Mathematical analysis of a reaction-diffusion system modeling the phenomena of crevice corrosion in one dimension space with measure initial data

Imane El Malki, Nour Eddine Alaa, and Fatima Aqel

Abstract

The aim of this paper is to provide a mathematical study of nonlinear partial differential equations modeling the corrosion phenomena. We present the modelisation of our problem and the mathematical analysis of the obtained system. The originality of this work can be seen in the measure initial data and the techniques developed here to complete the mathematical study. 2010 Mathematics Subject Classification. 28C05, 35B45, 35D30, 35K55, 35K57, 35A09, 58J20. Key words and phrases. Reaction-diffusion system, Nernst Planck equations, Schauder fixed point theorem, measure initial data, weak solution.

1. Introduction

Crevice corrosion is a localized form of the corrosion, this attack if generally associated to the presence of small volumes of stagnant solution in occluded interstics, beneath deposits and seals, or in crevices.

Crevice corrosion is encountered particularly in metals that their structure is resistance to the stability of a passive film, since these films are unstable in the presence of high concentrations of Cl^{-}and H^{+}ions.

The basic mechanism of crevice corrosion in passivatable alloys exposed to aerated chloride-rich media is gradual acidification of the solution inside the crevice, leading to the appearance of highly aggressive local conditions that destroy the passivity.

As dissolution of the metal M continues, an excess of M^{n+} ions is created in the crevice, which can only be compensated by electromigration of the Cl^{-}ions [6]. Most metallic chlorides hydrolyse, and this is particularly true for the elements in stainless steels and aluminium alloys. The acidity in the crevice increases ($\mathrm{pH} 1-3$) as well as the Cl^{-}ion concentration (up to several times the mean value in the solution). The dissolution reaction in the crevice is then promoted and the oxygen reduction reaction becomes localized on the external surfaces close to the crevice. This "autocatalytic" process accelerates rapidly, even if several days or weeks were necessary to get it under way.

This models for crevice corrosion have been studied in electrochemical and physical literature (see G.R. Engelhard [6], S.M. Sharland [9]), and the mathematical solution was given by S.M. Sharland [10] in the steady state case.

This paper is organized as follows, we start by giving the mathematical model of the studied phenomena, we pursue it by the main result which is the existence for any measure data then we give the proof of the main result.

[^0]
2. Modeling

In the mathematical simulation of the corrosion of steels in neutral solutions, at least six species in the solution must be taken into account [10]. These species are metal ions Fe^{2+} from the dissolution process, sodium ($\mathrm{Na}{ }^{+}$) and chloride $\left(\mathrm{Cl}^{-}\right)$ions to facilitate current flow within the crevice, hydrogen $\left(H^{+}\right)$and hydroxyde $\left(O H^{-}\right)$ ions from the dissociation of water, and a metal hydrolysis product $\left(\mathrm{Fe}(\mathrm{OH})^{+}\right)$. The term $\mathrm{H}_{2} \mathrm{O}$ have no kinetic effect in the solution, since its concentration remains very close to the concentration of pure water.

The concentrations of the species are denoted as follows:

$$
c_{1}=\left[F e^{2+}\right], c_{2}=\left[F e(O H)^{+}\right], c_{3}=\left[N a^{+}\right], c_{4}=\left[C l^{-}\right], c_{5}=\left[H^{+}\right], c_{6}=\left[O H^{-}\right]
$$

The cathodic reduction of oxygen, hydrogen ion, and water,

$$
\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 e \longrightarrow 4 \mathrm{OH}^{-}
$$

$$
2 \mathrm{H}^{+}+2 e \longrightarrow \mathrm{H}_{2}
$$

and, $2 \mathrm{H}_{2} \mathrm{O}+2 e \longrightarrow 2 \mathrm{OH}^{-}+\mathrm{H}_{2}$.
Additionally, the two homogeneous reactions that are considered

- $\mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Fe}(\mathrm{OH})^{+}+\mathrm{H}^{+}$,
- $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$.

With equilibrium constants K_{1} and K_{2} respectively. The forward and backward reaction rates for each reaction are denoted k_{1}, k_{-1} and k_{2}, k_{-2}, where

$$
K_{1}=\frac{k_{1}}{k_{-1}}, \quad K_{2}=\frac{k_{2}}{k_{-2}}
$$

The evolution of the concentrations of the ions are given by the Nernst-Planck equation.
For $i=1, \ldots, 6$

$$
\frac{\partial c_{i}}{\partial t}=-\operatorname{div} \cdot\left(N_{i}\right)+f_{i}
$$

We denote by c_{i} the concentrations of the species, f_{i} the rate of creation of ionic species i given as follows,

$$
\begin{aligned}
& f_{1}(c)=-k_{1} c_{1}+k_{-1} c_{2} c_{5} \\
& f_{2}(c)=k_{1} c_{1}-k_{-1} c_{2} c_{5} \\
& f_{3}(c)=0 \\
& f_{4}(c)=0 \\
& f_{5}(c)=k_{1} c_{1}-k_{-1} c_{2} c_{5}+k_{2}-k_{-2} c_{5} c_{6} \\
& f_{6}(c)=k_{2}-k_{-2} c_{5} c_{6}
\end{aligned}
$$

and N_{i} the density of ion flux given by:

$$
N_{i}=-d_{i}\left(\nabla c_{i}+\frac{z_{i} F}{R T} c_{i} \nabla \phi\right), i=1, \ldots, 6
$$

where, d_{i} is the diffusion coefficient, z_{i} is the charge, T the temperature, R is the gas constant, F is the Faraday constant, and ϕ is the electric potential in the solution.

We consider that the species satisfy the electro-neutrality condition,

$$
-\varepsilon \Delta \phi=\sum_{k=1}^{6} z_{k} c_{k}
$$

We consider the one dimension space case of the problem, and we study the problem in more general case, where the diffusion coefficients depend on time and space $d_{i}=$ $d_{i}(t, x)$.

The electric potential satisfies the system: For $t \in[0, T]$

$$
\begin{cases}-\varepsilon \frac{\partial^{2} \phi}{\partial x^{2}}=\sum_{k=1}^{6} z_{k} c_{k} & \text { in } \Omega \\ \phi(t, s)=0 & \text { for } s=0, L\end{cases}
$$

Then the concentrations satisfy the system:
For $i=1, \ldots, 6$

$$
\left\{\begin{array}{l}
\partial_{t} c_{i}-\partial_{x}\left(d_{i}(t, x) \partial_{x} c_{i}+m_{i}(t, x) c_{i} \partial_{x} \phi\right)=f_{i} \tag{1}\\
-\varepsilon \frac{\partial^{2} \phi}{\partial x^{2}}=\sum_{k=1}^{6} z_{k} c_{k}
\end{array}\right.
$$

where $m_{i}(t, x)=d_{i}(t, x) \frac{z_{i} F}{R T}$ is the mobility.
At the boundary we suppose that,

$$
d_{i}(t, s) \partial_{x} c_{i}(t, s)+m_{i}(t, s) c_{i}(t, s) \partial_{x} \phi(t, s)=\eta_{i}(t, s, c, \phi), \quad \text { for } s=0, L, \quad t \in[0, T]
$$

