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Mathematical analysis of a reaction-diffusion system modeling
the phenomena of crevice corrosion in one dimension space
with measure initial data
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ABSTRACT. The aim of this paper is to provide a mathematical study of nonlinear partial
differential equations modeling the corrosion phenomena. We present the modelisation of our
problem and the mathematical analysis of the obtained system. The originality of this work
can be seen in the measure initial data and the techniques developed here to complete the
mathematical study.
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1. Introduction

Crevice corrosion is a localized form of the corrosion, this attack if generally as-
sociated to the presence of small volumes of stagnant solution in occluded interstics,
beneath deposits and seals, or in crevices.

Crevice corrosion is encountered particularly in metals that their structure is resis-
tance to the stability of a passive film, since these films are unstable in the presence
of high concentrations of CI~ and H¥ ions.

The basic mechanism of crevice corrosion in passivatable alloys exposed to aerated
chloride-rich media is gradual acidification of the solution inside the crevice, leading
to the appearance of highly aggressive local conditions that destroy the passivity.

As dissolution of the metal M continues, an excess of M™* jons is created in the
crevice, which can only be compensated by electromigration of the Cl~ ions [6]. Most
metallic chlorides hydrolyse, and this is particularly true for the elements in stainless
steels and aluminium alloys. The acidity in the crevice increases (pH 1-3) as well as
the C1~ ion concentration (up to several times the mean value in the solution). The
dissolution reaction in the crevice is then promoted and the oxygen reduction reaction
becomes localized on the external surfaces close to the crevice. This "autocatalytic”
process accelerates rapidly, even if several days or weeks were necessary to get it under
way.

This models for crevice corrosion have been studied in electrochemical and physical
literature (see G.R. Engelhard [6], S.M. Sharland [9]), and the mathematical solution
was given by S.M. Sharland [10] in the steady state case.

This paper is organized as follows, we start by giving the mathematical model of
the studied phenomena, we pursue it by the main result which is the existence for
any measure data then we give the proof of the main result.

This paper has been presented at Congres MOCASIM, Marrakech, 19-22 November 2014.
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2. Modeling

In the mathematical simulation of the corrosion of steels in neutral solutions, at
least six species in the solution must be taken into account [10]. These species are
metal ions Fe?* from the dissolution process, sodium (Na™) and chloride (C1~) ions
to facilitate current flow within the crevice, hydrogen (H") and hydroxyde (OH ™)
ions from the dissociation of water, and a metal hydrolysis product (Fe(OH)™). The
term H>O have no kinetic effect in the solution, since its concentration remains very
close to the concentration of pure water.

The concentrations of the species are denoted as follows:

c1 = [Fe*T], co = [Fe(OH)"], e3 = [Na*], ca = [Cl7], ¢s = [HT], cs = [OH].

The cathodic reduction of oxygen, hydrogen ion, and water,
Os +2H50 + 4¢ — 4OH7,
2HT +2¢ — Ho,
and, 2H50 + 2e — 20H~ + Hs.
Additionally, the two homogeneous reactions that are considered
o Fe?t + HyO = Fe(OH)Y + HT,
e HHO=H" +0OH".
With equilibrium constants K; and Ks respectively. The forward and backward
reaction rates for each reaction are denoted ki, k_1 and ks, k_o, where
k1 ko
K, = o Ky = e
The evolution of the concentrations of the ions are given by the Nernst-Planck equa-
tion.
Fori=1,...,6
802‘
ot
We denote by c¢; the concentrations of the species, f; the rate of creation of ionic
species ¢ given as follows,

fi(e) = —kier + k_1cacs,

fa(e) = ki1 — k_1cacs,

fa(c) =0,

fa(e) =0,

f5(c) = kic1 — k_1cacs + ko — k_acs¢6,
fe(c) = ko — k_acs06.

and N; the density of ion flux given by:
ZiF
RT

where, d; is the diffusion coefficient, z; is the charge, T' the temperature, R is the gas
constant, F' is the Faraday constant, and ¢ is the electric potential in the solution.
We consider that the species satisfy the electro-neutrality condition,

6
—eA¢p = Z 21 Ch-

k=1

Ni=—di(Ve; + ——=c;iV9), i=1,...,6,
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‘We consider the one dimension space case of the problem, and we study the problem
in more general case, where the diffusion coefficients depend on time and space d; =

di (t7 ZL’)
The electric potential satisfies the system:
For t € [0,T]
0? 6
—Ea—xf = P zpcr  in Q
o(t,s) =0 for s =0, L.

