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Global existence of weak solutions for parabolic triangular
reaction diffusion systems applied to a climate model

Walid Bouarifi, Nour Eddine Alaa, and Salim Mesbahi

Abstract. Over the years, reaction-diffusion systems have attracted the attention of a great
number of investigators and were successfully developed on the theoretical backgrounds. Not

only it has been studied in biological and chemical fields, some investigations range as far as

economics, semiconductor physics, and star formation. Recently particular interests have been
on the impact of environmental changes, such as climate. This work is devoted to the existence

of weak solutions for m×m reaction-diffusion systems arises from an energy balance climate

model. We consider a time evolution model for the climate obtained via energy balance. This
type of climate model, independently introduced in 1987 by V. Jentsch [29], has a spatial global

nature and involves a relatively long-time scale. Our study concerns the global existence of

periodic solutions of the nonlinear parabolic problem. The originality of this study persists in
the fact that the non-linearities of our system have critical growth with respect to the gradient

of solutions. For this reason new techniques will used to show the global existence. This is

our main goal in this article.
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1. Introduction

Energy balance models are at the bottom end of the hierarchy of climate models.
Since the climate system is probably the most complex system physical and math-
ematical theories are tried on, this hierarchy consists of a big number of models of
highly different complexity. General circulation models at the top end are based on
most of our knowledge about physical and chemical processes in the atmosphere, the
oceans, and their interface we can describe in mathematical equations. Of course,
using the increasing power of modern computational facilities, there is no way to do
more realistic simulations and climate predictions than by using these models. The
best models show how a process works and then predict what may follow. That’s
what we try to describe in this article. Various methods have been proposed for the
study of the existence and qualitative property of solutions. Most of the work in the
earlier literature is devoted to quasi-linear elliptic systems under either Dirichlet or
Newmann boundary conditions [7], [8], [16], [30], and [25], all these works examine
the classical solutions. In recent years attention has been given to weak solutions
of elliptic systems under linear boundary conditions, and different methods for the
existence problem have been used [1], [2], [3], [5], [6], [10], [11], [34], [14], [21], [24],
[22], [23], etc.
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In this paper, we prove the existence of solutions for the reaction-diffusion systems
of the form

∂ui
∂t − di∆ui = fi (t, x, u,∇u) in QT
ui (0, x) = ui,0 in Ω
ui = 0 on ΣT

, for 1 ≤ i ≤ m (1)

where u = (u1, . . . , um) , ∇u = (∇u1, . . . ,∇um) , f = (f1, . . . , fm) , m ≥ 2 and
Ω is an open bounded subset of RN with smooth boundary ∂Ω, QT = ]0, T [ × Ω,
ΣT = ]0, T [×∂Ω, T > 0, −∆ denotes the Laplacian operator on L1 (Ω) with Dirichlet
boundary conditions, di, 1 ≤ i ≤ m, are positive constants, and the non-linearities fi,
1 ≤ i ≤ m, have critical growth with respect to |∇u| . Moreover, these following main
properties hold:
• The positivity of the solution is preserved with time, which is ensured by

fi (ûi) ≥ 0, where
ûi = (t, x, u1, . . . , ui−1, 0, ui+1, . . . , um, p1, . . . , pi−1, 0, pi+1, . . . , pm) ,
for all 1 ≤ i ≤ m, (u, p) ∈ (R+)

m × RNm and for a.e. (t, x) ∈ QT
ui,0 ≥ 0, for all 1 ≤ i ≤ m

(2)

• The total mass of the components u1, . . . , um is controlled with time, which is
ensured by { ∑

1≤i≤r
fi (t, x, u, p) ≤ 0, for all 1 ≤ r ≤ m,

for all (u, p) ∈ (R+)
m × RNm and a.e. (t, x) ∈ QT

(3)

Let us know that if the non-linearities f do not dependent on the gradient (system 1)
is semi-linear), the existence of global positive solutions have been obtained by Hollis
[17], Hollis and Morgan [18] and Martin and Pierre [21]. One can see that in all of
these works, the triangular structure, namely hypotheses (3) plays an important role
in the study of semi-linear systems. Indeed, if (3) does not hold, Pierre and Schmitt
[35] proved blow up in finite time of the solutions to some semi-linear reaction-diffusion
systems.

Where f = (f1, f2) depends on the gradient, Alaa and Mounir [4] solved the
problem where the triangular structure is satisfied and the growth of f1 and f2 with
respect to |∇u1| , |∇u2| is sub-quadratic.{

there exists 1 ≤ p < 2, C : [0,∞)
2 → [0,∞) non-decreasing such that

|f1|+ |f2| ≤ C (|u1| , |u2|) (1 + |∇u1|p + |∇u2|p)

About the critical growth with respect to the gradient (p = 2), we recall that for the
case of a single equation (d1 = d2 and f1 = f2), existence results have been proved
for the elliptic case in [2] and [10]. The corresponding parabolic equations have also
been studied by many authors; see for instance [2], [12], [13], [15], and [20].

