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Mathematical analysis of a reaction diffusion model for image
restoration
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Abstract. In this paper, we propose a modification and a generalization of the theory de-

veloped by P. Perona and J. Malik for edge detection and image restoration, from the case of
a single equation to the case of nonlinear reaction-diffusion system. We are interested in the

existence of weak solutions for this system for which two main properties hold: the positivity

of the solutions and the total mass of the components are preserved with time.
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1. Introduction

Image processing is a discipline of computer science and applied mathematics that
deals with digital images and their transformations in order to improve their quality or
to extract information. There are a large number of applications of image processing
in diverse spectrum of activities. One of the most active topics in this field has
been restoration of images. A number of different techniques have been proposed for
digital image restoration, utilizing a number of different models and assumptions. The
restoration of degraded images is an important problem because it allow to recovery
lost information from the observed degraded image data.

One of the first attempts to derive a model that incorporates local information
from an image within a PDE framework was conducted by Perona and Malik [21],
[22]. They proposed a nonlinear diffusion model in order to avoid the blurring of edges
and other localization problems presented by linear diffusion models. The model can
be written as 

∂u

∂t
− div

(
g
(
|∇u|2

)
∇u
)

= 0

u (0, x) = u0

∂u

∂υ
= 0

In this model the diffusivity has to be such that lim
s→+∞

g (s)→ 0 and lim
s→0

g (s)→ 1.

Notwithstanding the practical success of the Perona-Malik model, it presents some
serious theoretical problems: (i) None of the classical well-posedness frameworks is
applicable to the Perona-Malik model, (Weickert and Schnörr [25]; Nitzberg and
Shiota [19]); (ii) Uniqueness and stability with respect to the initial image should
not be expected, i.e. solvability is a difficult problem, in general (Kichenassamy [16];
Höllig and Nohel [14]; Höllig [15]; Perona et al. [20]; Catté et al. [11]); (iii) The
regularizing effect of the discretization plays too much of an important role in the
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solution (Fröhlich and Weickert [13]; Benhamouda [9]). The latter is perhaps the key
element in the success or failure of the model. Most practical applications work very
well provided that the numerical schemes stabilize the process through some implicit
regularization.

This observation motivated much research towards the introduction of the regu-
larization directly into the PDE to avoid the dependence on the numerical schemes
(Catté et al. [11]; Nitzberg and Shiota [19]). A variety of spatial, spatio-temporal,
and temporal regularization procedures have been proposed over the years (Baren-
blatt et al. [8]; Catté et al. [11]; Weickert [24]; Weickert [26]; Whitaker and Pizer
[27]; Li and Chen [17]). The one that has attracted much attention is the mathe-
matically sound formulation due to Catté et al. [11]. They proposed replacing the

diffusivity g
(
|∇u|2

)
of the Perona-Malik model by a slight variation g

(
|∇uσ|2

)
with

uσ = Gσ ∗ u, where Gσ is a smooth kernel (Gaussian of variance σ2). Their proposed
model is therefore 

∂u

∂t
− div

(
g
(
|∇uσ|2

)
∇u
)

= 0

u (0, x) = u0

∂u

∂υ
= 0

We should note that this spatial regularization model belongs to a class of well-
posed problems (existence and uniqueness were proven in Catté et al. [11], and that
its successful implementation is contingent on the choosing of an appropriate value
for the additional regularization parameter σ. Whitaker and Pizer [27] and Li and
Chen [17] suggested making the parameter σ time-dependent, and Benhamouda [9]
performed a systematic study of the influence of σ for the one-dimensional case.

Another interesting variation to the Perona-Malik model is the one proposed by
Alvarez et al. [5], [6]. They studied a class of nonlinear parabolic differential equations
of the form 

∂u

∂t
− g (|G ∗ ∇u|) |∇u|div

(
∇u
|∇u|

)
= 0

u (0, x) = u0

∂u

∂υ
= 0

The term g (|G ∗ ∇u|) is used for edge enhancement and it controls the speed of
the diffusion.