Where,

$$
\eta_{1}=\frac{i_{p}}{2 F}, \quad \eta_{2}=\eta_{3}=\eta_{4}=0, \quad \eta_{5}=\frac{i_{H^{+}}}{F}, \quad \eta_{6}=\frac{i_{O H^{-}}}{F}
$$

i_{p} : the passive corrosion current density (independent of the potential),
$i_{H^{+}}=A_{1} c_{5} \exp \left[-\frac{\alpha_{1} F E}{R T}\right]$,
$i_{O H^{-}}=-A_{2} \exp \left[-\frac{\alpha_{2} F E}{R T}\right]$,
α_{1}, α_{2} are transfer coefficients, $E=E_{\text {corr }}-\phi$ is the local electrode potential, A_{1}, A_{2} are constants that do not depend on potential.
Then the concentrations satisfy the system:
For $i=1, \ldots, 6$

$$
\left\{\begin{array}{rlr}
\frac{\partial c_{i}}{\partial t}(t, x)-\frac{\partial}{\partial x}\left(d_{i}(t, x) \frac{\partial c_{i}}{\partial x}(t, x)+\right. & \tag{2}\\
& \left.+m_{i}(t, x) c_{i}(t, x) \frac{\partial \phi}{\partial x}(t, x)\right)=f_{i}(t, x, c) & \\
\text { in } Q_{T} \\
-\varepsilon \partial_{x x} \phi=\sum_{k=1}^{6} z_{k} c_{k}(t, x) & & \text { in } \Omega \\
c_{i}(0, x)=\mu_{i} & & \text { in } \mathcal{M}_{b}(\Omega) \\
d_{i}(t, s) \partial_{x} c_{i}(t, s)+m_{i}(t, s) c_{i}(t, s) \partial_{x} \phi(t, s)= & & \text { for } s=0, L \text { and } t \in] 0, T[\\
\phi(t, s)=0 & =\eta_{i}(t, s, c, \phi) & \text { for } s=0, L \text { and } t \in] 0, T[
\end{array}\right.
$$

where,

$$
\mathcal{M}_{b}(\Omega)=\{\mu \text { bounded Radon measure in } \Omega\}
$$

Definition 2.1. Let $c_{i} \in \mathcal{C}(] 0, T\left[; L^{1}(\Omega)\right)$ and $\mu_{i} \in \mathcal{M}_{b}(\Omega)$. We say that $c_{i}(0, x)=\mu_{i}$ in $\mathcal{M}_{b}(\Omega)$ if for every $\varphi \in \mathcal{C}_{b}(\Omega)$

$$
\lim _{t \rightarrow 0} \int_{\Omega} c_{i}(t, x) \varphi d x=<\mu_{i}, \varphi>
$$

where, $\mathcal{C}_{b}=\{\varphi: \Omega \rightarrow \mathbb{R}$ continuous and bounded in $\Omega\}$.

Let Ω be the open set $] 0, L\left[\right.$, for $T>0$ we denote by $\left.Q_{T}=\right] 0, T[\times \Omega$.
Throughout this paper we consider a general Reaction-diffusion system which involves $N S$ species, and we assume for $i=1, \ldots, N S$
i) $d_{i} \in \mathcal{C}^{2}\left(Q_{T}\right)$, for any $T>0, x \in \Omega$ there exist $\underline{d}, \bar{d}>0$ such that

$$
0<\underline{d} \leq d_{i} \leq \bar{d}<+\infty \quad \text { on } Q_{T}
$$

ii) $\mu_{i} \in \mathcal{M}_{b}(\Omega)$.
iii) $\eta_{i}(., s, .,.) \in L^{\infty}(0, T)$ for $s=0, L$.
iv) $f_{i}: Q_{T} \times \mathbb{R}^{N S} \longrightarrow \mathbb{R}$ measurable.
v) $f=\left(f_{1}, \ldots, f_{N S}\right) \in \mathcal{C}^{1}\left([0,+\infty) \times \Omega \times \mathbb{R}^{N S} ; \mathbb{R}^{N S}\right)$; is quasi-positive, i.e

$$
f_{i}(t, x, \gamma) \geq 0 \text { for any }(t, x, \gamma) \in(0,+\infty) \times \Omega \times[0,+\infty)^{N S}
$$

such that $\gamma_{i}=0$.
vi) There exist an upper triangular invertible matrix $Q \in \mathbb{R}^{N S \times N S}$ with nonnegative diagonal entries and $b \in \mathbb{R}_{+}^{N S}$ a given vector such that

$$
\left\{\begin{array}{l}
Q F(t, x, u) \leq\left(1+\sum_{1 \leq j \leq N S} u_{j}\right) b \tag{3}\\
\text { for all } u \in\left(\mathbb{R}^{+}\right)^{N S} \text { and a.e }(t, x) \in Q_{T}
\end{array}\right.
$$

where, Q is the matrix

$$
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

3. Existence for any measure data

Theorem 3.1. Assume that the assumptions (i)-(v) hold, and assume also that $\forall i=$ $1, \ldots, N S, \mu_{i} \in \mathcal{M}_{b}^{+}(\Omega)$.

Then, there exist $c_{i} \in L^{1}\left(0, T ; W^{1,1}(\Omega)\right) \cap \mathcal{C}(] 0, T\left[; \mathcal{M}_{b}(\Omega)\right)$ and $\phi \in L^{\infty}\left(0, T ; W_{0}^{1, \infty}(\Omega)\right)$ satisfied in the following sense :
$\left\{\begin{array}{l}\text { For all } T>0, \text { and for all } \psi \in \mathcal{C}^{\infty}\left(Q_{T}\right) \text { such that } \psi(T, .)=0 \\ \int_{Q_{T}}\left(-c_{i} \partial_{t} \psi+\left(d_{i}(t, x) \partial_{x} c_{i}+m_{i}(t, x) c_{i} \partial_{x} \phi\right) \partial_{x} \psi\right)=\int_{Q_{T}} f_{i}(c) \psi+<\mu_{i}, \psi(0)> \\ -\int_{0}^{T} \eta_{i}(t, 0, c, \phi) \psi(., 0)+\int_{0}^{T} \eta_{i}(t, L, c, \phi) \psi(., L) \\ \varepsilon \int_{\Omega} \partial_{x} \phi \partial_{x} \xi=\int_{\Omega} \sum_{j=1}^{N S} z_{j} c_{j, n} \xi r\end{array}\right.$
where, $c=\left(c_{1}, \ldots, c_{N S}\right)$.

Proof of the Theorem 3.1.

3.1. Approximate scheme. We consider the function of truncation $\delta_{n} \in \mathcal{C}_{0}^{\infty}$ that satisfies,

$$
\left\{\begin{array}{l}
0 \leq \delta_{n} \leq 1 \\
\delta_{n}(r)=1 \text { if }|r| \leq n \\
\delta_{n}(r)=0 \text { if }|r| \geq n+1
\end{array}\right.
$$

We define for every $c \in \mathbb{R}^{N S}$

$$
f_{i}^{n}(c)=\delta_{n}(|c|) \tilde{f}_{i}(c)
$$

where, $\tilde{f}_{i}=f_{i}\left(c^{+}\right)$.
Let's now truncate the initial data $\left(\mu_{i}\right)_{1 \leq i \leq N S}$ as follows,

$$
\left\{\begin{array}{l}
c_{i, n}^{0} \in \mathcal{C}_{0}^{\infty}(\Omega) \text { such that } c_{i, n}^{0} \geq 0,\left\|c_{i, n}^{0}\right\|_{L^{1}(\Omega)} \leq\left\|\mu_{i}\right\|_{\mathcal{M}_{b}(\Omega)} \\
\text { and } c_{i, n}^{0} \longrightarrow \mu_{i} \text { in } \mathcal{M}_{b}(\Omega)
\end{array}\right.
$$

