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Integral ideals and maximal ideals in BL-algebras

A. Paad

Abstract. In this paper, we introduce the concept of integral ideals in BL-algebras. With

respect to concept, we give some related results. In particular, we prove that an ideal is integral

ideal if and only if is Boolean and (prime)maximal ideal. Also, we prove that a BL-algebra
is an integral BL-algebra if and only if trivial ideal {0} is an integral ideal. Moreover, we

study relation between integral ideals and obstinate filters in BL-algebras by using the set of

complement elements. Also, we describe relationship between maximal ideals in BL-algebras
and locally finite MV -algebras.
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1. Introduction

BL-algebras are the algebraic structure for Hájek basic logic [6] in order to in-
vestigate many valued logic by algebraic means. His motivations for introducing
BL-algebras were of two kinds. The first one was providing an algebraic counterpart
of a propositional logic, called Basic Logic, which embodies a fragment common to
some of the most important many-valued logics, namely Lukasiewicz Logic, Gödel
Logic and Product Logic. This Basic Logic (BL for short) is proposed as ”the most
general”many-valued logic with truth values in [0,1] and BL-algebras are the corre-
sponding Lindenbaum-Tarski algebras. The second one was to provide an algebraic
mean for the study of continuous t-norms (or triangular norms) on [0, 1]. In 1958,
Chang [2] introduced the concept of an MV -algebra which is one of the most classes of
BL-algebras. Turunen [9] introduced the notion of an implicative filter and a Boolean
filter in BL-algebras. Boolean filters are an important class of filters, because the quo-
tient BL-algebra induced by these filters are Boolean algebras. The notion of (fuzzy)
ideal has been introduced in many algebraic structures such as lattices, rings, MV -
algebras. Ideal theory is very effective tool for studying various algebraic and logical
systems. In the theory of MV -algebras, as various algebraic structures, the notion of
ideal is at the center, while in BL-algebras, the focus has been on deductive systems
also filters. The study of BL-algebras has experienced a tremendous growth over
resent years and the main focus has been on filters. In the meantime, several authors
have claimed in recent works that the notion of ideals is missing in BL-algebras. In
2013, Lele [7], introduced the notions of (Boolean, prime) ideals and analyzed the
relationship between ideals and filters by using the set of complement elements.

Now, in this paper, we introduce the concept of integral ideals in BL-algebras.
In particular, we prove that an ideal is integral ideal if and only if is Boolean and
(prime) maximal ideal. Also, we prove that a BL-algebra is an integral BL-algebra if
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and only if trivial ideal {0} is an integral ideal. Moreover, we study relation between
integral ideals and obstinate filters in BL-algebras by using the set of complement
elements. Finally, we describe relationship between maximal ideals in BL-algebras
and locally finite MV -algebras and we prove an ideal M of BL-algebra L is a maximal
ideal if and only if for all x 6∈M , there exists n ∈ N , (x−)n ∈M , where N is natural

numbers if and only if quotient BL-algebra
L

M
is a locally finite MV -algebra.

2. Preliminaries

In this section, we give some fundamental definitions and results. For more details,
refer to the references.

Definition 2.1. [6] A BL-algebra is an algebra (L,∨,∧,�,→, 0, 1) of type
(2, 2, 2, 2, 0, 0) such that
(BL1) (L,∨,∧, 0, 1) is a bounded lattice,
(BL2) (L,�, 1) is a commutative monoid,
(BL3) z ≤ x→ y if and only if x� z ≤ y, for all x, y, z ∈ L,
(BL4) x ∧ y = x� (x→ y),
(BL5) (x→ y) ∨ (y → x) = 1.

We denote xn =

n−times︷ ︸︸ ︷
x� ...� x, if n > 0 and x0 = 1. Also, we denote (

n−times︷ ︸︸ ︷
x→ (...(x→ (x→

y)))...) by xn → y, for all x, y ∈ L.

A BL-algebra L is called a Gödel algebra, if x2 = x�x = x, for all x ∈ L and BL-
algebra L is called an MV -algebra, if (x−)− = x, for all x ∈ L, where x− = x → 0.
A BL-algebra L is called a Boolean algebra, if x ∨ x− = 1, for all x ∈ L. Moreover,
BL-algebra L is called an integral BL-algebra, if x� y = 0, then x = 0 or y = 0, for
all x, y ∈ L. Also, if L is an integral BL-algebra, then x → 0 = 0 or x → 0 = 1, for
all x ∈ L.

