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Periodic solution for some parabolic degenerate equation with
critical growth with respect to the gradient

FATIMA AQEL AND NOUR EDDINE ALAA

ABSTRACT. This work is concerned with the existence of periodic solution for a parabolic
degenerate equation with critical growth on the gradient and Dirichlet boundary condition.
The aim will be achieved by applying some recent results. The first result that we are based
on is the existence of solutions for quasilinear elliptic degenerate systems with L! data and
nonlinearity in the gradient [1] and the second one is the existence of weak periodic solutions
of some quasilinear parabolic systems with data measures [2].
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1. Introduction

The existence of periodic solutions for coupled systems, semilinear and quasilinear
parabolic equations under either Dirichlet or Neumann boundary conditions has been
investigated by several authors ([2],[3],[4],[5],[6],...) by different methods such as the
theory of monotone operators, the Poincaré method, the Leray-Schauder fixed point
theory and the method of sub and super-solutions. As we can see, the periodic be-
havior of solutions of parabolic boundary value problems could be arise from many
biological, ecological, chemical engineering and physical systems. The typical prob-
lem, which is going to be discussed in the present paper, is to study the existence of
a periodic solution for the following model

% —Au+a(t,z)|Vul2 = f in Qr,
u=0 on X, 1)
u(0) = u(T) in Q,

where () is an open bounded subset of RN, N > 1, with smooth boundary 9. For
given T > 0, we set Qr = (0,T) x Q, X = (0,T) x 99, —A denotes the Laplacian
operator on L! with Dirichlet boundary condition and a, f : (0,T) x Q — [0, +00)
are two measurable functions, which are periodic in the time ¢ with period T > 0.
In recent years, periodic problems for degenerate parabolic equations have been the
subject of extensive study; see [1 — 6] and references therein.

In order to describe our results and relate them to others in the early literature,
we mention that many researches have studied the existence of periodic solutions
for different kinds of equations. One of those studies is the periodic solutions of
semilinear parabolic equations where H. Amann used some methods of functional
analysis, namely fixed point theorem in Banach spaces to prove the existence and
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multiplicity result for periodic solutions of semilinear differential equations of the
second order.

Krasnosel’skii [15] in the case of parabolic equations, it turns out that the Poincaré
operator is compact in suitable function spaces. Moreover, by involving the strong
maximum principle for linear parabolic equations, it can be shown that it is strongly
increasing in some closed subspace of C?*", 0 < v < 1.

We are interested particularly in the case where a, f are irregular.

The purpose of the paper is to present a result of existence of at least one weak
periodic solution to problem (1) under quite general assumptions on the functions a
and f.

In this paper, we have organized our work as follows. In section 2, we introduce
the notations that will be used throughout the paper, we also recall some results
obtained previously and needed here. In section 3 we present our problem and we
exhibit the main result. The proof is given in the section 4, where we begin with an
approximating problem, then we give some a priori estimates, and we end by passing
to the limit.

2. Necessary conditions for existence

Throughout the paper we shall assume:
H1) f is a positive function such that f € L'(Q7).
H2) a € L}, .(Qr) such that a > 0.

The object of this paper is to investigate the existence, and almost periodicity of
bounded solutions. First of all, we introduce the definition of a weak periodic solution.

Definition 2.1. A function w is said to be a weak periodic solution of problem (1) if

u € C([0,T]; L} (€2)) N L0, T3 Wy ' (),
%(tvx)‘vm € Llloc(QT)v

8—1: — Au+a(t,z)|Vul]? = f in D' (Qr),
w(0) = u(T) in L2(Q).

(2)

Definition 2.2. We call periodic subsolution (resp. supersolution) of (1) a function
u satisfying (2) with =" replaced by ”<” (resp. >).

3. Main result

In this section we state the main result of this work.
Let’s begin by the definition of truncated function T}, € C?

Te(r)=r if 0<r <k,

Te(r)<k+1 if r>k,

0<Ti(r)<1 if r>0, (3)
Ti(r)y=0 if r>k+1,
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For example, the function T} can be defined as
Ti(r) =7 in  [0,k],

1
Tk(r):§(r—k:)4—(r—k)3+r in [k k+1], (4)
Tk(r):k—i—% for r>k+1.

Also, we set
2(Qr) = {v: (0,T) x Q@ = (0,T) x RN measurable, such that
Ty(v) € L*(0,T; H*(Q)) for all k > 0}.