We denote by $\eta_{i}^{n}(t, x)=\eta_{i}\left(t, x, c_{n}, \phi_{n}\right)$.
Now, let's consider the truncated system

$$
\left\{\begin{array}{l}
\text { For all } 0<t<T, c_{i, n} \in \mathcal{C}\left(0, T ; L^{1}(\Omega)\right) \cap L^{1}\left(0, T ; W^{1,1}(\Omega)\right), \\
\quad \phi_{n} \in L^{\infty}\left(0, T ; W_{0}^{1, \infty}(\Omega)\right) \\
\text { Let } v \in \mathcal{C}^{\infty}\left(Q_{T}\right) \text { such that } v(T, .)=0, \\
-\int_{Q_{T}} c_{i, n} \partial_{t} v+\int_{Q_{T}} d_{i}(t, x) \partial_{x} c_{i, n} \partial_{x} v+\int_{Q_{T}} m_{i}(t, x) c_{i, n} \partial_{x} \phi_{n} \partial_{x} v= \\
\quad \int_{Q_{T}} f_{i}^{n}\left(c_{i, n}\right) v+\int_{\Omega} c_{i, n}^{0} v(0, .)-\int_{0}^{T} \eta_{i}^{n}(t, 0) v(., 0)+\int_{0}^{T} \eta_{i}^{n}(t, L) v(., L) \tag{4}\\
\text { Let } \psi \in \mathcal{C}_{0}^{\infty}(\Omega) \\
\varepsilon \int_{\Omega} \partial_{x} \phi_{n} \partial_{x} \psi=\int_{\Omega} \sum_{i=1}^{N S} z_{i} c_{i, n} \psi
\end{array}\right.
$$

Lemma 3.2. The problem (4) has a solution in $\mathcal{C}(] 0, T\left[; L^{1}(\Omega)\right) \cap L^{1}\left(Q_{T}\right)$
Proof. Let $c_{n}=\left(c_{1, n}, \ldots, c_{N S, n}\right)$ satisfy the problem

$$
\left\{\begin{array}{l}
\int_{Q_{T}} \partial_{t} c_{i, n} \psi+\int_{Q_{T}}\left(d_{i}(t, x) \partial_{x} c_{i, n}+m_{i}(t, x) c_{i, n} \partial_{x} \phi_{n}\right) \partial_{x} \psi= \tag{5}\\
\quad=\int_{Q_{T}} f_{i}^{n} \psi-\int_{0}^{T} \eta_{i}^{n}(t, 0) \psi(., 0)+\int_{0}^{T} \eta_{i}^{n}(t, L) \psi(., L) \\
\forall \psi \in \mathcal{C}^{\infty}\left(Q_{T}\right), \\
\varepsilon \int_{\Omega} \partial_{x} \phi_{n} \partial_{x} \xi=\int_{\Omega} \sum_{j=1}^{N S} z_{j} c_{j, n} \xi \quad \text { a.e } t>0, \forall \xi \in \mathcal{C}_{0}^{\infty}(\bar{\Omega}) \\
c_{i, n}(0, x)=c_{i, n}^{0}
\end{array}\right.
$$

Let us introduce the following application:

$$
\begin{aligned}
H_{\phi_{n}}: L^{1}\left(Q_{T}\right) & \longrightarrow L^{1}\left(Q_{T}\right) \\
v_{i} & \longrightarrow c_{i, n}
\end{aligned}
$$

where $\forall t \in] 0, T\left[, \phi_{n}\right.$ is the unique solution of the elliptic problem

$$
\left\{\begin{array}{l}
-\varepsilon \partial_{x x} \phi_{n}=\sum_{i=1}^{N S} z_{i} c_{i, n} \quad \text { in } \Omega \tag{6}\\
\phi_{n}(s)=0 \quad \text { for } s=0, L
\end{array}\right.
$$

and $H_{\phi_{n}}(v)=c_{i, n}$ satisfies the following system :

$$
\left\{\begin{array}{l}
\int_{Q_{T}} \partial_{t} c_{i, n} \psi+\int_{Q_{T}} d_{i}(t, x) \partial_{x} c_{i, n} \partial_{x} \psi+\int_{Q_{T}} m_{i}(t, x) c_{i, n} \partial_{x} \phi_{n} \partial_{x} \psi= \tag{7}\\
\quad \int_{Q_{T}} f_{i}^{n} \psi+\int_{0}^{T} \eta_{i}^{n}(t, L) \psi(., L)-\int_{0}^{T} \eta_{i}^{n}(t, 0) \psi(., 0) \quad \forall \psi \in \mathcal{C}^{\infty}\left(Q_{T}\right) \\
c_{i, n}(0, x)=c_{i, n}^{0}
\end{array}\right.
$$

According to Baras-Pierre [8] the problem (7) have a solution in $L^{1}\left(Q_{T}\right)$. Then $H_{\phi_{n}}$ is well defined.
Using the Schauder's fixed point theorem we prove that $H_{\phi_{n}}$ admits a fixed point:

- Let's prove that $\forall A$ bounded subset of $L^{1}\left(Q_{T}\right)$ its image by $H_{\phi_{n}}$ is relatively compact in $L^{1}\left(Q_{T}\right)$.
Let $\left(v_{i}^{n}\right) \in L^{1}\left(Q_{T}\right)$ bounded sequence, then

$$
f_{i}^{n}=f_{i}^{n}\left(t, x, v_{1}^{n}, \ldots, v_{N S}^{n}\right) \text { is uniformly bounded in } L^{1}\left(Q_{T}\right) .
$$

Let $c_{i}^{n}=H_{\phi_{n}}\left(v_{i}^{n}\right)$, the application $\left(c_{i, n}^{0}, f_{i}^{n}\right) \longrightarrow\left(c_{i, n}\right)$ is compact from $L^{1}(\Omega) \times$ $L^{1}\left(Q_{T}\right)$ to $L^{1}\left(Q_{T}\right)$. Then, $\left(c_{i, n}\right)$ is relatively compact in $L^{1}\left(Q_{T}\right)$.

- Let us prove that $H_{\phi_{n}}$ is continuous.

Let $\left(v_{i}^{n}\right)$ a sequence that converges to $\left(v_{i}\right)$ in $L^{1}\left(Q_{T}\right)$, we extract a subsequence denoted also $\left(v_{i}^{n}\right)$ that converges almost every where in Q_{T}, and $\partial_{x} v_{i}^{n} \longrightarrow \partial_{x} v_{i}$ almost everywhere.
Since f_{i}^{n} is continuous then $f_{i}^{n} \longrightarrow f_{i}$ almost everywhere in Q_{T}, and f_{i}^{n} is bounded, then via the Lebesgue dominated convergence theorem we deduce

$$
f_{i}^{n} \longrightarrow f_{i} \in L^{1}\left(Q_{T}\right) .
$$

Then $c_{i, n}$ converges to c_{i} solution of (7) in $L^{1}\left(Q_{T}\right)$.
Since $\left(v_{i}^{n}\right)$ is bounded in $L^{1}\left(Q_{T}\right)$ then $\left(c_{i, n}\right)$ is relatively compact in $L^{1}\left(Q_{T}\right)$, then by the uniqueness of the limit we conclude that

$$
H_{\phi_{n}}\left(v_{i}^{n}\right) \longrightarrow c_{i}=H_{\phi_{n}}\left(v_{i}\right) .
$$

- Let us prove $H_{\phi_{n}}\left(L^{1}\left(Q_{T}\right)\right) \subset B(0, R)$.