Then the concentrations satisfy the system:
Fori=1,...,6

W .
where m;(t, x) = d;(t, x);—T is the mobility.
At the boundary we suppose that,
dz(ta S)axci(ta S) + mi(ta S)C’i(ta 8)8x¢(ta S) = 771(75, S, C, ¢)7 for s = 07 L7 te [07 T}

Where,

_p e =0 _ig+ _ loH-
_ﬁ7 e ="nN3 ="M=V, 775_?7 Ne = Ia ;
ip: the passive corrosion current density (independent of the potential),
(651 FFE

T

. (%)

iog- = —Azexp[— T I,

a7y, ag are transfer coefficients, £ = E.,.. — ¢ is the local electrode potential, Ay, Ao
are constants that do not depend on potential.

Then the concentrations satisfy the system:

Uit

ig+ = Arcsexp[—

Fori=1,...,6
601 0 862'
E(ta T) — (%(di(t’x)aa:g(’;)+
—|—mi(t,x)ci(t,sc)a—(t7x)) = fi(t,z,c) in Qr
x
6
—€0z00 = >, zgek(t, x) in Q (2)
k=1
¢i(0,2) = py in My(92)
di (tv S)azcz (tv S) + my (t7 S)ci (tv s)az¢(tv S) =
=n;(t, s, ¢, Q) for s =0,L and t €]0,T|
o(t,s) =0 for s =0, L and ¢ €]0,T]
where,

My(92) = {u bounded Radon measure in Q}.
Definition 2.1. Let ¢; € C(]0, T[; L*(2)) and p; € My(£2). We say that ¢;(0,2) = u;
in My(9) if for every ¢ € Cy(£2)

lim Ci(t,$)§0dx =< li, @ >,
t—=0 Jo

where, C, = {¢ : © — R continuous and bounded in Q}.
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Let Q be the open set ]0, L[, for T' > 0 we denote by Qr =]0, T[x£2.

Throughout this paper we consider a general Reaction-diffusion system which in-
volves NS species, and we assume for i =1,..., NS

i) d; € C3(Qr), for any T > 0, x € Q there exist d,d > 0 such that

0<d<d;<d<+oo  on Qr.

f=1(f1,. fns) € CL([0,+00) x Q x RN, RNS); is quasi-positive, i.e
filt 2, y) > 0 for any (t,2,7) € (0,+00) x Q x [0, +00)"*
such that v; = 0.

vi) There exist an upper triangular invertible matrix @ €
diagonal entries and b € ]R_IX S a given vector such that

QF (t,x,u) < (1+ > wu;)b

1<j<NS (3)
for all u € (RT)VSand a.e (t,7) € Qr

RNSXNS with nonnegative

where, @ is the matrix

OO OO O
OO OO
SO o o~ OO
OOk OO O
O = OO oo
_ O O O oo

3. Existence for any measure data

Theorem 3.1. Assume that the assumptions (i)-(v) hold, and assume also that Vi =
1,...NS, u; € M (Q).

Then, there exist c; € L*(0,T; WH1(Q))NC(10, T[; My(2)) and ¢ € L>(0,T; Wy (Q))
satisfied in the following sense :

For all T > 0, and for all 1) € C*(Qr) such that Y(T,.)=0

Jo, (—ciO + (di(t, 2)0uc; +mi(t, 2)c;0,6)0 fQT file)y+ < i, (0) >
o m(t.0,c.0)u(.0 +ktha@M L)
€ Jo 0x00:€ = o Z zj¢jn€ for all € € C§°(2)

where, ¢ = (¢1, ..., CNS)-

Proof of the Theorem 3.1.