In 2006, the study of Morfu [19] was focused on the contrast enhancement and
noise filtering, he considers the Fisher equation which generally allows simulating the
transport mechanisms in living cells, but also enhances the contrast and segmenting
images. The model proposed by Morfu is

∂u

∂t
− div (g (|∇u|)∇u) = f (u)

u (0, x) = u0

∂u

∂υ
= 0

where u0 is the original image to be processed and f(s) = s(s − a)(1 − s) with
0 < a < 1. The Major defects of this model are: (i) Sensitivity to noise; if we increase
slightly the noise, the method gives unsatisfactory results. (ii) No results of existence
and consistency.

In 2014, the aim of study of Alaa et al. [1] is to modify the model of Morfu [19] by
applying a Gaussian filter on the gradient of the noisy image during the calculation
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of the coefficient of anisotropic diffusion. The proposed model is as follows
∂u

∂t
− div (g (|∇uσ|)∇u) = f (t, x, u)

u (0, x) = u0

∂u

∂υ
= 0

where Ω =]0, 1[×]0, 1[ denotes picture domain with boundary ∂Ω, with Neumann
boundary conditions.

In this paper, we assume the system of the form

∂u

∂t
− div (g (|∇Gσ ∗ u|)∇u) = A (t, x, u, v) in QT

∂v

∂t
− div (h (|∇Gσ ∗ v|)∇v) = B (t, x, u, v) in QT

u (0, x) = u0 , v (0, x) = v0 in Ω
∂u

∂υ
=
∂v

∂υ
= 0 on ΣT

(1.1)

Here QT = ]0, T [ × Ω, ΣT = ]0, T [ × ∂Ω, T > 0, Ω = ]0, 1[ × ]0, 1[ denotes
picture domaine with boundary ∂Ω, with Neumann boundary conditions, u = u (t, x) ,
v = v (t, x) , υ is an outward Normal to domain Ω. The diffusivities g, h : R+ → R+

are smooth decreasing functions with g (0) = h (0) = 1, lim
t→+∞

g (t) = lim
t→+∞

h (t) = 0.

Let σ > 0, we suppose that Gσ is a Gaussian filter

Gσ (x) =
1√
2πσ

exp

(
−|x|

2

4σ

)
; x ∈ R2 , |∇Gσ ∗ ω| =

[
2∑
i=1

(
∂Gσ
∂xi

∗ ω̃
)2
] 1

2

where ω̃ is a linear continuous extension of ω to R2.
The nonlinearity A, B are regular functions whose nonlinear structure is such that

two main properties occur:
• The nonnegativity of the solution (u, v) of (1.1) is preserved with time, which is

ensured by

A (t, x, 0, v) ≥ 0, B (t, x, u.0) ≥ 0 for all u, v ≥ 0 and for a.e. (t, x) ∈ QT (1.2)

• The total mass of the components u, v is controlled with time, which is ensured
by the structure condition

A (t, x, u, v) ≤ 0, A (t, x, u, v)+B (t, x, u, v) ≤ 0 for all u, v ≥ 0 and for a.e. (t, x) ∈ QT
(1.3)

This work represents a generalization of the theory developed by P. Perona and
J. Malik for edge detection and image restoration, from the case of a single equation
to the case of nonlinear parabolic reaction-diffusion system. This passage needs new
approaches and also technical difficulties to be overcome. We will explain in detail
here. We found a good idea to present our work as follows:

We began with this introduction where we describe briefly the nonlinear diffu-
sion model proposed by Catté et al. [11] applied in image processing for restoration
and which serves as background for our proposed model generalization, and some re-
minders of the main results obtained previously. This will highlight the contribution
of our work and originality. In the second section we give the definition of the notion of
solution used here. We then present the main results of this work. In the last section,
we give the proof of global existence of our system, this is done in three steps: in the
first we truncate the system, the latter we give suitable estimates on the approximate
solutions and in the last step we show the convergence of the approximating system
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by using the technics introduced by Boccardo [10] and Dall’Aglio and Orsina [12], we
can also see Alaa et al. [2], [3], [4], [7].