Let $v_{i}^{n} \in L^{1}\left(Q_{T}\right)$ and $c_{i, n}=H_{\phi_{n}}\left(v_{i}\right)$ solution of (7). Let $\left.t \in\right] 0, T[$, and we take 1 as a test function we get,

$$
\begin{aligned}
& \int_{Q_{t}} \partial_{t} c_{i, n}=\int_{0}^{t} \eta_{i}^{n}(., L)-\int_{0}^{t} \eta_{i}^{n}(., 0)+\int_{Q_{t}} f_{i}^{n}, \\
& \int_{\Omega} c_{i, n}(t)=\int_{0}^{t} \eta_{i}^{n}(., L)-\int_{0}^{t} \eta_{i}^{n}(., 0)+\int_{Q_{t}} f_{i}^{n}+\int_{\Omega} c_{i, n}(0) .
\end{aligned}
$$

We integrate over $[0, T]$ we obtain,

$$
\begin{aligned}
\left\|c_{i, n}\right\|_{L^{1}\left(Q_{T}\right)} & \leq C_{n, T}+T\left(\left\|\mu_{i}\right\|_{\mathcal{M}_{b}(\Omega)}+T \sum_{s=0, L}\left\|\eta_{i}^{n}(., s)\right\|_{L^{\infty}(j 0, T \mid)}\right), \\
& =R .
\end{aligned}
$$

Finally, $H_{\phi_{n}}$ has a fixed point $c_{i, n}$ solution of (4)

3.2. A priori estimates.

Lemma 3.3. There exists a constant M depending on $\sum_{1 \leq j \leq N S}\left\|\mu_{i}\right\|_{\mathcal{M}_{b}(\Omega)}$ such that
i) $\int_{\Omega} \sum_{1 \leq j \leq N S} c_{j, n} \leq M$.
ii) $\left\|\phi_{n}\right\|_{L^{\infty}\left(0, T ; W_{0}^{1, \infty}(\Omega)\right)} \leq M$.

Proof. i) We have

$$
\begin{align*}
\partial_{t} \int_{\Omega}\left(\sum_{i=1}^{N S} q_{1, i} c_{i, n}\right)(t) & -\int_{\Omega} \frac{\partial}{\partial x}\left(\sum_{i=1}^{N S} q_{1, i} d_{i}(t, x) \frac{\partial c_{i, n}}{\partial x}+\sum_{i=1}^{N S} q_{1, i} m_{i}(t, x) c_{i, n} \frac{\partial \phi_{n}}{\partial x}\right) \\
& =\int_{\Omega} \sum_{i=1}^{N S} q_{1, i} f_{i, n} . \tag{8}
\end{align*}
$$

Since $\sum_{i=1}^{N S} q_{1, i} f_{i, n} \leq b_{1}\left(1+\sum_{i=1}^{N S} c_{i, n}\right)$ we get

$$
\begin{align*}
\partial_{t} \int_{\Omega}\left(\sum_{i=1}^{N S} q_{1, i} c_{i, n}\right)(t) & -\int_{\Omega} \frac{\partial}{\partial x}\left(\sum_{i=1}^{N S} q_{1, i} d_{i}(t, x) \frac{\partial c_{i, n}}{\partial x}+\sum_{i=1}^{N S} q_{1, i} m_{i}(t, x) c_{i, n} \frac{\partial \phi_{n}}{\partial x}\right) \\
& \leq \int_{\Omega} b_{1}\left(1+\sum_{i=1}^{N S} c_{i, n}\right) \tag{9}
\end{align*}
$$

thus

$$
\begin{equation*}
\partial_{t} \int_{\Omega}\left(\sum_{i=1}^{N S} q_{1, i} c_{i, n}\right)(t) \leq \sum_{i=1}^{N S} q_{1, i} \eta_{i}^{n}(t, L)-\sum_{i=1}^{N S} q_{1, i} \eta_{i}^{n}(t, 0)+\int_{\Omega} b_{1}\left(1+\sum_{i=1}^{N S} c_{i, n}\right) \tag{10}
\end{equation*}
$$

Thanks to the nonnegativity of $\left(q_{1, i}\right)_{1 \leq i \leq N S}$ and the boundedness of η_{i}^{n} and by using boundary conditions on ϕ_{n} we have the following Gronwall's inequality

$$
\begin{equation*}
\partial_{t} \int_{\Omega}\left(\sum_{i=1}^{N S} c_{i, n}\right)(t) \leq C+\int_{\Omega} \frac{b_{1}}{q_{0}}\left(1+\sum_{i=1}^{N S} c_{i, n}\right) \tag{11}
\end{equation*}
$$

where $q_{0}=\min _{1 \leq i \leq N S} q_{1, i}$. let us set $W_{n}(t)=\sum_{i=1}^{N S} c_{i, n}(t)$. By integrating on $(0, T)$, we obtain

$$
\begin{equation*}
\int_{\Omega} W_{n}(t) \leq e^{\frac{b_{1}}{q_{0}} t} \int_{\Omega} W_{n}(0)+k\left(e^{\frac{b_{1}}{q_{0}} t}-1\right) \tag{12}
\end{equation*}
$$

where, $k=q_{0}\left(C+\int_{\Omega} \frac{b_{1}}{q_{0}}\right) / b_{1}$, which implies that, for each t in the interval of existence

$$
\begin{equation*}
\int_{\Omega} W_{n}(t) \leq e^{\frac{b_{1}}{q_{0}} t} \sum_{i=1}^{N S}\left\|\mu_{i}\right\|_{\mathcal{M}_{b}(\Omega)}+k\left(e^{\frac{b_{1}}{q_{0}} t}-1\right) \tag{13}
\end{equation*}
$$

ii) We have the system satisfied by ϕ_{n}

$$
\begin{cases}-\varepsilon \partial_{x x} \phi_{n}=\sum_{i=1}^{N S} z_{i} c_{i, n} & \text { in } \Omega \\ \phi_{n}(t, s)=0 & \text { for } s=0, L, \forall 0<t<T\end{cases}
$$

Then,

$$
\phi_{n}(t, s)=\frac{1}{\varepsilon} \int_{\Omega} G(x, s)\left(\sum_{i=1}^{N S} z_{i} c_{i, n}\right) d s
$$

where, G is green function, given by

$$
G(x, s)=\left\{\begin{array}{lll}
x(L-s) & \text { if } \quad x \leq s \\
s(L-x) & \text { if } \quad s \leq x
\end{array}\right.
$$

Since,

$$
\left\|\sum_{i=1}^{N S} z_{i} c_{i, n}\right\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)} \leq C
$$

Thus, we can see that

$$
\left\|\phi_{n}\right\|_{L^{\infty}\left(0, T ; W_{0}^{1, \infty}(\Omega)\right)} \leq C .
$$

Lemma 3.4. There exist constants R_{1}, R_{2} depending on $\sum_{1 \leq j \leq N S}\left\|\mu_{i}\right\|_{\mathcal{M}_{b}(\Omega)}$ such that

1) $\sum_{1 \leq i \leq N S} \int_{Q_{T}}\left|f_{i}^{n}\left(t, x, c_{n}\right)\right| \leq R_{1}$.
2) $\sum_{1 \leq i \leq N S} \int_{0}^{T}\left|\eta_{i}^{n}(t, s)\right| \leq R_{2} \quad$ for $s=0, L$.