3.1. Approximate scheme. We consider the function of truncation J,, € C§° that
satisfies,
0<9,
On(r) = 1f Ir] <n
Oon(r)=0if [r| >n+1
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We define for every ¢ € RV9
fi*(e) = én(lel) fi(c),

where, f; = fi(c*).
Let’s now truncate the initial data (u;)1<i<ns as follows,

), €C°(Q) such that ¢, >0, ||, [l (@) < llwillam,
and ¢, — p; in My(Q).

We denote by n?(tvx) = 771‘(15,13, Cn, ¢n)
Now, let’s consider the truncated system
For all 0 < t < T,¢;,, € C(0,T; LY(Q)) N L0, T; WH1(Q)),
G € L=(0,T; Wy ()
Let v € C*°(Qr) such that v(T,.) =0,
— fQT CinOpv + fQT d;(t, 2)0zCi nOpv + fQT mi(t, )i nOpPnOzv =

Let ¢ € C§°(Q)
NS
5fQ Oy Pr, 0t = fQ ; 2iCin

Lemma 3.2. The problem (4) has a solution in C(]0,T[; L*(Q)) N L*(Qr)

Proof. Let ¢, = (C1,n,...,CNSn) Satisfy the problem

fQT atci,nw + fQT (dz(ty m)amci,n + mi(ta x)cz,naz¢n)amw =
= Jo F10 = f3 nP(£.0)0(,0) + [y n(t L)e(., L)
Vip € C(Qr),
NS
€ [0 0etn0:l = [ 2 2icjné a.et >0, V& € C5(Q)
j=1

Ciﬂl(O? 1‘) = C?,n

Let us introduce the following application:

Hg, : L'(Qr) — L'(Qr)
Vi — Cin

where Vt €]0, T, ¢, is the unique solution of the elliptic problem
NS
_Eaza:(bn = Z 2iCin in Q
i=1
dn(s) =0 for s=0,L
and Hy, (v) = ¢; ,, satisfies the following system :

fQT atci,nw + fQT dl(ta m)azcz,nazw + fQT mi(t; x)cz,nax¢namw ==

S T+ Jy 2 (6 LY, L) — [ mi(8,00%(,0) Ve € C¥(Qr),

0

cin(0,2) = i e

Jou FCin)v+ [ ,0(0,.) = [ mi (8, 000(,0) + [ (8, L)v(., L)

31

(7)

According to Baras-Pierre [8] the problem (7) have a solution in L'(Q7). Then

Hy, . is well defined.

Using the Schauder’s fixed point theorem we prove that Hy  admits a fixed point:
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e Let’s prove that VA bounded subset of L'(Qr) its image by Hy, is relatively
compact in L (Q7).
Let (v1') € L*(Qr) bounded sequence, then
= fr(t,x,vf, ..., v%g) is uniformly bounded in L' (Qr).
Let ¢! = Hy, (v}"), the application (¢?,,, fi*) — (¢i,n) is compact from L' () x
LY(Qr) to LY (Qr). Then, (c; ) is relatively compact in L'(Q7).
e Let us prove that Hy, is continuous.

Let (v1') a sequence that converges to (v;) in L'(Q7), we extract a subsequence

denoted also (v}') that converges almost every where in Qr, and 9,0 — 0,v;
almost everywhere.

Since f;* is continuous then f* — f; almost everywhere in @7, and f* is
bounded, then via the Lebesgue dominated convergence theorem we deduce

S — fi € LY(Qr).

Then ¢; ,, converges to ¢; solution of (7) in L*(Qr).
Since (v?) is bounded in L'(Qr) then (c;,) is relatively compact in L'(Q7),

K3
then by the uniqueness of the limit we conclude that

H¢n (’UZL) — Ci = H¢"n (’Ui).

e Let us prove Hy, (LY(Qr)) C B(0, R).
Let v € LY(Qr) and ¢;,, = Hp, (v;) solution of (7). Let ¢ €]0,7[, and we take
1 as a test function we get,

o OiCim = /Otmn(.,L) - /Otn?(.,()) +/t o,
/ﬂci’"(t) B /ot b /Ot () +/,, fr+ /Q i n(0).