2. Statement of the result

2.1. Assumptions. Let us now introduce for A and B the hypotheses:

A, B : Q× [0,+∞)
2 → R are measurable (2.1)

A, B : Q× [0,+∞)
2 → R are locally Lipschitz continuous (2.2)

Moreover, we assume

|A (t, x, u, v)|+ |B (t, x, u, v)| ≤ ξ (|u|+ |v|) (2.3)

where ξ : [0,+∞)→ [0,+∞) is non-decreasing, ξ ∈ L1 ([0,+∞)), and

A (t, x, 0, 0) , B (t, x, 0, 0) ∈ L1 (QT ) (2.4)

First, we have to clarify in which sense we want to solve the problem (1.1):

Definition 2.1. We say that (u, v) is a weak solution of (1.1) if

u, v ∈ L∞
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1 (Ω)

)
A, B ∈ L1 (QT )
∂u

∂t
− div (g (|∇Gσ ∗ u|)∇u) = A (t, x, u, v) in D′ (QT )

∂v

∂t
− div (h (|∇Gσ ∗ v|)∇v) = B (t, x, u, v) in D′ (QT )

(2.5)

2.2. The main result. Our main result in this paper is the following existence
theorem:

Theorem 2.1. Assume that (1.2) , (1.3) and (2.1)− (2.4) hold, and u0, v0 ∈ L2 (Ω)
such as u0, v0 ≥ 0. Then for all fixed T > 0 and σ > 0, there exists a weak
positive solution (u, v) of the system (1.1) . Moreover, u, v ∈ L∞

(
0, T ;L2 (Ω)

)
∩

L2
(
0, T ;H1 (Ω)

)
.

3. Proof of Theorem 2.2

3.1. Positivity of the solutions.

Lemma 3.1. Let (u, v) be a solution of (1.1), then u, v ≥ 0.

Proof. Consider the function

sign−(r) =

{
−1 if r < 0

0 if r ≥ 0

We build a sequence of convex functions jε(r) such as j′ε(r) is bounded and for all
r ∈ R, j′ε(r)→ sign−(r) when ε→ 0.

Let (u, v) be a solution of (1.1), we multiply both sides of the first equation by
j′ε(u) and by integrating on Qτ =]0, τ [×Ω for τ ∈ [0, T [, we obtain∫
Qτ

j′ε(u)
∂u

∂t
dx dt+

∫
Qτ

g (|∇Gσ ∗ u|)∇u.∇j′ε(u) dx dt =

∫
Qτ

A(t, x, u, v)j′ε(u) dx dt
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We remark that g (|∇Gσ ∗ u|) , h (|∇Gσ ∗ v|) ∈ L∞(0, T ; C∞(Ω)) because u, v ∈
L∞(0, T ;L2(Ω)) and g, h, Gσ are C∞, and we can show the existence of a C0 depends
only on Gσ, ‖u0‖L2(Ω), ‖v0‖L2(Ω) such as

‖∇Gσ ∗ u‖L∞(QT ) + ‖∇Gσ ∗ v‖L∞(QT ) ≤ C0

Moreover, as g, h are decreasing, then there exist constants a = a
(
σ, ‖u0‖L2(Ω)

)
>

0, b = b
(
σ, ‖v0‖L2(Ω)

)
> 0, such as:

g (|∇Gσ ∗ u|) ≥ a and h (|∇Gσ ∗ v|) ≥ b, a.e. in (t, x) ∈ QT (3.1)

Consequently,∫
Ω

[jε(u)(t)− jε(u)(0)]dx+ a

∫
Qτ

|∇u|2j′′ε (u) dt dx ≤
∫
Qτ

A(t, x, u, v)j′ε(u) dx dt

Since
∫

Ω
jε(u)(0)dx = 0 and

∫
Qt
|∇u|2j′′ε (u) dx ds ≥ 0 then we have∫

Ω

jε(u)(t)dx ≤
∫

[u<0]