Proof. 1) Considering the hypothesis (v)

$$
\sum_{i \leq j \leq N S} q_{j i} f_{j}^{n} \leq b_{i}\left(1+\sum_{1 \leq k \leq N S} c_{k, n}\right) .
$$

For $i=N S$, we have

$$
\begin{aligned}
q_{N S, N S} f_{N S}^{n} & \leq b_{N S}\left(1+\sum_{1 \leq k \leq N S} c_{k, n}\right) \\
\int_{Q_{T}}\left|f_{N S}^{n}\right| & \leq \int_{Q_{T}} \frac{b_{N S}}{q_{N S, N S}}\left(1+\sum_{1 \leq j \leq N S}\left|c_{j, n}\right|\right) \\
\int_{Q_{T}}\left|f_{N S}^{n}\right| & \leq K\left(\sum_{1 \leq i \leq N S}\left\|\mu_{j}\right\|_{\mathcal{M}_{b}(\Omega)}+\operatorname{mes}\left(Q_{T}\right)\right) \leq M_{N S}
\end{aligned}
$$

For $i=N S-1$,

$$
q_{N S-1, N S-1} f_{N S-1}^{n}+q_{N S-1, N S} f_{N S}^{n} \leq b_{N S-1}\left(1+\sum_{1 \leq k \leq N S} c_{k, n}\right)
$$

and,

$$
\begin{aligned}
f_{N S-1}^{n} & =\left(f_{N S-1}^{n}+\frac{q_{N S-1, N S}}{q_{N S-1, N S-1}} f_{N S}^{n}\right)-\frac{q_{N S-1, N S}}{q_{N S-1, N S-1}} f_{N S}^{n} \\
\left|f_{N S-1}^{n}\right| & \leq\left|f_{N S-1}^{n}+\frac{q_{N S-1, N S}}{q_{N S-1, N S-1}} f_{N S}^{n}\right|+\left|\frac{q_{N S-1, N S}}{q_{N S-1, N S-1}} f_{N S}^{n}\right| \\
\int_{Q_{T}}\left|f_{N S-1}^{n}\right| & \leq \int_{Q_{t}} \frac{b_{N S-1}}{q_{N S-1, N S-1}}\left(1+\sum_{1 \leq j \leq N S}\left|c_{j, n}\right|\right)+\frac{q_{N S-1, N S}}{q_{N S-1, N S-1}} M_{N S} \\
& \leq K_{1}\left(\operatorname{mes}\left(Q_{T}\right)+\sum_{1 \leq i \leq N S}\left\|\mu_{j}\right\|_{\mathcal{M}_{b}(\Omega)}\right)+K_{2} \leq M_{N S-1}
\end{aligned}
$$

Doing the same as above for every $1 \leq i \leq N S$ we get,

$$
\int_{Q_{T}}\left|f_{i}^{n}\right| \leq M_{i}\left(\left\|\mu_{j}\right\|_{\mathcal{M}_{b}},\left(q_{i, j}\right)_{j=i, . ., N S}\right)
$$

Thus we obtain the desired result which is,

$$
\sum_{1 \leq i \leq N S} \int_{Q_{T}}\left|f_{i}\left(t, x, c_{n}\right)\right| \leq \sum_{1 \leq i \leq N S} M_{i}=R_{1}
$$

2) Set

$$
\begin{cases}\eta_{i}^{n}=0 & \text { for } i \in U_{0} \\ \eta_{i}^{n}=-A_{i} \exp \left(-\frac{\alpha_{i} F \cdot E^{n}}{R T}\right) & \text { for } i \in U_{1} \\ \eta_{i}^{n}=A_{i} c_{i}^{n} \exp \left(-\frac{\alpha_{i} F . E^{n}}{R T}\right) & \text { for } i \in U_{2}\end{cases}
$$

Where, $E^{n}=E_{\text {corr }}-\phi_{n}, U_{0} \cup U_{1} \cup U_{2}=[1, \ldots ., N S]$.
Then we have,

$$
\sum_{1 \leq i \leq N S} \int_{0}^{T}\left|\eta_{i}^{n}(t, s)\right|=\sum_{i \in U_{1}} \int_{0}^{T}\left|\eta_{i}^{n}(t, s)\right|+\sum_{i \in U_{2}} \int_{0}^{T}\left|\eta_{i}^{n}(t, s)\right|
$$

If $i \in U_{1}$

$$
\begin{aligned}
\int_{0}^{T}\left|\eta_{i}^{n}(t, s)\right| & =\int_{0}^{T}\left|A_{i} \exp \left(-\frac{\alpha_{i} F \cdot E^{n}(s)}{R T}\right)\right| \leq\left\|A_{i} \exp \left(-\frac{\alpha_{i} F \cdot E^{n}(s)}{R T}\right)\right\|_{L^{\infty}(0, T)} \cdot T \\
& =M_{1}\left(A_{i}, \alpha_{i},\left\|\phi_{n}\right\|_{L^{\infty}\left(0, T, W^{1, \infty}(\Omega)\right)}\right)
\end{aligned}
$$

And if $i \in U_{2}$

$$
\begin{aligned}
\int_{0}^{T}\left|\eta_{i}^{n}(t, s)\right| & =\int_{0}^{T}\left|A_{i} c_{i}^{n}(s) \exp \left(-\frac{\alpha_{i} F \cdot E(s)}{R T}\right)\right| \\
& \leq\left\|A_{i} \exp \left(-\frac{\alpha_{i} F \cdot E}{R T}\right)\right\|_{L^{\infty}(0, T)}\left\|c_{i}^{n}(s)\right\|_{L^{\infty}(0, T)} \\
& \left.\leq M\left(A_{i}, \alpha_{i},\left\|\phi_{n}\right\|_{L^{\infty}\left(0, T, W^{1, \infty}(\Omega)\right)}\right) \cdot\left\|c_{i}^{n}(s)\right\|_{L^{\infty}(0, T)}\right)=M_{2}
\end{aligned}
$$

Thus,

$$
\sum_{1 \leq i \leq N S} \int_{0}^{T}\left|\eta_{i}^{n}(t, s)\right| \leq M_{1}+M_{2}=R_{2}
$$

3.3. Convergence. Our purpose is to prove that $\left(c_{n}, \phi_{n}\right)$ solution of the approximated problem (4) converge to (c, ϕ) solution of (2). From the work of Baras, Hassan and Veron [3] we have, the application $\left(c_{i, n}^{0}, f_{i}^{n}\right) \longrightarrow c_{i, n}$ is compact from $L^{1}(\Omega) \times L^{1}\left(Q_{T}\right)$ into $L^{1}\left(Q_{T}\right)$. Then, we deduce the existence of a subsequence also denoted $\left(c_{n}, \phi_{n}\right)$, such that
For $i=1, \ldots, N S$

$$
\begin{cases}c_{i, n} \longrightarrow c_{i} & \text { strongly in } L^{1}\left(Q_{T}\right) \\ c_{i, n} \longrightarrow c_{i} & \text { almost every where in } Q_{T}\end{cases}
$$

and,

$$
c_{i, n}^{0} \longrightarrow \mu_{i} \text { in } \mathcal{M}_{b}(\Omega)
$$

Since ϕ_{n} is uniformly bounded in $L^{\infty}\left(0, T ; W_{0}^{1, \infty}(\Omega)\right)$, we conclude the existence of $\phi \in L^{\infty}\left(0, T ; W_{0}^{1, \infty}(\Omega)\right)$ such that

$$
\partial_{x} \phi_{n} \longrightarrow \partial_{x} \phi \quad \text { for the topology } \sigma\left(L^{\infty}\left(Q_{T}\right), L^{1}\left(Q_{T}\right)\right)
$$

Then, let's prove that

$$
c_{i, n} \partial_{x} \phi_{n} \longrightarrow c_{i} \partial_{x} \phi \quad \text { in } \mathcal{D}^{\prime}\left(Q_{T}\right)
$$

But first we need to prove that

$$
c_{i, n} \partial_{x} \phi_{n} \longrightarrow c_{i} \partial_{x} \phi \quad \text { for the topology } \sigma\left(L^{1}\left(Q_{T}\right), L^{\infty}\left(Q_{T}\right)\right)
$$

Let $\psi \in L^{\infty}\left(Q_{T}\right)$ we have

$$
\int_{Q_{T}} \psi\left(c_{i, n} \partial_{x} \phi_{n}-c_{i} \partial_{x} \phi\right)=\int_{Q_{T}} \psi \partial_{x} \phi_{n}\left(c_{i, n}-c_{i}\right)+\int_{Q_{T}} \psi c_{i}\left(\partial_{x} \phi_{n}-\partial_{x} \phi\right)
$$