We integrate over [0, 7] we obtain,

leinllzr@e) < Cnr + T(lpillay@) +T D 1989l gorp),
s=0,L

=R.

Finally, Hys, has a fixed point ¢; ,, solution of (4) O

3.2. A priori estimates.
Lemma 3.3. There exists a constant M depending on > ||pil| pm, () such that

1<j<NS
i) fQ . G <M.
1<j<NS

i) 60l oo (0,72 (2)) < M-
Proof. 1) We have

NS 9 NS e NS a¢
00 [ (im0~ [ G asdltn) T 4 S aami(tw)en )

i=1
NS

:/Z(I1,ifi,n~ (8)
Q=1
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NS NS
SiIlCG Z ql,if'i,n S bl(l =+ Z Ci,n) we get
i=1 i=1

NS 9 NS e NS (9(]5
iCi - | 5= idi(t, - imi(t, x)cin—m—
LY (OSURTSICEY I STRUIRE F SURCR IR =

NS
< /le(l + ;ci,n), (9)

thus

NS NS NS NS
8:5/(2 q1,iCin)(t) < ZQ1,1‘77?(75>L) - ZQLW?(TZO) -l-/ bi(1+ Zcm)- (10)
Q=1 i=1 i=1 Q i=1

Thanks to the nonnegativity of (¢1,;)1<i<ns and the boundedness of n]* and by using
boundary conditions on ¢, we have the following Gronwall’s inequality

NS bl NS
atA<;ci,n)<t> sc+/9f<1+2cm>, (11)

do i=1

NS

where gy = Jnin g let us set W, (t) = Y ¢;n(t). By integrating on (0,7, we
<< -

obtain

=1
/ W, (t) < e%t/ Wi (0) + ke’ — 1), (12)
Q Q

where, k = qo(C+ [, g—é) /b1, which implies that, for each ¢ in the interval of existence

NS
b1 by
[ W) < B Y lllanen + bleR = 1), (13)
i=1
ii) We have the system satisfied by ¢,

NS
_gamz¢n = E 2iCin in Qz
i=1
on(t,s) =0 fors=0,L, VO<t<T.
Then,

1 NS
On(t,s) = - G(x,s)(z 2iCin)ds,
Q ]

where, G is green function, given by

Since,
NS

I Zzici,n||L°°(0,T;Ll(Q)) <C.
i=1
Thus, we can see that
||¢n||L°°(O,T;W01’°°(Q)) =C
O

Lemma 3.4. There exist constants R1, Ry depending on Y |||l am, () such that
1<j<NS
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1) Z fQT |fzn(taxacn)| S Rl'
1<i<NS

2) X foT Int(t,s)| < Ry fors=0,L.
1<i<NS

Proof. 1) Counsidering the hypothesis (v)

Z gjifj < bi(1+ Z Chon)-

i<j<NS 1<k<NS
For i = NS, we have

gns,Nsfnsg <bns(1+ Z Chyn)s

1<k<NS
bns
/ sl s/ 1+ Y el
T Qr 4NS,NS 1<j<NS

/Q sl KOS Isllanay +mes(@r)) < Mys.