A(t, x, u, v)j′ε(u) dx dt+

∫
[u≥0]

A(t, x, u, v)j′ε(u) dx dt

On the set where u ≥ 0 we have j′ε(u) = 0 and
∫

[u≥0]
A(t, x, u, v)j′ε(u) dx dt = 0;

therefore ∫
Ω

jε(u)(t)dx ≤
∫

[u<0]

A(t, x, u, v)j′ε(u) dx dt

When ε→ 0, we obtain∫
Ω

(u)−(t)dx ≤ −
∫

[u≤0]

A(t, x, u, v)j′ε(u) dx dt

Using (1.3) and the fact that (u)−(t) ≥ 0, we obtain (u)−(t) = 0 on Ω; therefore
u ≥ 0 in QT .

Similarly, we multiply both sides of the second equation by j′ε(v) and by integrating
on Qτ =]0, τ [×Ω for τ ∈ [0, T [, and using (1.3), we get v ≥ 0. See Alaa et al. [1]. �

3.2. An existence result when the nonlinearities A, B are bounded.

Lemma 3.2. Assume that (1.2) , (1.3) and (2.1)−(2.4), and there exists M ≥ 0 such
as for almost (t, x) ∈ QT and all r, s ∈ R

|A (t, x, u, v)|+ |B (t, x, u, v)| ≤M

then for all u0, v0 ∈ L2(Ω), the problem (1.1) admits a weak solution (u, v). Moreover
there exists a constant C depending on a, b, M, T, ‖u0‖L2(Ω) and ‖v0‖L2(Ω) , such

that

sup
0<t<T

‖u (t)‖L2(Ω) + ‖u‖L2(0,T ;H1(Ω)) ≤ C,

sup
0<t<T

‖v (t)‖L2(Ω) + ‖v‖L2(0,T ;H1(Ω)) ≤ C.

Proof. See Alaa et al. [1], Amann [7], Catté et al. [11] and Zhang [28]. �
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3.3. Approximating scheme. We define ψn a truncation function by ψn ∈ C∞c (R),
0 ≤ ψn ≤ 1, and

ψn (z) =

{
1 if |z| ≤ n
0 if |z| ≥ n+ 1

and we truncate the nonlinearities A, B by ψn, for all (t, x, u, v) in R+ × Ω× R2,

An (t, x, u, v) = ψn (|u|+ |v|) .A (t, x, u, v)

Bn (t, x, u, v) = ψn (|u|+ |v|) .B (t, x, u, v)

Note that these functions An, Bn enjoy the same properties as A, B, moreover
they are Hölder continuous with respect to (t, x) and |An| + |Bn| ≤ Mn, where Mn

is a constant depending only on n, and for almost (t, x) ∈ QT , for all r, s ∈ R :

An (t, x, r, s)→ A (t, x, r, s) and Bn (t, x, r, s)→ B (t, x, r, s)

Let us now consider the truncated system

∂un
∂t
− div (g (|∇Gσ ∗ un|)∇un) = An (t, x, un, vn) in QT

∂vn
∂t
− div (h (|∇Gσ ∗ vn|)∇vn) = Bn (t, x, un, vn) in QT

un (0, x) = un0 , vn (0, x) = vn0 in Ω
∂un
∂υ

=
∂vn
∂υ

= 0 on ΣT

(3.2)

Remark 3.1. Since u0, v0 ∈ L2(Ω) and |An|+ |Bn| ≤Mn, the previous lemma 3.2
gives us that the problem (3.2) has a weak solution.

3.4. A priori estimates.

Lemma 3.3. There exists a constant R1 depending on ‖u0‖L1(Ω) , ‖v0‖L1(Ω) such

that ∫
QT

(|An (t, x, un, vn)|+ |Bn (t, x, un, vn)|) ≤ R1.