This work represents a generalization to the parabolic case study we did in the
elliptic case (see [7]) for these systems of arbitrary order. This passage in parabolic
case, needs new approaches and also technical difficulties to be overcome. We will
explain in detail here.

We found a good idea to present our work as follows: we start initially with an
introduction that presents the state of the art of the area studied and some recall the
main results obtained previously. This will highlight the contribution of our work and
its originality. In the second section we give the definition of the notion of solution
used here. We then present the main results of this work. In the last section, we
give the proof of global existence of our reaction diffusion system. This is done in
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three steps: in the first we truncate the system, the latter we give suitable estimates
on the approximate solutions and in the last step we show the convergence of the
approximating system by using the technics introduced by Boccardo et al. [12] and
Dall’Aglio and Orsina [15].

2. Statement of the result

2.1. Assumptions. First, we have to clarify in which sense we want to solved prob-
lem (1) .

Definition 2.1. We say that (u1, . . . , um) is a solution of (1) if, for all 1 ≤ i ≤ m
ui ∈ C

(
[0, T ] ;L1 (Ω)

)
∩ L1

(
0, T ;W 1,1

0 (Ω)
)

fi (t, x, u,∇u) ∈ L1 (QT )

ui (t) = Sdi (t)u0 +
∫ t

0
Sdi (t− s) fi (., s, u (s) ,∇u (s)) ds, ∀t ≥ 0

(4)

where Sdi , 1 ≤ i ≤ m, denote the semi-groups in L1 (Ω) generated by −di∆ with
Dirichlet boundary conditions.

Let us, now introduce for f the hypotheses, for all 1 ≤ i ≤ m

fi : ]0, T [× Ω× Rm × RmN → R are measurable (5)

fi : Rm × RmN → R are locally Lipschitz continuous (6)

namely

∑
1≤i≤m

|fi (x, t, u, p)− fi (x, t, û, p̂)| ≤ K (r)

 ∑
1≤i≤m

|ui − ûi|+
∑

1≤i≤m

‖pi − p̂i‖


for a.e. (t, x) and for all 0 ≤ |ui| , |ûi| , ‖pi‖ , ‖p̂i‖ ≤ r.

|f1 (t, x, u,∇u)| ≤ C1 (|u1|)

F1 (t, x) + ‖∇u1‖2 +
∑

2≤j≤m

‖∇uj‖αj
 (7)

where C1 : [0,+∞)→ [0,+∞) is non-decreasing, F1 ∈ L1 (QT ) and 1 ≤ αj < 2.

|fi (t, x, u,∇u)| ≤ Ci

 i∑
j=1

|uj |

Fi (t, x) +
∑

1≤j≤m

‖∇uj‖2
 , 2 ≤ i ≤ m (8)

where Ci : [0,+∞)→ [0,+∞) is non-decreasing, Fi ∈ L1 (QT ) for all 2 ≤ i ≤ m.
Example. A typical example where the result of this paper can be applied is

∂ui
∂t
− di∆ui =

∑
1≤j≤i

aij
uj∑

1≤k≤m
uk
|∇uj |2 + fi (t, x) in QT

ui (0, x) = ui,0 in Ω
ui = 0 on ΣT

, for 1 ≤ i ≤ m
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The main result

Theorem 2.1. Assume that (2) , (3) and (5) − (8) hold. If ui,0 ∈ L2 (Ω) , for all
1 ≤ i ≤ m, then there exists a positive global solution u = (u1, . . . , um) of system (1).
Moreover, u1, . . . , um ∈ L2

(
0, T ;H1

0 (Ω)
)
.

Before giving the proof of this theorem, let us define the following functions. Given
a real positive number k, we set

Tk (s) = max {−k,min (k, s)} and Gk (s) = s− Tk (s)

We remark that for 0 ≤ s ≤ k, Tk (s) = s and Tk (s) = k for s > k.