For the first term we have

$$
\int_{Q_{T}} \psi \partial_{x} \phi_{n}\left(c_{i, n}-c_{i}\right) \leq\|\psi\|_{L^{\infty}\left(Q_{T}\right)}\left\|\partial_{x} \phi_{n}\right\|_{L^{\infty}\left(Q_{T}\right)}\left\|c_{i, n}-c_{i}\right\|_{L^{1}\left(Q_{T}\right)}
$$

as,

$$
\left\|c_{i, n}-c_{i}\right\|_{L^{1}\left(Q_{T}\right)} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

we deduce,

$$
\int_{Q_{T}} \psi \partial_{x} \phi_{n}\left(c_{i, n}-c_{i}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

For the second term

$$
\left|\int_{Q_{T}} \psi c_{i}\left(\partial_{x} \phi_{n}-\partial_{x} \phi\right)\right| \leq\|\psi\|_{L^{\infty}\left(Q_{T}\right)}\left\|c_{i}\right\|_{L^{1}\left(Q_{T}\right)}\left\|\partial_{x} \phi_{n}-\partial_{x} \phi\right\|_{L^{\infty}\left(Q_{T}\right)}
$$

since $\left|\partial_{x} \phi_{n}-\partial_{x} \phi\right| \longrightarrow 0$ for $\sigma\left(L^{\infty}\left(Q_{T}\right), L^{1}\left(Q_{T}\right)\right)$, then

$$
\int_{Q_{T}} \psi c_{i}\left(\partial_{x} \phi_{n}-\partial_{x} \phi\right) \longrightarrow 0
$$

Consequently,

$$
\partial_{t} c_{i, n}-\partial_{x}\left(d_{i} \partial_{x} c_{i, n}+m_{i} c_{i, n} \partial_{x} \phi_{n}\right) \longrightarrow \partial_{t} c_{i}-\partial_{x}\left(d_{i} \partial_{x} c_{i}+m_{i} c_{i} \partial_{x} \phi\right) \quad \text { in } \mathcal{D}^{\prime}\left(Q_{T}\right)
$$

Otherwise, since $c_{i, n} \longrightarrow c_{i}$ strongly in $L^{1}\left(Q_{T}\right)$ then,

$$
\sum_{i=1}^{N S} z_{i} c_{i, n} \longrightarrow \sum_{i=1}^{N S} z_{i} c_{i} \quad \text { strongly in } L^{1}\left(Q_{T}\right)
$$

Since $f_{1}^{n}, \ldots, f_{N S}^{n}$ are continuous we have, for $i=1, \ldots, N S$

$$
f_{i}^{n}\left(t, x, c_{n}\right) \longrightarrow f_{i}(t, x, c) \quad \text { almost everywhere in } Q_{T} .
$$

To conclude we need to prove that $f_{i}^{n} \longrightarrow f_{i}$ in $L^{1}\left(Q_{T}\right)$ thanks to Vitalli's theorem all we have to prove is that f_{i}^{n} are equi-integrable in $L^{1}\left(Q_{T}\right)$

Lemma 3.5. For every $i=1, \ldots, N S f_{i}^{n}$, is equi-integrable in $L^{1}\left(Q_{T}\right)$
Proof. Let E be a measurable set of Q_{T} and $\varepsilon>0$ then,

$$
\begin{aligned}
& \int_{E}\left|f_{i}^{n}\right| \leq \int_{E \cap\left[\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n} \leq \alpha\right] 0 \leq c_{j, n} \leq \alpha\right.}\left|f_{i}^{n}\left(t, x, c_{1, n}, \ldots, c_{N S, n}\right)\right| d x d t+ \\
&+\int_{\left.E \cap \cap \sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n} \geq \alpha\right]}\left|f_{i}^{n}\right| \\
& \\
& \leq I_{1}+I_{2}
\end{aligned}
$$

To investigate the terms I_{1} and I_{2} we are going to need the following result.
Lemma 3.6. Let σ_{n} be a sequence in $L^{1}\left(Q_{T}\right)$. Then the following statements are equivalent:

1) σ_{n} is uniformly integrable in $L^{1}\left(Q_{T}\right)$
2) $\left\{\begin{array}{l}\text { There exists } J:(0, \infty) \longrightarrow(0, \infty) \text { with } J \\ (a) \quad J \text { is convex, } J^{\prime} \text { is concave, } J^{\prime} \geq 0 \\ (b) \lim _{r \rightarrow+\infty} \frac{J(r)}{r}=+\infty \\ (c) \sup _{n} \int_{Q_{T}} J\left(\left|\sigma_{n}\right|\right) \leq \infty\end{array}\right.$

Now, we choose J as given in 2) with ($2-\mathrm{c}$) is replaced by

$$
\begin{equation*}
\sup _{n} \int_{Q_{T}} J\left(\sum_{1 \leq i \leq N S} b_{i}\left(1+\sum_{1 \leq k \leq N S} c_{k, n}\right)\right)<\infty, \quad \sup _{n} \int_{\Omega} J\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}^{0}\right)<\infty \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\sup _{n} \int_{Q_{T}} J\left(\left|\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} . \eta_{i}^{n}\right|\right)<\infty \tag{15}
\end{equation*}
$$

This is possible by Lemma 3.6, since $\sum_{1 \leq i \leq N S} c_{i, n}$ converges in $L^{1}\left(Q_{T}\right)$ and $\sum_{1 \leq i \leq N S} c_{i, n}^{0}$ converges in $L^{1}(\Omega)$.
Now we set,

$$
j(r)=\int_{0}^{r} \min \left(J^{\prime}(s),\left(J^{*}\right)^{-1}(s)\right) d s
$$

where J^{*} is the conjugate function of J that satisfies (2-a) and (2-b) and

$$
\begin{equation*}
\forall r \geq 0, j(r) \leq J(r), \quad J^{*}\left(j^{\prime}(r)\right) \leq r \tag{16}
\end{equation*}
$$

For I_{1}, we notice that by the assumptions on f_{i} and the choice of f_{i}^{n},

$$
\sup _{0 \leq c_{1, n}, \ldots, c_{N S, n} \leq \alpha}\left|f_{i}^{n}\right| \leq \beta_{i}(1+N S \alpha) \quad \text { where } \quad \beta_{i}=\beta_{i}\left(b_{N S}, . ., b_{i}, q_{N S, N S}, \ldots, q_{i}\right)
$$

As a consequence,

$$
I_{1} \leq \beta_{i} \cdot \operatorname{meas}(E)(1+N S \alpha)<\frac{\varepsilon}{2}
$$

For I_{2}

$$
I_{2}=\int_{E \cap\left[\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n} \geq \alpha\right]}\left|f_{i}^{n}\right| \leq \frac{1}{j^{\prime}(\alpha)} \int_{Q_{T}} j^{\prime}\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}\right)\left|f_{i}^{n}\right|
$$

Let us prove that the term $\frac{1}{j^{\prime}(\alpha)} \int_{Q_{T}} j^{\prime}\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}\right)\left|f_{i}^{n}\right|$ is uniformly bounded in $L^{1}\left(Q_{T}\right)$.
We set

$$
R_{i}^{n}=-\sum_{j=i}^{N S} q_{i, j} f_{j}^{n}+b_{i}\left(1+\sum_{k=1}^{N S} c_{k, n}\right) \quad \text { for } i=1, \ldots, N S
$$

we have,

$$
\partial_{t} c_{i, n}-\partial_{x}\left(d_{i}(t, x) \partial_{x} c_{i, n}+m_{i}(t, x) c_{i, n} \partial_{x} \phi_{n}\right)=f_{i}^{n}
$$