Proof. Considering the equations satisfied by un and vn, the positivity of the solutions
and the hypothesis (1.3) give us∫

QT

|An| ≤
∫

Ω

u0dx = ‖u0‖L1(Ω) and

∫
QT

|Bn| ≤ 2 ‖u0‖L1(Ω) + ‖v0‖L1(Ω)

�

Lemma 3.4. There exists a constant R2 depending on a, b, ‖u0‖L2(Ω) and ‖v0‖L2(Ω) , such

that ∫
QT

|∇un|2 +

∫
QT

|∇vn|2 ≤ R2.

Proof. We multiply the first equation in the truncated problem (3.2) by un and we
integrate on QT . We obtain

1

2

∫
Ω

u2
n (T ) dx− 1

2

∫
Ω

u2
n (0) dx+

∫
QT

g |∇Gσ ∗ un| . |∇un|2 =

∫
QT

An.un

Since, by (3.1), and by hypothesis (1.3) we have∫
QT

|∇un|2 ≤
1

2a

∫
Ω

u2
n (0) dx
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Multiplying by (un + vn) the equation satisfied by un + vn, and integrating on QT
yield

1

2

∫
Ω

(un + vn)
2

(T )− 1

2

∫
Ω

(un + vn)
2

(0) +

∫
QT

h (|∇Gσ ∗ vn|) . |∇ (un + vn)|2 +

+

∫
QT

(g (|∇Gσ ∗ un|)− h (|∇Gσ ∗ vn|)) .∇un.∇ (un + vn) =

∫
Ω

(An +Bn) (un + vn)

By (3.1) We have

b

∫
QT

|∇ (un + vn)|2 ≤ 1

2

∫
Ω

(u0 + v0)
2

+

+

∫
QT

(g (|∇Gσ ∗ un|)− h (|∇Gσ ∗ vn|)) .∇un.∇ (un + vn)

Using Young’s inequality, we have for all ε > 0, such as b− ε

2
> 0(

b− ε

2

)∫
QT

|∇ (un + vn)|2 ≤ 1

2

∫
Ω

(u0 + v0)
2

+
1

4εa

∫
Ω

u2
n (0) dx

Then(
b− ε

2

)∫
QT

|∇vn|2 ≤
1

2

∫
Ω

(u0 + v0)
2

+
1

4εa

∫
Ω

u2
n (0) dx+

∣∣∣b− ε

2

∣∣∣ ∫
QT

|∇un| . |∇vn|

Now, using Young’s inequality another time, we end the proof of lemma. �

Lemma 3.5. There exists a constant R3 depending on ‖u0‖L2(Ω), ‖v0‖L2(Ω), R2 such

that ∫
QT

(2un + vn) (|An (t, x, un, vn)|+ |Bn (t, x, un, vn)|) ≤ R3.

Proof. Combining the equations of system (3.2) , we have

∂

∂t
(2un + vn)− 2 div (g (|∇Gσ ∗ un|)∇un)− div (h (|∇Gσ ∗ vn|)∇vn) = 2An +Bn

Multiplying by (2un + vn) and integrating on QT yield

1

2

∫
Ω

(2un + vn)
2

(T ) + 2

∫
QT

g (|∇Gσ ∗ un|) .∇un.∇ (2un + vn) +

+

∫
QT

h (|∇Gσ ∗ vn|) .∇vn.∇ (2un + vn)

=
1

2

∫
Ω

(2un + vn)
2

(0) +

∫
QT

(2An +Bn) (2un + vn)

Then

2

∫
QT

g (|∇Gσ ∗ un|) .∇un.∇vn + 2

∫
QT

h (|∇Gσ ∗ vn|) .∇un.∇vn

≤ 1

2

∫
Ω

(2u0 + v0)
2

+

∫
QT

(2An +Bn) (2un + vn)

Using Young’s inequality and (1.3) we conclude that∫
QT

|2An +Bn| . (2un + vn) ≤ 1

2

∫
Ω

(2u0 + v0)
2

+ 2
(
|∇un|2 + |∇vn|2

)
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By Lemma 3.4 and (1.3), we obtain∫
QT

[(−An) + (−An −Bn)] . (2un + vn) ≤ 1

2

∫
Ω

(2u0 + v0)
2

+ 4R2

We note that |Bn| ≤ |An|+ |An +Bn|, which gives us the result. �

Lemma 3.6. (un, vn) is relatively compact in L2 (QT )× L2 (QT ) .