1<i<NS
Fori=NS -1,
qNs—1,NS—1fNs_1 +ans—1,Nsfns < bns—1(1+ E Ck,n),
1<k<NS
and,
gNS—1,NS ,n gNS—1,NS ,n
NS) - NS>
gNS—1,NS—1 gNS—1,NS—1
gNS—1,NS , n gNS—1,NS ,n
——————fNsl + | ————fNs],
gNS—1,NS—1 gNS—1,NS—1

n bns—1 GNS—1,NS
/Q s ] < / NS (1 ST )+ SN
T

Q; ANS-1,NS—1 1<j<NS gNS—1,NS—1

INs—1=(fNs_1+

|fNs—1l < [fNvs—1+

< Ki(mes(Qr)+ Y lillamye) + Ko < Mys-s.
1<i<NS

Doing the same as above for every 1 <i < NS we get,

/Q 1< MUt (06.) s 5).
T

Thus we obtain the desired result which is,

Z /T|fi(tvajacn)|§ Z Mz:Rl

1<i<NS 1<i<NS
2) Set
ni =0 for i € U,
Ny = —Aiexp(—a ) foriel;
ne = Aic?exp(—a T ) forieUs

Where, E"™ = Eoppr — ¢, Ug WU UU = [1, ..., NS].
Then we have,

> [weo=X [weos Y [ e

1<i<NS i€l i€l
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Ifiel
T T
oa; F.E™(s o, F.E™(s
[ el = [ iaven- 252 < e S5 o 7
= Mi(Ai, i, [|Dnll 0,1, w1 00 ()
And if i € Uy
T T
a;F.E(s)
sl = [ Ao e 2,
‘A 0 RT
OéiF.E n
< NAiexp(=—pr L= om) 16 ()l 0,7)
< M(Ai, i, |6nll Lo 0.0, wr 0 @))-ll€i (8) | Lo 0,7)) = Ma.
Thus,
T
> [ s < w40t = e
1<i<Ns§ 0

O

3.3. Convergence. Our purpose is to prove that (c,,¢,) solution of the approx-
imated problem (4) converge to (c,¢) solution of (2). From the work of Baras,
Hassan and Veron [3] we have, the application (cgn7 f) — c¢ipn is compact from
LY(Q) x LY(Qr) into L*(Qr). Then, we deduce the existence of a subsequence also
denoted (¢, ¢n), such that

Fori=1,..,NS

Cim — ¢; strongly in LY(Qr),
Cim —> ¢; almost every where in Qr,

and,
c?)n — p; in Mp(Q).
Since ¢, is uniformly bounded in L (0, T; W;"°°(£2)), we conclude the existence of
¢ € L>°(0,T; Wy ™°(Q)) such that
v — oy for the topology o(L(Qr), L'(Qr))-
Then, let’s prove that
CinOpn — ¢;0x¢d in D'(Qr).
But first we need to prove that
i nOpbn, —> ¢;0;¢ for the topology J(Ll(QT)7 L>*(Qr)).
Let ¢ € L*>°(Qr) we have

'(/)(Ci,naxqsn - Czax¢) = d)aﬂcd)n(cz,n - Ci) + djci(ax(bn - 89c¢)
Qr QT Qr

For the first term we have

0 VY0pbn(cin — i) < |Vl Loe @) 102Pnll Lo (@r)llcin — cillLr (@),
T

as,

ein = cill i@r) =2 0,
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we deduce,

waxqsn(ci,n - Ci) — 0.

QT n—roo

For the second term
| o @/}Ci(ax(bn* x(b)‘ < ||77Z)||L°°(QT)”ci”Ll(QT)Har@bn* r‘z’HL‘X’(QT)a
T

since |0z ¢p, — 02| — 0 for o(L>(Qr), L' (Q7)), then

Qr

Consequently,
OrCim — Op(d;OpCipp + MiCi n 0y n) — Orci — 0y(diDyci + mic;0,¢) in D'(Qr).

Otherwise, since ¢; , — ¢; strongly in L'(Qr) then,

NS NS
Z ZiCip — Z z;c; strongly in Ll(QT).
i=1 i=1

Since f1, ..., fvg are continuous we have, for i =1,..., NS
it x,cn) — fi(t,z,c) almost everywhere in Q7.
To conclude we need to prove that f* — f; in L*(Qr) thanks to Vitalli’s theorem
all we have to prove is that fI* are equi-integrable in L'(Qr)
Lemma 3.5. For everyi=1,..., NS f, is equi-integrable in L'(Qr)

Proof. Let E be a measurable set of Q1 and € > 0 then,

/ o< / sup | fP(t 2 com, s ens )| ddt +
E ENI(Y
i=1

> gjici,n<a] 0<¢j n<la
j=1

+/ NS i |fzn|a
EN[>> > qjici,n>q]
j=1

i=1j

< I+ L.
To investigate the terms I; and Iy we are going to need the following result.