Then, we introduce the function

v
]k(’U) = / Tk(s)ds. (5)
0
Now, we can enunciate the main theorem of this section.

Theorem 3.1. We assume that the hypothesis (H1) and (H2) are satisfied. If it
exists a function 0 € T(Qr) and a function sequence 0,, € L*(Qr) such that
0 g a < 0 n QT7
0, — 0  almost everywhere in Qr,
VTi(0,) = VT(0)  strongly in L*(Qr),
T sup [ (IVT3(0) ) =0, (6)
06,

_" 2 . —1
€ L0, T3 H Q).

Then the problem (1) has a non-negative weak periodic solution.

Remark 3.1. Let @ — Aa = p denotes the Radon measure. Then, we take 0 = a

and 6,, solution of

D Apy =y inQr,
8tf ) (7)
0, =0 in Xp,

0,(0,2) =0gn(z) inQ,
where p, € C5°(Qr), pn — p in Mp(Qr) and p, < p.

4. Proof of the main result

Now we prove our main existence result which reads as follows.

4.1. The approximate problem. First, we define an approximated equation of
(1). For this, we need to truncate the functions a and f by considering the sequence
an and f, defined by
a, = min{a, 0, }, (8)
n=0

=

and
fn € C3%(Qr), fr = [ in LY(Qr) and fr < f. 9)
Then, we approximate (1) by the following problem
up € C([0,T); L(92)) N L>(0,T5 Wy ™ (),
aaltn — Aty 4 an(t,2)|Vun|? = f,  in D(Qr), (10)
un (0) = un (T) in Q.
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On the other hand, let a,, € L>®(Qr). Furthermore, 0 is a subsolution of problem
(10) and wy, is a solution of the following linear problem

u, € L®(0,T; Wy ™ (),
Bon A =fu 0D (@), (11)
wn(0) =w,(T) inQ,

is a supersolution. So the problem (10) admits a positive solution u,, such that for
alln >0, 0 < u, <w, (for more details, see [12] and [?]).

4.2. A priori estimates. In order to prove the Theorem 2.1, we propose to pass
to the limit in (10). For this, we will need to prove some certain estimates on the
nonlinearity and also on the gradient.

Lemma 4.1. Let u, w € L?(0,T; H} () N C([0,T; L*(2)) N L>=(Qr)

0 <u<win QT)

(w =) = A(w —u) >0 in D'(Qr),
wy —Aw >0 in D (Qr),

w(0) = u(T) in L*(Q2),

w(0) = w(T) in L*().

Then

/ Vul> <C [ |Vw]? (12)
T Qr

Lemma 4.2. Let u, w € L*(0,T; H(Q)) N C([0,T); L3(Q)) N L>=(Qr) such that
0 <wp —u, <w—uin Qr and u(0) = u(T) in L*(Q), w(0) = w(T) in L*(Q)

wy, — w strongly in L*(0,T; HE (),

u, — u weakly in L*(0,T; H} (), (13)
and we have
ngn_ungw_u Z‘7’LC2T7
(W = un)t — Alwy, —uy) = pp in D (Qr),
un(0) = un(T) in L3(R),
wy, (0) = w, (T) in L*(Q),
Pn € Ll(QT): pn >0 and ||anL1(QT) >C,
where C' is a positive constant independent of n. Then
Up, — u strongly in L2(0,T; H}(Q)). (14)

Proof of Lemma 4.1. First, we define the Lebesgue-Steklov average u” of the solution.
For h > 0, we have

1 [tth
ul(t,xz) = f/ u(s,x)ds
h Ji
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this function is well-defined in the space Hg(£2). We have

T—h T—h
/ /|w — uM)Pdzdt = / / w' — uM)A(w" — uM)dadt

T—h
:/ /(wh—uh)[at(wh—uh)— (" — uM)dad]
0 Q

B /O” /Q(wh Mot — )