Proof. Since
∂un
∂t

= div (g (|∇Gσ ∗ un|)∇un) +An (t, x, un, vn) and

∂vn
∂t

= div (h (|∇Gσ ∗ vn|)∇vn)+Bn (t, x, un, vn) are bounded in L1
(
0, T ; (H1(Ω))′

)
.

Since un, vn are also bounded in L2(0, T ;H1(Ω)) and that the injection of H1(Ω)×
H1(Ω) in L2(Ω)× L2(Ω) is compact, it follows that (un, vn) is relatively compact in
L2(QT )× L2(QT ), see Simon [23]. �

3.5. Convergence. Our objective is to show that (un, vn) converges to some (u, v)
solution of the problem (1.1). According to Lemma 3.6, the sequence (un, vn) is
relatively compact in L2(QT )×L2(QT ), so we can extract a subsequence still denoted
(un, vn) such that
• un → u, vn → v strongly in L2 (QT ) and a.e. in QT ,
• ∇Gσ ∗un → ∇Gσ ∗u, ∇Gσ ∗ vn → ∇Gσ ∗ v strongly in L2(QT ) and a.e. in QT ,
• g(|∇Gσ ∗un|)→ g(|∇Gσ ∗u|), h(|∇Gσ ∗vn|)→ h(|∇Gσ ∗v|) strongly in L2(QT ),
• An (t, x, un, vn) → A (t, x, un, vn) , Bn (t, x, un, vn) → B (t, x, un, vn) for a.e.

in QT .
This is not sufficient to ensure that (u, v) is a weak solution of (1.1). In fact, we have

to prove that the previous convergences are in L1 (QT ). In view of the Vitali theorem,
to show that An (t, x, un, vn) → A (t, x, u, v) and Bn (t, x, un, vn) → B (t, x, u, v) in
L1 (QT ), is equivalent to proving that (An (t, x, un, vn))n and (Bn (t, x, un, vn))n are
equi-integrable in L1 (QT ).

Lemma 3.7. (An (t, x, un, vn))n and (Bn (t, x, un, vn))n are equi-integrable in L1 (QT ) .

Proof. Let E be a measurable subset of QT , we have∫
E

|An (t, x, un, vn)| =

∫
E∩{un>k}

|An|+
∫

E∩{un≤k,vn>k}

|An|+
∫

E∩{un≤k,vn≤k}

|An|

= I1 + I2 + I3

Thanks to Lemma 3.5, we obtain ∀ε > 0, ∃k0, such that, if k ≥ k0 then for all n

I1 ≤
1

k

∫
{un>k}

k. |An| ≤
1

k

∫
QT

(2un + vn) . |An| ≤
1

k
R3 ≤

ε

3

I2 ≤
1

k

∫
E∩{un≤k,vn>k}

k. |An| ≤
1

k

∫
QT

(2un + vn) . |An| ≤
1

k
R3 ≤

ε

3

Now, using hypothesis (2.3), we write

I3 ≤
∫

E∩{un≤k,vn≤k}

ξ (|un|+ |vn|) ≤ ξ (k, k) . |E|
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Choose |E| ≤ ε

3

1

ξ (k, k)
, we obtain∫

E

|An (t, x, un, vn)| ≤ ε

Similarly, we get ∫
E

|Bn (t, x, un, vn)| ≤ ε

We obtain the required result. �
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