Proposition 2.2. ([3],[4]) In any BL-algebra the following hold:
(BL6) x ≤ y if and only if x→ y = 1,
(BL7) y ≤ x→ y, and x� y ≤ x, y
(BL8) x ≤ y implies y → z ≤ x→ z and z → x ≤ z → y,
(BL9) x− = 1 if and only if x = 0,
(BL10) 1→ x = x, x→ x = 1 and x→ 1 = 1,
(BL11) x−−− = x−, x ≤ x−− and x� x− = 0,
(BL12) (x ∧ y) ≤ x, y,
(BL13) y → x ≤ (z → y)→ (z → x),
(BL14) x→ y ≤ (y → z)→ (x→ z),
for all x, y, z ∈ L.

The following theorems and definitions are from ([1], [3], [5], [6], [7], [8]) and we
refer the reader to them, for more details.

Definition 2.3. Let L be a BL-algebra and F be a nonempty subset of L. Then
(i) F is called a filter of L, if x � y ∈ F , for any x, y ∈ F and if x ∈ F and x ≤ y
then y ∈ F , for all x, y ∈ L. Proper filter F is called a maximal filter of L, if it is
not properly contained in any other proper filter of L. Moreover, proper filter F is a
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maximal filter if and only if for all x 6∈ F , there exists n ∈ N , (xn)− ∈ F .
(ii) F is called an implicative filter of L, if 1 ∈ F and for all x, y, z ∈ L,

x→ (y → z) ∈ F and x→ y ∈ F imply x→ z ∈ F.
(iii) F is called a fantastic filter, if 1 ∈ F and for all x, y, z ∈ L,

z → (y → x) ∈ F and z ∈ F imply (((x→ y)→ y)→ x) ∈ F.
(v) F is called an positive implicative filter of L, if 1 ∈ F and for all x, y, z ∈ L,

x→ ((y → z)→ y) ∈ F and x ∈ F imply y ∈ F.
(vi) Proper filter F is called a Boolean filter, if for all x ∈ L, x ∨ x− ∈ F .
(vii) Proper filter F is called an obstinate filter, if for all x, y ∈ L,

x, y 6∈ F imply x→ y ∈ F and y → x ∈ F.
(viii) Proper filter F is called an integral filter, if for all x, y ∈ L,

(x� y)− ∈ F implies (x)− ∈ F or (y)− ∈ F.

Definition 2.4. Let L be a BL-algebra and I be a nonempty subset of L. Then
(i) I is called an ideal of L, if x� y = x− → y ∈ I, for any x, y ∈ I and if y ∈ I and
x ≤ y then x ∈ I, for all x, y ∈ L. Moreover, a set I containing 0 of L is an ideal if
and only if for all x, y ∈ L, x− � y ∈ I and x ∈ I imply y ∈ I.
(ii) A proper ideal I of L is called prime ideal of L, if x ∧ y ∈ I implies x ∈ I or
y ∈ I, for all x, y ∈ L. Moreover, I is a prime ideal, if it satisfies for all x, y ∈ L,
(x→ y)− ∈ I or (y → x)− ∈ I.
(iii) Proper ideal I is called a maximal ideal of L, if it is not properly contained in
any other proper ideal of L.
(iv) An ideal I of L is called a Boolean ideal, if x ∧ x− ∈ I, for all x ∈ L.

Definition 2.5. Let L be a BL-algebra and X any subset of L. Then the set of
complement elements (with respect to X) is denoted by N(X) and is defined by

N(X) = {x ∈ L | x− ∈ X}

Theorem 2.6. Let F ⊆ G, where F and G are filters of L and F be an integral filter.
Then G is an integral filter of L.

Theorem 2.7. Let F be a filter of BL-algebra L. Then the binary relation ≡F on L
which is defined by

x ≡F y if and only if x→ y ∈ F and y → x ∈ F

is a congruence relation on L. Define ·, ⇀, t, u on
L

F
, the set of all congruence

classes of L, as follows:

[x] · [y] = [x� y], [x] ⇀ [y] = [x→ y], [x] t [y] = [x ∨ y], [x] u [y] = [x ∧ y].

Then (
L

F
, ·,⇀,t,u, [0], [1]) is a BL-algebra which is called quotient BL-algebra with

respect to F .