T—h
_ / / (" — uM) (D, (w" — u") — A(w" — uP)dad] + 1 (h),
0 Q

where

T—h T—h
/ / w" — Mo, (wh —u) = —/ /@(wh —uM)2dzdt
_/ (w0 — WM — h) + (" — u)2(0)dwdt.
Q
Then by passing to the limit, we get
lim ey (h) = lim | —(w" —u")?(T — h) + (w" — u")*(0)dzdt = 0,
h—0 h—0 Jq

consequently

17

/oTh/Q IV (w" —u)|2dzdt < /OTh /Q w" [0y (wh — ul) — A(w" — u)dzdt] + 1(h)

T—h
,/ /(whfuh)é}‘twhqt/[(whfuh)wh]g_h
0 Q Q
T—h T—h
+ 2/ / V'V (w" — u")dxdt + / / (w" — uM) Awhdzdt + 1 (h),
0 Q

hence

T—h T—h
/ / |V (w" —u")|2dedt < 7/ /(wh —uM)[Dw" — Aw"]
0 Q 0 Q

T—h
+ 2/ / V"V (w" — u)dzdt 4 €1 (h) + 2(h).

Since dyw" — Aw™ > 0, we get

T—h T—h
/ / IV (w" —u™)|Pdzdt < 2/ / V'V (w" — u")dxdt 4 1 (h) + e2(h),
0 Q 0 Q
where
() = [ [~ )i
Q

which implies that

: o h . hy, h1T—h
Jim eo(h) = Jim | (" — )] da

= %13%) Q[(wh —uM)(T = h)w"(T — h) — (w" — u")(0)w" (0)]dz

=0.
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It follows that

T—h T—h T—h
/ /\V w —u™)| dmdt<2/ /|th\ / /|V(wh—
0 Q

+€1 +€2

which implies that
T—h T—h
/ / IV (" — uh)2dadt < 4/ / Vwh 2 + 2(1(R) + ea(h)).
0 Q 0 Q

Finally, we deduce

/ |Vul|*dedt < 12/ |Vwl|?.
Qr Qr
O

Proof of Lemma 4.2. To prove that u,, converges strongly in L?(0,T; H}(Q), it suffice
that
lim [ [V 2dedt < / Vul?, (15)
n— oo QT T

For h > 0, let uh,w" and u”, w” the sequences given by 0 < w! —ul < wh — ",

First, we have

lim |V (wy, — up)|?dedt = lim lim |V (wh — ul)|?dxdt
n— 00 Qr h—0n—o0 Qr_n
h_ .k
= lim lim (w! fuﬁ)[M A(w! — ul)dadt]
h—=0n—o0 Jo ot
o h _ ,h
< lim lim (w" —uh)[M A(w! — ul)dadt]
h—0n—o0 Jo. ot
o h _ ,h
< lim lim (" — w2 =) |Gt T (wh — )] dadt,
h—=0n—oo fo ot

By using the weak convergence of u,, in L2(0,T; H}(Q2)) to u which implies that u? —
ul weakly in L?(0,T; H}(2)) and the strong convergence of w,, in L%(0,T; H}(Q))
which give us that w? — w” strongly in L2(0,T; H}(2)). Then we obtain

o h _ ,h

lim [ |V(wn — un)|?dzdt < lim (w — )2 = Gt — i)t
n—00 Qr h—0 Qrn ot

< lim (/ [(w" — M) +/ IV (w" — uM)|?dxdt)

h—0 Q T—h
§/ |V (w — u)|*dzdt.
T

Finally we obtain the desired result (14). O

Now, we need to prove that a,(t, z)|Vu,|? is bounded in L*(Qr).

Lemma 4.3. Let (uy,) and (ay,) be sequences previously defined. Then we have
i) Jo, an(t,2)|Vu,|> < C1.
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Proof. i) By integrating the equation satisfied by u, over Q7 and multiplying by a
test function ¢ which is equal to ¢ = 1, we obtain

% — Au,, + an(t,ac)|Vun|2 = I
Qr ot Qr

As u,, is periodic, u, = 0 on X, and by using (10), we have

/ an(t,x)|Vun|2 < I
Qr Qr
hence, we obtain the desired result. [l

Lemma 4.4. Let uy, be a solution of (10), then

1
lim lim sup(E/ VT (ul)?) = 0.
Qr—n

h—0k—+40c0 p

Proof. By using the Lebesgue-Steklov average and multiplying (1) by the truncated
function T} (u") , then integrating on Qr, we get for every 0 < M < k,