Lemma 3.6. Let 0, be a sequence in L'(Qr). Then the following statements are
equivalent:
1) o, is uniformly integrable in L'(Qr)
There exists J : (0,00) — (0,00) with J(0T) =0 and
(a) J is convex, J' is concave, J' >0
) tim 2 e

r——4+oco 1T

2)

(c) SgprT J(lon]) < o0

Now, we choose J as given in 2) with (2-c) is replaced by

i

NS
sup/ J( Z bi(1+ Z Chn)) < 00, sup/QJ(Zquicg’n) < o0, (14)

" T  1<i<NS 1<k<NS n i=1 j=1
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7
sgp/ IZZ%Z iy

=1 j=1
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(15)

This is possible by Lemma 3.6, since Y.  ¢;, converges in L'(Qr) and
1<i<NS
¢, converges in L'(Q).
1<i<NS

Now we set

_ / min(J'(s), (J*)~(s))ds,
0
where J* is the conjugate function of J that satisfies (2-a) and (2-b) and

Vr >0, j(r) < J(r),

J*(5'(r)) <7 (16)
For I;, we notice that by the assumptions on f; and the choice of f*,
sup ' < Bi(1+ NSa)  where B; = Bi(bns, -, bi, qNS NS, -5 Gi)-
0<c1,n,--,cNs,n<
As a consequence
I < Bimeas(E)(1+ NSa) < %
For IQ
1 i
B[ 1% ey [ IS w1
ALY X ayicin>al i’ (a) ==
NS i
Let us prove that the term ——— 7 f orJ E Z gjiCin)|fi] is uniformly bounded in
LY(Qr).
We set
NS
R} =— Zq”f + b;i( 1+chn fori=1,..,NS .
j=i k=1
we have,

atCi,n - 8x(di(tax)axci,n + mi(t7x)ci n z¢n) = fzn

i
For every ¢ we multiply the equation by Y ¢;; and we summate over ¢ we obtain

j=1
NS i NS i

315(2 Z QjiCin) — O [Z Z q5idi(t, ) 0pCin
i=1 j=1

i=1 j=1
NS i

szz t z QJZC'L n ac¢n Z Rn
1 1
v

1<i<NS
NS
=3 b1+ k)
i=1 k=1
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i

NS
We multiply it by /(> > gjicin) and integrate over Qr and by putting

i=1;5=1
NS i
> > gjicin = Oy, we obtain
i=1j=1
NS i
[ itoam) = [ 500000 Y gudita)0.c0+
T i=1 j=1
NS i
FOU Y gt aendsnl + [ 700 Y B
i=1 j=1 Qr 1<i<NS
NS i
S RECOID SRUEND DR RS ) 9) STt
T 1<i<NS 1<E<NS Q =1=1
We put,
NS i NS i
Ji =/ 5(0n)0:> > qjidi(t, 2)0ncim + (O qjimilt, 2)cin)0nl,
Qr i=1 j=1 i=1 j=1
LGOI S IR D}
T 1<i<NS 1<k<NS

We start by investigating Jo, we have
g'(r).s < J(s)+ J*(5'(r)) < J(s) +r.