Theorem 2.8. Let F be a proper filter of L. Then F is an integral filter if and only

if
L

F
is an integral BL-algebra.
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Theorem 2.9. Let I be an ideal of BL-algebra L. Then the binary relation ≡I on
L which is defined by

x ≡I y if and only if x− � y ∈ I and y− � x ∈ I

is a congruence relation on L. Define ·, ⇀, t, u on
L

I
, the set of all congruence

classes of L, as follows:

[x] · [y] = [x� y], [x] ⇀ [y] = [x→ y], [x] t [y] = [x ∨ y], [x] u [y] = [x ∧ y].

Then (
L

I
, ·,⇀,t,u, [0], [1]) is a BL-algebra which is called quotient BL-algebra with

respect to I. In addition, it is clear [x]−− = [x], for all x ∈ L. Consequently, the
quotient BL-algebra via any ideal is always an MV -algebra.

Theorem 2.10. Let F be a filter of BL-algebra L. Then the following conditions
are equivalent:
(i) F is a maximal and (Boolean)positive implicative filter,
(ii) F is a maximal and implicative filter,
(iii) F is an obstinate filter,
(iv) F is a fantastic and integral filter,

(v)
L

F
is isomorphic to the simplest Boolean algebra {0, 1} (

L

F
∼= {0, 1}).

Theorem 2.11. Let F be a filter and I be an ideal of BL-algebra L. Then
(i) The set of complement elements N(I) is a filter.
(ii) The set of complement elements N(F ) is the ideal generated by F .
(iii) I is a Boolean ideal if and only if N(I) is a Boolean filter.
(iv) N(I) is a fantastic filter of L.

3. Integral ideals in BL-algebras

In this section we introduce a new class of ideals that called integral ideals and we
give some related results.

Definition 3.1. An ideal I of L is called an integral ideal, if for all x, y ∈ L,

x� y ∈ I implies x ∈ I or y ∈ I

Example 3.2. [7] Let L = {0, a, b, c, d, e, f, 1} be such that 0 < a < b < c < 1,
0 < d < e < f < 1, a < e and b < f . Define � and → as follows:

Table 1. Product Operation Table 2. Implication Operation
� 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 a a a 0 a a a
b 0 a a b 0 a a b
c 0 a b c 0 a b c
d 0 0 0 0 d d d d
e 0 a a a d e e e
f 0 a a b d e e f
1 0 a b c d e f 1

→ 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a d 1 1 1 d 1 1 1
b d f 1 1 d f 1 1
c d e f 1 d e f 1
d c c c c 1 1 1 1
e 0 c c c d 1 1 1
f 0 b c c d f 1 1
1 0 a b c d e f 1
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Then (L,∧,∨,�,→, 0, 1) is a BL-algebra. Let I = {0, d} and J = {0, a, b, c}. Then
I and J are integral ideals of L.

Example 3.3. [1] Let L = {0, a, b, c, 1}. Define ∧,∨,� and → on L as follows:

Table 3. Meet Table 4. Join
∧ 0 c a b 1
0 0 0 0 0 0
c 0 c c c c
a 0 c a c a
b 0 c c b b
1 0 c a b 1

∨ 0 c a b 1
0 0 c a b 1
c c c a b 1
a a a a 1 1
b b b 1 b 1
1 1 1 1 1 1

Table 5. Product Table 6. Implication
� 0 c a b 1
0 0 0 0 0 0
c 0 c c c c
a 0 c a c a
b 0 c c b b
1 0 c a b 1

→ 0 c a b 1
0 1 1 1 1 1
c 0 1 1 1 1
a 0 b 1 b 1
b 0 a a 1 1
1 0 c a b 1

Then (L,∨,∧,�,→, 0, 1) is a BL-algebra. Let I = {0}. Then I is an integral ideal
of L.

Lemma 3.4. Let I be an ideal of L and α ∈ I. Then α− ∈ N(I).

Proof. Let I be an ideal of L and α ∈ I. By (BL11), α− � α−− = 0, since I is an
ideal of L, then α−− ∈ I. Therefore, α− ∈ N(I). �

Theorem 3.5. Let I be an ideal of L. Then I is an integral ideal if and only if N(I)
is an integral filter of L.