For every i we multiply the equation by $\sum_{j=1}^{i} q_{j, i}$ and we summate over i we obtain,

$$
\begin{aligned}
\partial_{t}\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}\right) & -\partial_{x}\left[\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} d_{i}(t, x) \partial_{x} c_{i, n}\right. \\
& \left.+\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} m_{i}(t, x) q_{j i} c_{i, n}\right) \partial_{x} \phi_{n}\right]+\sum_{1 \leq i \leq N S} R_{i}^{n} \\
& =\sum_{i=1}^{N S} b_{i}\left(1+\sum_{k=1}^{N S} c_{k, n}\right)
\end{aligned}
$$

We multiply it by $j^{\prime}\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}\right)$ and integrate over Q_{T} and by putting $\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}=O_{n}$, we obtain

$$
\begin{aligned}
\int_{\Omega} j\left(O_{n}\right)(T) & -\int_{Q_{T}} j^{\prime}\left(O_{n}\right) \partial_{x}\left[\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} d_{i}(t, x) \partial_{x} c_{i, n}+\right. \\
& \left.+\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} m_{i}(t, x) c_{i, n}\right) \partial_{x} \phi_{n}\right]+\int_{Q_{T}} j^{\prime}\left(O_{n}\right) \sum_{1 \leq i \leq N S} R_{i}^{n} \\
& =\int_{Q_{T}} j^{\prime}\left(O_{n}\right) \sum_{1 \leq i \leq N S} b_{i}\left(1+\sum_{1 \leq k \leq N S} c_{k, n}\right)+\int_{\Omega} j\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}^{0}\right) .
\end{aligned}
$$

We put,

$$
\begin{aligned}
J_{1} & =\int_{Q_{T}} j^{\prime}\left(O_{n}\right) \partial_{x}\left[\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} d_{i}(t, x) \partial_{x} c_{i, n}+\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} m_{i}(t, x) c_{i, n}\right) \partial_{x} \phi_{n}\right] \\
J_{2} & =\int_{Q_{T}} j^{\prime}\left(O_{n}\right) \sum_{1 \leq i \leq N S} b_{i}\left(1+\sum_{1 \leq k \leq N S} c_{k, n}\right)
\end{aligned}
$$

We start by investigating J_{2}, we have

$$
j^{\prime}(r) . s \leq J(s)+J^{*}\left(j^{\prime}(r)\right) \leq J(s)+r .
$$

Then,

$$
J_{2} \leq \int_{Q_{T}} J\left(\sum_{1 \leq i \leq N S} b_{i}\left(1+\sum_{1 \leq k \leq N S} c_{k, n}\right)\right)+\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}
$$

which is bounded independently of n by Lemma 3.6.
Let us investigate J_{1}, after integration by parts, we put $\theta^{n}=\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} \cdot \eta_{i}^{n}$, then we get

$$
\begin{aligned}
J_{1}= & -\int_{Q_{T}} j^{\prime \prime}\left(O_{n}\right) \partial_{x}\left(O_{n}\right)\left[\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} d_{i}(t, x) \partial_{x} c_{i, n}+\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} m_{i}(t, x) c_{i, n}\right) \partial_{x} \phi_{n}\right] \\
& -\int_{0}^{T} j^{\prime}\left(O_{n}\right) \theta^{n}(t, 0)+\int_{0}^{T} j^{\prime}\left(O_{n}\right) \theta^{n}(t, L) \\
\leq & \int_{0}^{T} j^{\prime}\left(O_{n}\right)\left|\theta^{n}(t, L)\right|+\int_{0}^{T} j^{\prime}\left(O_{n}\right)\left|\theta^{n}(t, 0)\right|-\underline{d} \int_{Q_{T}} j "\left(O_{n}\right)\left|\partial_{x} O_{n}\right|^{2}- \\
& -m_{N S} \int_{Q_{T}} j^{\prime \prime}\left(O_{n}\right) \partial_{x} O_{n} \cdot O_{n} \cdot \partial_{x} \phi_{n}- \\
& \left.-\int_{Q_{T}} j^{\prime \prime}\left(O_{n}\right) \partial_{x}\left(O_{n}\right)\left(\sum_{i=2}^{N S} \sum_{j=1}^{i} q_{j i}\left(m_{i}-m_{N S}\right)(t, x) c_{i, n}\right) \partial_{x} \phi_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & \sum_{s=0, L} \int_{0}^{T} J\left(\left|\theta^{n}\right|\right)(t, s)+O_{n}(t, s)-\underline{d} \int_{Q_{T}} j "\left(O_{n}\right)\left|\partial_{x} O_{n}\right|^{2}- \\
& -m_{N S} \int_{Q_{T}} j "\left(O_{n}\right) \partial_{x} O_{n} \cdot O_{n} \cdot \partial_{x} \phi_{n} \\
& \left.-\int_{Q_{T}} j "\left(O_{n}\right) \partial_{x}\left(O_{n}\right)\left(\sum_{i=2}^{N S} \sum_{j=1}^{i} q_{j i}\left(m_{i}-m_{N S}\right)(t, x) c_{i, n}\right) \partial_{x} \phi_{n}\right) .
\end{aligned}
$$

Using Young and Holder's inequalities we obtain,
$J_{1} \leq \sum_{s=0, L} \int_{0}^{T} J\left(\left|\theta^{n}\right|\right)(t, s)+O_{n}(t, s)+M \int_{Q_{T}} j "\left(O_{n}\right)\left[\sum_{1 \leq i \leq N S}\left|\partial_{x} c_{i, n}\right|^{2}+\sum_{1 \leq i \leq N S}\left|c_{i, n}\right|^{2}\right]$,
where M depends on $\left(\underline{d},\left(m_{i}\right)_{i=1, . ., N S},(q)_{i, j},\left\|\phi_{n}\right\|_{L^{\infty}\left(0, T ; W_{0}^{1, \infty}(\Omega)\right)}\right)$.
Since j^{\prime} is concave, $j^{\prime \prime}(r) \leq \frac{j^{\prime}(r)}{r}$ we have,

$$
\begin{aligned}
\int_{Q_{T}} j "\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}\right) \sum_{1 \leq i \leq N S}\left|c_{i, n}\right|^{2} & \leq \int_{Q_{T}} j^{\prime}\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}\right) \sum_{1 \leq i \leq N S} c_{i, n} \\
& \leq \int_{Q_{T}} J\left(\sum_{1 \leq i \leq N S} c_{i, n}\right)+\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}
\end{aligned}
$$