Then,

NS
Bo< [ JCD b+ D )+ DY Giicim,

QT 1<<NS 1<k<NS i=1 j=1
which is bounded independently of n by Lemma 3.6.
NS i
Let us investigate Ji, after integration by parts, we put ™ = > > ¢;;.n, then
i=1j=1

we get

i %

NS NS
= /Q 70000 S st 2)0cin + (3 qjemi(t, 2)ci.n)Ouo

i=1 j=1 i=1 j=1

T T
- / 700" (1,0) + / 7(0n)0" (1, L)
0 0
< / 700" (. 1) + / J(Om)|8"(t.0)] — d /Q RACOLTNS

- mNS/ j”(On)axOn-On-axﬁbn_

NS
[ 5(000:0.)(F Y il = ms)(t2)ei.)0. )

T i=2 j=1
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<Z/ T(ON(E5)+ Onlt,) —d [ 5(0,)/0.04

s=0,L T

- mNS/ j” (O7L)810n0n61,¢n

NS 1
_ / ]”(On)aJE(On)(Z Z qj,»(mi — TnNS)(t7 J/‘)Cl,n)ald)n)

i=2 j=1

Using Young and Holder’s inequalities we obtain,

2 S [ 0u 0 [ PO Y el X el
s=0,L Qr 1<i<NS 1<i<NS

where M depends on (d, (m;)i=1,.. ns ()i, ||¢n||Lx(O7T;W&,oo(Q))).

J'(r)

r

NS i NS i
/ PO giicin) Y Ci,n|2S/Q PO aicin) D cim,
T T

i=1j=1 1<i<NS i=1 j=1 1<i<NS

NS i
S/ J( Z Ci,n)+zz(b’ici,n-

T  1<i<NS i=1 j=1

Since j’ is concave, j” (1) < we have,

Which is uniformly bounded in L*(Q7), for the second term we are going to use the
bns

equation satisfied by cys.,, we put v =
gNS,NS

/ Jlensa)T) +d [ 7 (ensn)ldsensal?
Q Qr

Sm/ j” (CNS,n)|CNS,n6:cCNS,n||8;c¢n‘ +7/ CNSn +ch n
Qr Q

T

T T
4 / Jensm)hs(t,0) - / Flensm)ms(t L) + /Q Jensn)(0),

NS
M CNS,n CNSn aCN n i’ Can 1 Ck.n
<M [ 7ewsa) +€/T(s)| s|+v/qg<,>(+k§k,>
+ (ensm)ssl(t.s) + [ j(ensn)(0),
SZO:L/ NS, 77NS / NS,

where, M. depends on m, ||¢n||Lx(07T;W01,oo(Q)), then,

/ j(CNSJL)(T) + (d - 5)/ j” (CNS,n)|axCNS,n‘2
Q

T

< M. j'(ensm)lensnl +’Y/ j'(ensm) (14 Z Ckn )
Qr Qr 1<k<NS

+ Z / (ensn)nysl(t, s) / (ens,n)(0).

s=0,L
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To conclude we choose € small enough then we can see that fQT 77 (eNs.n)|OnenNsnl?
is uniformly bounded.

Adding the information j”(0,,) < j”(¢ns.n), now we can conclude that the term
f 0rJ 0,,)|0z¢ns, »|? is uniformly bounded, doing the same as above we see that

fQT 37 (0n)|0xcin|? for i = 1,..., NS is uniformly bounded so is J;.

Thus, fQ J’ E Z gjiCin) . R} is uniformly bounded.
i=1j5=1 1<i<NS
By the definition of R}* we have

NS NS
ZR" = (@ fl + (@2 + @) f5 + .+ Y ainsfvs) +bi(1+ D crn),
j=1 k=1

G f1 + (@2 + g22) f3' + - +Z%NSfNS— ZR”-H) 1+chn

j=1 =1 k=1
NS NS NS
Saf < RF b1+ k),
1_1\175’ Zl_lNS k:1NS
d o< EZR? b1+ crm),
=1 =1 k=1

where o = min(q1,1, 12 + Gaz, s 4j,NS)-
j=1
Finally we obtain,

/ ZZ‘WW > < oo

i=1 j=1 1<i<NS
Going back to the term I

I2§j, / Zz%zczn I

=1 j=1

By choosing a = a(e) large enough depending only on €, I can be made less than %

Thus,
[1ni<e
E
Finally, this proves the equi-integrability of f/* for i = 1,..., NS in L'(Q7). O
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