Proof. Let I be an integral ideal of L and (x � y)− ∈ N(I), for x, y ∈ L. Then by
Theorem 2.11(i) , N(I) is a filter and (x � y)−− ∈ I. Since (x � y) ≤ (x � y)−− by
(BL11), then (x� y) ∈ I. Now, since I is an integral ideal, then x ∈ I or y ∈ I and
so x− ∈ N(I) or y− ∈ N(I). Therefore, N(I) is an integral filter of L. Conversely,
let N(I) be an integral filter of L and (x � y) ∈ I, for x, y ∈ L. Then by Lemma
3.4, (x � y)− ∈ N(I). Now, since N(I) is an integral filter of L, then x− ∈ N(I) or
y− ∈ N(I) and so x−− ∈ I or y−− ∈ I. By (BL11), x ≤ x−− and y ≤ y−−. Hence,
x ∈ I or y ∈ I and so I is an integral ideal of L. �

Theorem 3.6. Let I be an ideal of L. Then I is an integral ideal if and only if
L

I
is

an integral BL-algebra.

Proof. Let I be an integral ideal of L and [x] · [y] = [0], for [x], [y] ∈ L

I
. Then

[x� y] = [0] and so by Theorem 2.9, (x� y)− � 0 ∈ I and (x� y)� 0− ∈ I. Hence,
x � y ∈ I and since I is an integral ideal of L, then x ∈ I or y ∈ I. Therefore,

[x] = [0] or [y] = [0] and so
L

I
is an integral BL-algebra. Conversely, let

L

I
is an

integral BL-algebra and x � y ∈ I. Then [x � y] = [0] and so [x] = [0] or [y] = [0].
Therefore, x ∈ I or y ∈ I and so I is an integral ideal of L. �
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Theorem 3.7. Let I be an integral ideal of L. Then
(i) I is a Boolean ideal of L.
(ii) I is a prime ideal of L.

(iii)
L

I
= {[0], [1]}.

(iv)
L

N(I)
∼= {0, 1}.

Proof. (i) Let I be an integral ideal of L. Then by Theorem 3.5, N(I) is an integral
filter of L. Moreover, by Theorem 2.11(iv), N(I) is a fantastic filter of L and so by
Theorem 2.10, N(I) is a maximal and positive implicative filter of L, hence, N(I) is
a maximal Boolean filter of L. Therefore, by Theorem 2.11(iii), I is a Boolean ideal
of L.
(ii) Let I be an integral ideal and x ∧ y ∈ I, for x, y ∈ L. Then By (BL4) x ∧ y =
x� (x→ y) ∈ I and so x ∈ I or x→ y ∈ I. Since y ≤ x→ y and I is an ideal, then
x ∈ I or y ∈ I. Therefore, I is a prime ideal of L.

(iii) Since I is an integral ideal of L, then by Theorem 3.6,
L

I
is an integralBL-algebra.

Now, by Theorem 2.9,
L

I
is an integral MV -algebra. Hence, for all [0] 6= [x] ∈ L

I
,

[x]− = [0] and so [x] = [x]−− = [1]. Therefore,
L

I
= {[0], [1]}.

(iv) Since I is an integral ideal of L, then N(I) is a maximal and positive implicative

filter of L and so by Theorem 2.10,
L

N(I)
∼= {0, 1}. �

The following example shows that the converse of Theorem 3.7(i) and (ii), is not
correct in general.

Example 3.8. [7] Let L = {0, a, b, 1}, where 0 < a < b < 1. Let x ∧ y = min{x, y},
x ∨ y = max{x, y} and operations � and → are defined as the following tables:

Table 7. Product Table 8. Implication
� 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then (L,∨,∧,�,→, 0, 1) is a BL-algebra. Now, let I = {0}. Then I is a prime
ideal of L, but it is not an integral ideal. Because, a�a = 0 ∈ I and a 6∈ I. Moreover,
since a ∧ a− = a ∧ a = a 6∈ I, then I is not a Boolean ideal of L.

Theorem 3.9. Let I ⊆ J , where I and J be two ideals of L and I be an integral
ideal of L. Then J is an integral ideal, too.

Proof. Let I ⊆ J , where I and J be two ideals of L . Then N(I) ⊆ N(J). Since if
x ∈ N(I), then x− ∈ I ⊆ J and so x− ∈ J . Hence, x ∈ N(J) and so N(I) ⊆ N(J).
Now, since I is an integral ideal, then by Theorem 3.5, N(I) is an integral filter
and since N(I) ⊆ N(J), then by Theorem 2.6, N(J) is an integral filter. Now, by
Theorem 3.5, J is an integral ideal of L. �
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Proposition 3.10. Let I be a nontrivial ideal and F be a filter of integral BL-algebra
L. Then I = L and N(F ) = {0}.

