

• A subset M ⊆ S × S;
• The set R of restrictions to build the R-accepted structured paths.

Definition 5.1. By definition, the language defined by the sets M and R is the
following collection

L(M,R) =
⋃

(x,y)∈M

Ans(x, y).

The language L(M,R) is a stratified language of second type.

Remark 5.1. We observe that for each (x, y) ∈M the set Ans(x, y) ⊆ V ∗ is a formal
language over V , therefore L(M,R) ⊆ V ∗ is a formal language over V .

x1 x2 x3
- -�

a b

a

Figure 4. Labeled graph with an infinite loop.

Using the labeled graph from Figure 4 and the stratified graph generated by u =
prodS we consider the following interpretation Σ = (V ∗, i,D,P), where
◦ V ∗ is the free monoid generated by V = {a1, a2, a3};
◦ i : S −→ V ∗, i(x1) = a1, i(x2) = a2, i(x3) = a3;
◦ D = (V ∗, ∗) is a partial algebra, where ∗ : V ∗ × V ∗ −→ V ∗ is defined as follows:

for every natural number k we take:

(ak1a
k
2) ∗ a1 = ak+1

1 ak2 , (21)

(ak+1
1 ak2) ∗ a2 = ak+1

1 ak+1
2 , (22)

(ak+1
1 ak2) ∗ a2a3 = ak+1

1 ak+1
2 ak+1

3 . (23)

We observe that ∗ is in this case a partial operation;
◦ The algorithms Alga : V ∗ × V ∗ −→ V ∗ and Algb : V ∗ × V ∗ −→ V ∗ are defined

as follows:
Alga(x, y) = x
Algb(x, y) = xy

and take P = {Alga, Algb}.
We choose the set M = {(x1, x3)}. We have an infinity set of accepted structured
paths from x1 to x3.

Using the set R of restrictions we impose the restriction to use only the accepted
structured paths of the following form:

([x1, x2, x1, x2, . . . , x1, x2, x3], σ(ωk, b)),
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where the pair (x1, x2) appears k times and ωk = σ(σ(. . . σ(a, a), a) . . . , a) contains
2(k − 1) letters σ and 2k − 1 letters a.

So we obtain: ASPR(G) = ASPR(x1, x3) =
⋃
k≥1

{([x1, x2, . . . , x1, x2, x3], σ(ωk, b))}.

It is not difficult to observe that the language generated by the sets M and R is

L(M,R) = {ak1ak2ak3}k≥1.

Remark 5.2. The language {ak1ak2ak3}k≥1 is a context-sensitive language, but is not
a context free language in Chomsky hierarchy.

6. Conclusions and open problems

In this paper we consider two families of formal languages generated by stratified
graphs. We present several properties of these families. We consider the following
open problems:
(1) Study the families of the stratified languages in comparison with the Chomsky

classification of the formal languages or in comparison with the Lindenmayer
languages.

(2) Study the generative power of the stratified languages.
(3) Compare the generative power of the stratified language of first type with the

generative power of the stratified languages of second type.
(4) Study the use of stratified languages as models for natural languages.
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