Ay (ul
[oo s [ enps [ BTG = [ Aml,
Qr—n Qr—n Qr—n Qr—n

1
where F' = 7 tt+h

which yields to

a(s,z)|Vul|?*ds > 0

O (ul
[ [ enps [ .
Qr—n Qr—h Qr—n

By using the assumptions on Ty (u”) and ji(u?), we obtain

[ vnabes [ Tl + k[ FTLE) + e, ).
Qr—n Qr—nN[uf; <M] Qr—nNluy>M]

where

O (ul
lim lim e(n,h) = lim lim i)
h—0n—+oo h=0n—+oo Jo ot

=0,
therefore
[ ownehesar [ ek [ P e,
Qr—n Qr—n Qr—n
On the other hand, we have

o> Ml = [ dedt < lilen < 3y
which yields

i (sup [ul > 21])) = 0.
On the other hand, since f* € L'(Qr), we have for each ¢ > 0 there exists § such
that, for all £ C Qr

B <6, [pf" <e

by taking into account the previous result, we obtain that for each ¢ > 0, then there
exists M, such that, for all M > M,

Sup(/ "X >any) <

n

)

N
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we set M = M, and for k — 400, we get

1
lim lim sup(%/ VT (ult)[?) = 0.
T—h

k—+4oco h—0 p

O

4.3. Convergence. In this paragraph, we need to show the existence of u which is
a limit of u,, and also a solution of

% — Au+a(t,@)|Vul?> = f in D'(Qr),
u =0 in Xp,

u(0) = u(T) in Q.

(16)

Let © be an open bounded subset of RY with smooth boundary and u solution of
(10). Then for every T > 0, the application

(un(O),gn) € LI(Q) X Ll(QT) — Up € Ll(QT)v

is compact, where g,, = f,, — an(t,2)|Vu,|?.
Moreover, it’s continuous from L!(Q)x L*(Qr) into C([0, T]; L*(©2)). For more details,
we refer you to see this paper (Baras & Pierre)[12].

Then we have
up, —u in LY(Q7),
Vu, = Vu in LYQr),

ii) From Lemma 4.1 and 4.2, we have
Ty (u,) converges to Ty (u) weakly in L2(0,T; H}(2)),
Ty (uy,) converges to T (u) strongly in L2(0,T; HE(Q)).

Since T (uy,) is bounded in L®(Qr), we conclude the existence of Ty (u) € L (Qr)
such that

(17)

T (uy,) converges to Ty (u) weak- * in L (Qr).

By Lemma 4.3, we know that a,(t,z)|Vu,|? is uniformly bounded in L'(Qr) and
nonnegative. Moreover

an(t, )| Vu,|* = a(t,z)|Vul? a.ein Qr.

Then there exists A non negative measure, see Schwartz [14], such that

ngrfoo %Lt” — Auy + an(t, )| Vu,|? = % — Au+a(t,z)|Vul> + X in D' (Qr).
(18)
However 5
im 2dn _ 2_ ¢ in I!
nll)rfoo 5t Auy, + an(t,z)|Vu,|* = f in LYQr), (19)
consequently
0
8—? — Au+a(t,z)|[Vul> + A= f, (20)
where A > 0, which yields to the following inequality
0
a—? — Au+ a(t,z)|Vul]* < f.

but, it stills to prove that we can also establish an inequality in the opposite sense,
which means that

g—? — Au+ a(t,z)|Vu|* > f, (21)
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for this, we will introduce the function H € C*(R), such that

0<H(s)<1
0 if \ | > 1,
H(s) =9 .. N
Next, we define the test function ® as follows
0, h
@ = tpeap(—0,ul) H(T)H(),

21

where H is the function defined previously and v < 0, ¢ € L*(0,T; H} (2))NL>°(Qr)

and 9y € L2(0, T; H-(9)) + LY(Qr).