Proof. Let 0 6= x ∈ I, since L is an integral BL-algebra. Then x− = 0 and so for all
z ∈ L, x− � z = 0 ∈ I. Since x ∈ I an I is an ideal, then z ∈ I. Hence, I = L. Also,
since x− = 0 6∈ F , for all 0 6= x ∈ L and 0− = 1 ∈ F , then N(F ) = {0}. Therefore,
by Theorem 2.11(i) and (ii), N(I) is a maximal filter of L and N(F ) is minimal ideal
of L. �

The following theorem describes the relationship between integral ideals and inte-
gral BL-algebras.

Theorem 3.11. In any BL-algebra L, the following conditions are equivalent:
(i) {0} is an integral ideal of L,
(ii) {1} is an integral filter of L,
(ii) L is an integral BL-algebra.

Proof. (i) ⇒ (ii) Let {0} be an integral ideal of L and (x � y)− ∈ {1}, for x, y ∈ L.
Then (x� y)− = 1 and so by (BL9), x� y = 0. Hence, x ∈ {0} or y ∈ {0} and so by
(BL9), x− = 1 or y− = 1. Therefore, {1} is an integral filter of L.
(i) ⇒ (ii) Let {1} be an integral filter of L and x � y ∈ {0}, for x, y ∈ L. Then
x � y = 0 and so by (BL9), (x � y)− = 1. Hence, x− = 1 or y− = 1 and so (BL9),
x = 0 or y = 0. Hence, x ∈ {0} or y ∈ {0}. Therefore, {0} is an integral ideal of L.
(i) ⇒ (iii) Let {0} be an integral ideal of L and x � y = 0, for x, y ∈ L. Then
x � y ∈ {0} and so x ∈ {0} or y ∈ {0}. Therefore, x = 0 or y = 0 and so L is an
integral BL-algebra.
(iii) ⇒ (i) Let L be an integral BL-algebra and x � y ∈ {0}, for x, y ∈ L. Then
x � y = 0 and so x = 0 or y = 0. Hence, x ∈ {0} or y ∈ {0}. Therefore, {0} is an
integral ideal of L. �

Definition 3.12. [6] Let L1 and L2 be two BL-algebras. Then the map f : L1 → L2

is called a BL- homomorphism if and only if it satisfies the following conditions, for
every x, y ∈ L1:
(i) f(0) = 0,
(ii) f(x� y) = f(x)� f(y),
(iii) f(x→ y) = f(x)→ f(y).
Moreover, if J is an ideal of L2, then f−1(J) is an ideal of L1.

Proposition 3.13. Let L1, L2 be two BL-algebras, φ : L1 → L2 be a BL-homomor-
phism and J be an integral ideal of L2. Then φ−1(J) is an integral ideal of L1.

Proof. Let x� y ∈ φ−1(J), for x, y ∈ L1. Then φ(x� y) ∈ J and so φ(x)� φ(y) ∈ J .
Since J is an integral ideal of L2, then φ(x) ∈ J or φ(y) ∈ J and so x ∈ φ−1(J) or
y ∈ φ−1(J). Therefore, φ−1(J) is an integral ideal of L1. �

4. Relation among integral ideals, Boolean ideals, maximal ideals and ob-
stinate filters in BL-algebras

In this section, we study relation between integral ideals, Boolean ideals, maximal
ideals and obstinate filters in BL-algebras. Also, we describe relationship between
integral ideals and prime ideals in BL-algebras.
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Theorem 4.1. Let I be an ideal of L. Then I is an integral ideal if and only if N(I)
is an obstinate filter of L.

Proof. Let I be an integral ideal of L. Then by Theorem 3.5, N(I) is an integral
filter of L. Moreover, by Theorem 2.11(iv), N(I) is a fantastic filter of L. Hence,
by Theorem 2.10(iii), N(I) is an obstinate filter of L. Conversely, let N(I) be an

obstinate filter of L. Then by Theorem 2.10(v),
L

N(I)
∼= {0, 1} and so

L

N(I)
is an

integral BL-algebra. Hence, by Theorem 2.8, N(I) is an integral filter and so by
Theorem 3.5, I is an integral ideal of L. �

Theorem 4.2. Let F be a proper filter of L. Then F is an integral filter if and only
if N(F ) is an integral ideal of L.