Which is uniformly bounded in $L^{1}\left(Q_{T}\right)$, for the second term we are going to use the equation satisfied by $c_{N S, n}$, we put $\gamma=\frac{b_{N S}}{q_{N S, N S}}$

$$
\begin{aligned}
& \int_{\Omega} j\left(c_{N S, n}\right)(T)+\underline{d} \int_{Q_{T}} j "\left(c_{N S, n}\right)\left|\partial_{x} c_{N S, n}\right|^{2} \\
& \leq \bar{m} \int_{Q_{T}} j^{\prime \prime}\left(c_{N S, n}\right)\left|c_{N S, n} \partial_{x} c_{N S, n}\right|\left|\partial_{x} \phi_{n}\right|+\gamma \int_{Q_{T}} j^{\prime}\left(c_{N S, n}\right)\left(1+\sum_{k=1}^{N S} c_{k, n}\right) \\
& \\
& \quad+\int_{0}^{T} j^{\prime}\left(c_{N S, n}\right) \eta_{N S}^{n}(t, 0)-\int_{0}^{T} j^{\prime}\left(c_{N S, n}\right) \eta_{N S}^{n}(t, L)+\int_{\Omega} j\left(c_{N S, n}\right)(0), \\
& \leq M_{\varepsilon} \int_{Q_{T}} j^{\prime \prime}\left(c_{N S, n}\right)\left|c_{N S, n}\right|^{2}+\varepsilon \int_{Q_{T}} j^{\prime \prime}\left(c_{N S, n}\right)\left|\partial_{x} c_{N S, n}\right|^{2}+\gamma \int_{Q_{T}} j^{\prime}\left(c_{2, n}\right)\left(1+\sum_{k=1}^{N S} c_{k, n}\right) \\
& \quad+\sum_{s=0, L} \int_{0}^{T} j^{\prime}\left(c_{N S, n}\right)\left|\eta_{N S}^{n}\right|(t, s)+\int_{\Omega} j\left(c_{N S, n}\right)(0)
\end{aligned}
$$

where, M_{ε} depends on $\underline{m},\left\|\phi_{n}\right\|_{L^{\infty}\left(0, T ; W_{0}^{1, \infty}(\Omega)\right)}$, then,

$$
\begin{aligned}
& \int_{\Omega} j\left(c_{N S, n}\right)(T)+(\underline{d}-\varepsilon) \int_{Q_{T}} j^{\prime \prime}\left(c_{N S, n}\right)\left|\partial_{x} c_{N S, n}\right|^{2} \\
& \quad \leq M_{\varepsilon} \int_{Q_{T}} j^{\prime}\left(c_{N S, n}\right)\left|c_{N S, n}\right|+\gamma \int_{Q_{T}} j^{\prime}\left(c_{N S, n}\right)\left(1+\sum_{1 \leq k \leq N S} c_{k, n}\right) \\
& \quad+\sum_{s=0, L} \int_{0}^{T} j^{\prime}\left(c_{N S, n}\right)\left|\eta_{N S}^{n}\right|(t, s)+\int_{\Omega} j\left(c_{N S, n}\right)(0)
\end{aligned}
$$

To conclude we choose ε small enough then we can see that $\int_{Q_{T}} j "\left(c_{N S, n}\right)\left|\partial_{x} c_{N S, n}\right|^{2}$ is uniformly bounded.

Adding the information $j^{\prime \prime}\left(O_{n}\right) \leq j^{\prime \prime}\left(c_{N S, n}\right)$, now we can conclude that the term $\int_{Q_{T}} j "\left(O_{n}\right)\left|\partial_{x} c_{N S, n}\right|^{2}$ is uniformly bounded, doing the same as above we see that

$$
\int_{Q_{T}} j "\left(O_{n}\right)\left|\partial_{x} c_{i, n}\right|^{2} \text { for } i=1, \ldots, N S \text { is uniformly bounded so is } J_{1} .
$$

Thus, $\int_{Q_{T}} j^{\prime}\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}\right) \sum_{1 \leq i \leq N S} R_{i}^{n}$ is uniformly bounded.
By the definition of R_{i}^{n} we have

$$
\begin{gathered}
\sum_{i=1}^{N S} R_{i}^{n}=-\left(q_{1,1} f_{1}^{n}+\left(q_{12}+q_{22}\right) f_{2}^{n}+\ldots+\sum_{j=1}^{N S} q_{j, N S} f_{N S}\right)+b_{i}\left(1+\sum_{k=1}^{N S} c_{k, n}\right) \\
q_{1,1} f_{1}^{n}+\left(q_{12}+q_{22}\right) f_{2}^{n}+\ldots+\sum_{j=1}^{N S} q_{j, N S} f_{N S}=-\sum_{i=1}^{N S} R_{i}^{n}+b_{i}\left(1+\sum_{k=1}^{N S} c_{k, n}\right) \\
\sum_{i=1}^{N S} \alpha f_{i}^{n} \leq \sum_{i=1}^{N S} R_{i}^{n}+b_{i}\left(1+\sum_{k=1}^{N S} c_{k, n}\right) \\
\sum_{i=1}^{N S} f_{i}^{n} \leq \frac{1}{\alpha} \sum_{i=1}^{N S} R_{i}^{n}+b_{i}\left(1+\sum_{k=1}^{N S} c_{k, n}\right)
\end{gathered}
$$

where $\alpha=\min \left(q_{1,1}, q_{12}+q_{22}, \ldots, \sum_{j=1}^{N S} q_{j, N S}\right)$.
Finally we obtain,

$$
\int_{Q_{T}} j^{\prime}\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}\right) \sum_{1 \leq i \leq N S}\left|f_{i}^{n}\right|<\infty
$$

Going back to the term I_{2}

$$
I_{2} \leq \frac{1}{j^{\prime}(\alpha)} \int_{Q_{T}} j^{\prime}\left(\sum_{i=1}^{N S} \sum_{j=1}^{i} q_{j i} c_{i, n}\right)\left|f_{i}^{n}\right|
$$

By choosing $\alpha=\alpha(\varepsilon)$ large enough depending only on ε, I_{2} can be made less than $\frac{\varepsilon}{2}$. Thus,

$$
\int_{E}\left|f_{i}\right|<\varepsilon
$$

Finally, this proves the equi-integrability of f_{i}^{n} for $i=1, \ldots, N S$ in $L^{1}\left(Q_{T}\right)$.

References

[1] N. Alaa and S. Mosbahi, Existence result for triangular reaction-diffusion systems with L^{1} data and critical growth with respect to the gradient, to appear in Med J. Math. (2012).
[2] N. Alaa and H.Lefraich, Mathematical analysis of a system modeling Ions electro-migration through biological membranes, Applied Mathematical Sciences 6 (2012), no. 43, 2091-2110.
[3] P. Baras, J. C. Hassan, and L. Veron, Compacité del'opérateur définissant la solution d'une équation non homogène, C.R. Acad. Sci. Paris Ser. A 284 (1977), 799-802.
[4] R.H. Martin Jr. and M. Pierre, Nonlinear Reaction-Diffusion Systems, Nonlinear Equations in the Applied Sciences, Mathematical Sciences in Engineering 185, Academic Press, Boston, 363-398, 1992.
[5] G. Rolland, Global existence and fast-reaction limit in reaction-diffusion systems with cross effects, Thesis, École normale supérieure de Cachan - ENS Cachan; Technische Universität Darmstadt, 2012.
[6] G.R. Engelhard, L.G. McMillion, and D.D Macdonald, A mathematical model for crevice corrosion under porous deposits, Journal of Nuclear Materials 379 (2008), 48-53.
[7] M. Stroe, R. Oltra, V. Vuilleminn, and G. Girardin, Propagation of localised corrosion : FEM approach, The proceedings of the COMSOL Users conference Grenoble (2008).
[8] P. Baras and M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Analysis 18 (1984), no. 1-2, 111-149.
[9] S.M. Sharland and P.W. Tasker, A mathematical model of crevice and pitting corrosion-I. The physical model, Corrosion Sience 28 (1988), no. 6, 603-620.
[10] S.M. Sharland, A mathematical model of crevice and pitting corrosion-II. The mathematical solution, Corrosion Sience 28 (1988), no. 6, 621-630.

[^1]
[^0]: This paper has been presented at Congrès MOCASIM, Marrakech, 19-22 November 2014.

[^1]: (Imane El Malki, Nour Eddine Alaa, Fatima Aqel) Laboratory LAMAI, Faculty of Science and Technology, University Cadi Ayyad, B.P. 549, Av. Abdelkarim Elkhattabi, Marrakech - 40000, Morocco
 E-mail address: imane.elmalki@gmail.com, n.alaa@uca.ma, aqel.fatima@gmail.com