Now, we multiply our equation by ® and we integrate over (0,7 — h) X €, we obtain

/ fn® = / [aun — Auy, + an(t,x)|Vun|2]<I>
Qr—n Qr—n ot

Then, we obtain

h oY h On up,
Lgtee [ G vu el 1 HCE)
2 h On UZ
/ (an(t,z) — 6,)| V| wexp(—ﬁnun)H(?)H(?)
ul On up
o BT VU Vs exp( ) HOE )
ul 00, 0 ul
h h n n
ol S e el O )
1 O ul
i e H (GHCE)-
1 On ! Z
il O (=, 11 () (22
h h On up
—/ Yup Vun, VO, exp(—0pup ) H(—)H(=")+
Qr—n k k

1 h ’ 9n ’U,Z
+ p WV u, VO, exp(—0,u, ) H (?)H(

1 0, h
41 / VUV exp(—Onul V(O B (M 4 / 1, ®)
k Qr—n k k Q

=L+ DL+ Is+1y+Is + Ig + I7 + Ig + Ig + I1p.

Now, we study each term. For this we fix £ and h and we pass to the limit as n — +o0,

we obtain
lim I, = li [T ( )a¢ + VT (u,) Vlexp(—6 h)H(e—")H(
n—l>r-ir-loo 1= n—l)r-&)iloo Qron k\Un ot k\tn p k

uh
- w2 FuTyleap(—u H(H (),
Qr—n
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Since
9 — up, oY [N ul o
5t —exp(— 9nun)H(?)H(?) — Eewp( Ou )H(%)H(?) strongly in L°(Qr),

and we have
Ty (un) — Ty (u) weakly in L*(0,T; H}(S2)),
s rr O ult PR ul
Vi eXP(—9nun)H(?)H(?) — Vipexp(—fu )H(%)H(?)
converges strongly in L?(Qr).
For the second term I, we have, since 0 < a,, < 6,, and ¥ < 0, we get
0, UZ

(an(t,z) — 0,)|Vun|*2 exp(—ﬁnuZ)H(—)H(

> 0.
k

22
Therefore by Fatou’s lemma, we obtain

tm B> [ (alt.o) - 0)/VuPvexp(~6a H( ().

n—-+oo

Let us pass to the third term I, we have

0
. . . h 7”
ngrf I3 = nhr}rloo o O (Vty, — Vul Y VT (w1 exp(—0,u) H( A

:/ 0(Vu — Vuh)VTk(u)¢exp(—Huh)H(Z)H(?L
Qr-n

where
VTi(u,) = VTi(u) in L*(Qr).
and
V(uy —ul) = V(u, —u?) in L*0,T; H(Q))).
Concerning the term Iy, we have

oul a0,
lim Iy= Ili O =2 + ul

x> ‘:ﬁw

S)H (

o exp(~ Ol H (Y H ()

u

Bu , 00 p .
= [ o e H)H ()

Where u
un(t+h
h

is differentiable in time for all A > 0, and its derivative equal to

un(t)

"
)~

. Then we have

0, h 0 h
b exp(—ul) H(Z)H(SE) = b exp(—6u" ) H()H(-) strongly in L*(Qr),
and . N
ou, ou . 9 e
5 " ot strongly in L*(0,T; Hy(Q2)),

20, 00 5
= — T strongly in  L*(Qr).

Also, we have

9h h gh h
2)H(S2) = pexp(—0"u" ) H(T)H(T)

converges weak * in L*°(Qr).

W exp(—0pul)H (-2
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For Is we have

1 n 4 n h
lim I; = lim —7/ unaiwexp(—enuZ)H (ef)H(&)
k Qr—h k

n—-+oo n—+too ot k
1 00 ;6 ’LLh
== = ou")H (—)H(—).
k/ oo H ()
The same thing for I, we obtain that
. . 1 8Uh h 0, ’ ’U,Z
Jim To= lm / g exp( O I ()
1 oul g 00 ul
__k/QTh uﬁwexp(—% )H(E)H (?)
For I7, we get
0 ul
. _ . . h _ h Un Uy
nll}&loo I; = nkrfoo /T ) Yup VT (un) VT (0r) exp(—0nu, ) H( ’ VH( . )
h h 0 ul
=— Yu"VuVo exp(—0u )H(E)H(?)’

since
Tic(un) = Ti(u) weakly in L2(0,T; HA(®)),
Ty(0,) — T(9) strongly in L2(0,T; H} (Q)).