Proof. Let F be an integral filter of L. Then by Theorem 2.11(ii), N(F ) is an ideal
of L. Let x� y ∈ N(F ), for x, y ∈ L. Then (x� y)− ∈ F and since F is an integral
filter, then x− ∈ F or y− ∈ F and so x ∈ N(F ) or y ∈ N(F ). Therefore, N(F ) is an
integral ideal of L. Conversely, let N(F ) be an integral ideal of L and (x� y)− ∈ F ,
for x, y ∈ L. Then x � y ∈ N(F ) and so x ∈ N(F ) or y ∈ N(F ). Hence, x− ∈ F or
y− ∈ F . Therefore, F is an integral filter of L. �

Corollary 4.3. If F is an obstinate filter of L, then N(F ) is an integral ideal of L.

Proof. Let F be an obstinate filter of L. Then by Theorem 2.10, F is an integral
filter and so by Theorem 4.2, N(F ) is an integral ideal of L. �

Corollary 4.4. If F is a fantastic filter of L, which N(F ) is an integral ideal of L,
then F is an obstinate filter of L.

Proof. Let F be a fantastic filter of L, which N(F ) is an integral ideal of L. Then by
Theorem 4.2, F is an integral filter and so by Theorem 2.10, F is an obstinate filter
of L. �

Theorem 4.5. Let I be an ideal of L. Then the following conditions are equivalent:
(i) I is an integral ideal of L,
(ii) I is a prime and Boolean ideal of L,
(iii) I is a proper ideal and for all x ∈ L, x ∈ I or x− ∈ I.

Proof. (i)⇒ (ii) It follows from Theorem 3.7(i) and (ii).
(ii)⇒ (i) Let I be a prime and Boolean ideal of L and x�y ∈ I for x, y ∈ L. If x 6∈ I
and y 6∈ I, since I is a Boolean ideal, then x∧ x− ∈ I and y ∧ y− ∈ I and since I is a
prime ideal of L, then x− ∈ I and y− ∈ I. Hence, x ∈ N(I) and y ∈ N(I). Now, by
Theorem 2.11(i), N(I) is a filter and so x � y ∈ N(I). Therefore, (x � y)− ∈ I and

so [(x� y)−] = [0]. Moreover, since x� y ∈ I, then [x� y] = [0]. Now, since
L

I
is an

MV -algebra, then [(x� y)−]− = [0]− = [1] and so [x� y] = [1], which is impossible.
Therefore, x ∈ I or y ∈ I and so I is an integral ideal of L.
(ii) ⇒ (iii) let I be a prime and Boolean ideal of L. Then I is a proper ideal of L
and x ∧ x− ∈ I, for all x ∈ L. Now, since I is prime ideal, then x ∈ I or x− ∈ I, for
all x ∈ L.
(iii) ⇒ (ii) Since by (BL12), x ∧ x− ≤ x and x ∧ x− ≤ x− and I is a proper ideal
and for all x ∈ L, x ∈ I or x− ∈ I, then x ∧ x− ∈ I, for all x ∈ L. Therefore, I is
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a Boolean ideal of L. Now, if (x → y)− ∈ I, for x, y ∈ L, then I is a prime ideal
and if (x → y)− 6∈ I, then x → y ∈ I. Now, by (BL8), x → 0 ≤ x → y and so
x → 0 ∈ I. Since x ≤ y → x, by (BL7) and so by (BL8), (y → x) → 0 ≤ x → 0.
Hence, (y → x)− ∈ I. Therefore, I is a prime ideal of L. �

Lemma 4.6. Let L be a BL-algebra. Then x � (y → z) ≤ y → (x � z), for all
x, y, z ∈ L.

Proof. Since for all x, y, z ∈ L, x� z ≤ x� z and by (BL3), x ≤ z → (x� z), then by
(BL14), z → (x�z) ≤ (y → z)→ (y → (x�z)) and so x ≤ (y → z)→ (y → (x�z)).
Therefore, by (BL3),

x� (y → z) ≤ y → (x� z).
�

Definition 4.7. [4] Let x ∈ L. If there exists a smallest positive integer number n
such that xn = 0, then we say the order of x is n and we denote by ord(x) = n and we
say is ord(x) = ∞, if no such n exist xn = 0. L is called a locally finite BL-algebra,
if, ord(x) <∞, for all x ∈ L\{1}.

Theorem 4.8. Let M be a proper ideal of L. Then the following conditions are
equivalent:
(i) M is a maximal ideal of L,
(ii) for all x 6∈M , there exists n ∈ N , (x−)n ∈M .

(iii)
L

M
is a locally finite MV -algebra.

Proof. (i)⇒ (ii) Let M be a maximal ideal of L and x 6∈M . Define a subset D of L
by

D = {z ∈ L | for some y ∈M and n ∈ N, (x−)n � z ≤ y}
Since by (BL11), x− � x = 0 ≤ 0, then x ∈ D and if z ∈ M , then by (BL7),
x− � z ≤ z and so z ∈ D. Hence, M ⊂ D ⊆ L. Now, we show that D is an
ideal of L. Let z, w ∈ L, z ≤ w and w ∈ D. Then there exist y ∈ M and n ∈ N
such that (x−)n � w ≤ y. Since z ≤ w, then by (BL7), (x−)n � z ≤ (x−)n � w
and so (x−)n � z ≤ y. Therefore, z ∈ D. Now, let z, w ∈ D. Then there exist
y1, y2 ∈M and m,n ∈ N such that (x−)n � z ≤ y1 and (x−)m � w ≤ y2. By (BL7),
(x−)m+n � z ≤ y1 and (x−)m+n � w ≤ y2 and since y1, y2 ∈M and M is an ideal of
L, then y−1 → y2 ∈M . Now, by Lemma 4.6 and (BL8),

(x−)m+n � (z− → w) ≤ z− → (((x−)m+n � w)) ≤ z− → y2

And so by (BL8),

(z− → y2)→ (y−1 → y2) ≤ (x−)m+n � (z− → w)→ (y−1 → y2)

Moreover, by (BL13) and (BL14),

z → y1 ≤ y−1 → z− ≤ (z− → y2)→ (y−1 → y2)

And since (x−)m+n � z ≤ y1, then by (BL3) (x−)m+n ≤ z → y1 and so

(x−)m+n ≤ z → y1

≤ (z− → y2)→ (y−1 → y2)

≤ ((x−)m+n � (z− → w))→ (y−1 → y2)
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Hence,
(x−)m+n ≤ ((x−)m+n � (z− → w))→ (y−1 → y2)

And so by (BL3),

(x−)m+n � ((x−)m+n � (z− → w)) ≤ (y−1 → y2)

Therefore,
(x−)2(m+n) � (z− → w) ≤ (y−1 → y2)

Since (y−1 → y2) ∈ M and 2(m + n) ∈ N , then (z− → w) ∈ D and so D is an ideal
of L. Now, since M is a maximal ideal of L and M ⊂ D ⊆ L, then D = L and so
1 ∈ D. Hence, there exist y ∈ M and n ∈ N such that (x−)n = (x−)n � 1 ≤ y and
since y ∈M , then (x−)n ∈M .

(ii) ⇒ (iii) Let [1] 6= [x] ∈ L

M
. Then x− � 1 6∈ M , since if x− � 1 ∈ M , then

x � 1− = 0 ∈ M and so [x] = [1]. Hence, x− 6∈ M and so by (ii), there exist n ∈ N
such that ((x−)−)n ∈M . By (BL11), x ≤ x−− and so xn ≤ (x−−)n. Hence, xn ∈M

and so [x]n = [0]. Therefore,
L

M
is a locally finite MV -algebra.

(iii) ⇒ (ii) Let
L

M
be a locally finite MV -algebra. Then for all [1] 6= [x] ∈ L

M
,

there exist n ∈ N such that [x]n = [0] and so xn ∈ M . Now, let x 6∈ M . Then

[x] 6= [0] and so [x]− 6= [1]. Since if [x]− = [1], then [x]−− = [0] and since
L

M
is an

MV -algebra, then [x] = [x]−− = [0], which is impossible. Hence, [x]− 6= [1] and so
there exist n ∈ N , ([x]−)n = [0]. Hence, [(x−)n] = [0] and so (x−)n ∈M .

(iii) ⇒ (i) J be an ideal of L and M ⊂ J ⊆ L. Then there exist x ∈ J which
x 6∈ M . Hence, there exist n ∈ N such that (x−)n ∈ M ⊂ J and so (x−)n ∈ J .
Therefore, [(x−)n] = [x−]n = [0]. Moreover, since x ∈ J , then [x] = [0] and so
[x−] = [x]− = [1]. Hence, [x−]n = [1] and so [0] = [1]. Therefore, 1� 0− = 1 ∈ J and
so J = L. Thus, M is a maximal ideal of L. �

Theorem 4.9. Let I be an integral ideal of L. Then I is a maximal and Boolean
ideal of L.