For investigating the terms Ig and Iy, we will need to use Lemma 4.4 and the fourth
hypothesis of the main theorem. Also we need 0 < H(s) < 1 and exp(—6,u,) < 1.
We obtain

’ en h %
I < [,1 [ ol ety <k>H<Lj:>]
— ’LLZ :
x UIVTL0) P exp(—ual (2 H ()
QT h
} . 1
< [kum @ J, 1VR)?] < Il [ 19700F]
Qr
< [H%/JHLOC(QT)%] X Il 1z (@r)Be]* »

where ) 1
po=su(y [ V)R, e=swy [ VT6.)P)
n QT n QT
Similarly to the proof of Lemma 4.4, we get
lim pp =0, lim B =0.

k——+oo k——+oo

Finally, we conclude
lim sup(lg) = 0.

k—+4oco pn

Similarly for Ig, we obtain
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IN

Uh %

Iy < [}f/Q VT () exp(~Onul) <9,:>H/<;>]
’ Uh %

x [; L T e i) 1 <,:>]

1 2
Wll~@ng [ VT ] < |Wllimang [ 9Tk
QT—h

< [l o (@ryp1 k] X (|9l Lo (@) B,k 2 5

1
- 2 hy(2 _ 2 2
where 1k = Sl,llp(k fQT—h [VTi(u)?) and  fig = sgp(k fQT [VTk (un)]?).

From Lemma 4.4 we have lim lim p;; =0 and lim B1,r = 0. Thus
h—0 k—+oc0 —+o00

lim lim sup(ly) =0.

h—0k—4+oc0 p

Now we pass to Ig, we have u, — u in C([0,T]; L3(Q)). Since ® is bounded in

h
L>(Qr), we conclude the existence of ¢ exp(—@uh)H(%)H(%) € L*=(Qr) such that
0, ul 0 uh

(¥ exp(—@nuﬁ)H(?)H(f))(O) and (¢ exp(—@uh)H(E)H(?))(T — h) are bounded
in L*°(€2) which yields to

n——+4oo n—-+oo Q

uh
lim I;p= lim [Tk (un )b exp(—0pult) H (f) (fﬂT "
uh

— [ fur = W exp(-0un) HC)HC )T ~ b
Q

ub

— u(0) (¥ exp(—0u H () H (")) 0)]

Then, we obtain

0 ul
/QT h[_“z;f + Vqu/)]exp(—Ouh)H(%)H(?)

h
[ et - v o oot HDHCE)

u Uh
v e HQH()

1 o0 h /6 Uh
L g ot (E()

+/T h?/)@(VuVuh)Vuexp(Quh)H(Z)H(u)

1 ouh s g O ul
i et G ()

+ [ T = ) eap(—0ut H ) HCE)T = h)
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Uh
— u(O)(werp(—0u" H(H("))(0)]
0 ul 1
—/QT huhVuVQwexp(—Quh)H(%)H(I)—i—wh(%)
0 uh

<[ Preen-ouyHGHC).
. k k
where wh(%) is a quantity that tends to 0 as Kk — +o00 and h — 0.
Next, we may define the following equation

h 0 uh
Y = —¢exp(fu )H(E)H(?),
where ¢ > 0 and belongs to D(Qr). Let us replace v by its value in the previous

inequality, we obtain

8¢ " 00 0 ul
/QT,,, allG )HQ(k)+/<,gTh“¢“htHZ(k)HQ(k)

vl d [ uSler rchn)

w3 [ aSen GO - [ v )

[ v Q) - [ oo

3| evawer Qrecm) - [ svivamcE ()
o ul o ul

h h
- /Q BT V) VuB () - /Q v

0, o u haa 5 0. 5 ul
[ St - [ S

uh Uh
- [ COn s [ oo R ) + ()

Uh

0
< —foH?*(-)H?*(—).
<[ —perrgECE)
By simplifying some terms and developing some calculations, we get
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and by tending k — 400 on the second and the third terms, we find



26 F. AQEL AND N.E. ALAA
Jim 2 /OTh < %,ugﬁH'(%)HQ(%)H(%) >— 0 and
3 [ WS () 0
where % € L?(0,T; H~*(Q)) and aa—u: = w € L?(0,T; H} (2)).
Finally, by using the fact that
klggo H(%) =1 ’klgl;o H(%) =1

and then by letting h — 0, we conclude that for every ¢ > 0 and belongs to D(Qr)

[ 1-du+ afta) vulls - QTugf+ [ el > [ 1o

T
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