Proof. Let I be an integral ideal of L and x 6∈ I. Then by Theorem 4.5, I is a Boolean
and x− ∈ I and so by Theorem 4.8, I is a maximal ideal of L. �

Proposition 4.10. [7] Let I be an ideal of L with x ∈ L, but x 6∈ I. Then there
exists a prime ideal P of L containing I with x 6∈ P .

Theorem 4.11. Let M be a maximal ideal of L. Then M is a prime ideal of L.

Proof. Let M be a maximal ideal of L. Since 1 6∈M , then by Proposition 4.10, there
exists a prime ideal P of L containing M with 1 6∈ P . Hence, M ⊆ P ⊂ L and since
M is a maximal ideal of L, then M = P . Therefore, M is a prime ideal of L. �

In the following theorem we describe relationship among integral ideals, maximal
ideals, prime ideals and Boolean ideals in a BL-algebras.

Theorem 4.12. Let I be an ideal of L. Then the following conditions are equivalent:
(i) I is an integral ideal of L,
(ii) I is a prime and Boolean ideal of L,
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(iii) I is a maximal and Boolean ideal of L,
(iv) I is a proper ideal and for all x ∈ L, x ∈ I or x− ∈ I.

Proof. It follows from Theorem 4.5, Theorem 4.9 and Theorem 4.11. �

Proposition 4.13. Let F be a maximal filter of L. Then N(F ) is a maximal ideal
of L.

Proof. Let F be a maximal filter of L. Then by Theorem 2.11(ii), N(F ) is an ideal
of L. Let x 6∈ N(F ). Then x− 6∈ F , since if x− ∈ F , then x ∈ N(F ) which is
impossible. Now, since F is a maximal ideal of L and x− 6∈ F , then there exists
n ∈ N , ((x−)n)− ∈ F and so (x−)n ∈ N(F ). Therefore, by Theorem 4.8, N(F ) is a
maximal ideal of L. �

The following example shows that the converse of Proposition 4.13(i), is not correct
in general.

Example 4.14. Let L be BL-algebra of Example 3.2 and F = {1, c}. Then F is a
filter and N(F ) = {0, d}. Now, since N(F ) is an integral ideal, then by Theorem 4.9,
N(F ) is a maximal ideal of L. But, since F ⊂ G = {1, a, b, c, e, f} and G is a proper
filter of L, then F is not a maximal filter of L. By another way, since a 6∈ F and for
all n ∈ N , (a−)n = dn = d 6∈ F , then by Theorem 4.8, F is not a maximal filter of L.
Therefore, the converse of Proposition 4.13(i), is not correct in general.

Theorem 4.15. Let I be an ideal of L. Then I is a maximal ideal of L if and only
if N(I) is a maximal filter of L.

Proof. Let I be a maximal ideal of L and x 6∈ N(I). Then x− 6∈ I, since if x− ∈ I,
then x ∈ N(I) which is impossible. Hence, x− 6∈ I and so by Theorem 4.8, there
exists n ∈ N , ((x−)−)n ∈ I. Now, by (BL11), x ≤ x−− and so xn ≤ (x−−)n. Hence,
xn ∈ I and so by Lemma 3.4, (xn)− ∈ N(I). Therefore, N(I) is a maximal filter of
L. Conversely, let N(I) be a maximal filter of L and x 6∈ I. Then x− 6∈ N(I). Since
if x− ∈ N(I), then x−− ∈ I and so by (BL11), x ∈ I which is impossible. Hence,
x− 6∈ N(I) and so there exists n ∈ N , ((x−)n)− ∈ N(I) and so ((x−)n)−− ∈ I.
Therefore , (BL11), (x−)n ∈ I and so by Theorem 4.8, I is a maximal ideal of L. �

5. Conclusion

The results of this paper are be devoted to study a new class of ideals that is called
integral ideals. We presented a characterization and several important properties of
integral ideals. In particular, we prove that an ideal is integral ideal if and only if is
Boolean and (prime)maximal ideal. Also, we proved that a BL-algebra is an integral
BL-algebra if and only if trivial ideal {0} is an integral ideal. Moreover, we studied
relation between integral ideals and obstinate filters in BL-algebras by using the set
of complement elements. Also, we described relationship between maximal ideals in
BL-algebras and locally finite MV -algebras and we proved an ideal M of BL-algebra
L is a maximal ideal if and only if for all x 6∈ M , there exists n ∈ N , (x−)n ∈ M if

and only if quotient BL-algebra
L

M
is a locally finite MV -algebra.
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