Proof of Theorem 2.1

Approximating scheme. For every function h defined from R+ × Ω× Rm × RmN
into R, we associate ϕ̂ = ϕ̂ (t, x, u, p) such that

ϕ̂ =

 ϕ (t, x, u1, . . . , um, p1, . . . , pm) if ui ≥ 0, 1 ≤ i ≤ m
ϕ (t, x, u1, . . . , ui−1, 0, ui+1, . . . , um, p1, . . . , pm) if ui ≤ 0 and uj ≥ 0, j 6= i
ϕ (t, x, 0, . . . , 0, p1, . . . , pm) if ui ≤ 0, 1 ≤ i ≤ m

and consider the system
∂ui
∂t
− di∆ui = f̂i (t, x, u,∇u) in ]0,+∞[× Ω

ui (0, x) = ui,0 in Ω
ui = 0 on ]0,+∞[× ∂Ω

, for 1 ≤ i ≤ m. (9)

It is obviously seen, by the structure of f̂i, 1 ≤ i ≤ m, that systems (1) and (9 )
are equivalent on the set where ui ≥ 0, 1 ≤ i ≤ m. Consequently, to prove Theorem
2.1, we have to show that problem (9) has a weak solution which is positive.

To this end, we define ψn a truncation function by ψn ∈ C∞c (R) , 0 ≤ ψn ≤ 1, and

ψn (z) =

{
1 if |z| ≤ n
0 if |z| ≥ n+ 1

and the mollification with respect to (t, x) is defined as follows. Let ρ ∈ C∞c
(
R× RN

)
such that

suppρ ⊂ B (0, 1) ,

∫
ρ = 1 , ρ ≥ 0 on R× RN

and ρn (y) = nNρ (ny) . One can see that

ρn ∈ C∞c
(
R× RN

)
, suppρn ⊂ B

(
0,

1

n

)
,

∫
ρn = 1, ρn ≥ 0 on R× RN .

We also consider non-decreasing sequences uni,0 ∈ C∞c (Ω) such that

uni,0 → ui,0 in L2 (Ω) , 1 ≤ i ≤ m

and define for all (t, x, u, p) in R+ × Ω× Rm × RmN and 1 ≤ i ≤ m,

fi,n (t, x, u, p) =

ψn
 ∑

1≤j≤m

(|uj |+ ‖pj‖)

 fi (t, x, u, p)

 ∗ ρn (t, x) .

Note that these functions enjoy the same properties as fi, 1 ≤ i ≤ m, moreover
they are Hölder continuous with respect to (t, x) and |fi,n| ≤ Mn, 1 ≤ i ≤ m, where
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Mn is a constant depending only on n (these estimates can be derived from (4), the
properties of the convolution product, and the fact that

∫
ρn = 1).

Let us now consider the truncated system
∂ui,n
∂t
− di∆ui,n = fi,n (x, t, un,∇un) in QT

ui,n (0, x) = uni,0 in Ω
ui,n = 0 on ΣT

, for 1 ≤ i ≤ m. (10)

It is well known that problem (10) has a global classical solution (see [19], theorem
7.1, p. 591) for the existence and ([20], Corollary of Theorem 4.9, p. 341) for the
regularity of solutions. It remains to show the positivity of the solutions.

Lemma 2.2. Let un = (u1,n, . . . , um,n) be a classical solution of (10) and suppose
that un1,0, . . . , u

n
m,0 ≥ 0. Then u1,n, . . . , um,n ≥ 0.

Proof. See [4], Lemma 1, p 537. �

2.2. A priori estimates. The hypotheses (2) and (3) allowed the following lemma.

Lemma 2.3. There exists a constant M depending on
∑

1≤j≤m
‖uj,0‖L1(Ω) such that

∫
Ω

 ∑
1≤j≤m

uj,n (t)

 ≤M, for all t ∈ [0, T ] . (11)

Proof. We consider the equation satisfied by
∑

1≤j≤m
uj,n

∂

∂t

 ∑
1≤j≤m

uj,n

− ∑
1≤j≤m

dj∆uj,n =
∑

1≤j≤m

fj,n

Hypothesis (3) implies

∂

∂t

 ∑
1≤j≤m

uj,n

 ≤ ∑
1≤j≤m

dj∆uj,n

Since uj,n ≥ 0 for all 1 ≤ j ≤ m and the operator ∆ is dissipative on L1 (Ω), then∫
Ω

∆uj,n ≤ 0 for all 1 ≤ j ≤ m (12)

Hence ∫
Ω

∂

∂t

 ∑
1≤j≤m

uj,n

 ≤ 0

Integrating this inequality on [0, t] , for all 0 < t < T, yields∫
Ω

 ∑
1≤j≤m

uj,n (t)

 ≤ ∫
Ω

 ∑
1≤j≤m

uj,0

 =
∑

1≤j≤m

‖uj,0‖L1(Ω)

This ends the proof of the lemma. �
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Lemma 2.4. There exists a constant R1 depending on
∑

1≤j≤m
‖uj,0‖L1(Ω) , such that

∑
1≤j≤m

∫
Ω

|fj,n (x, t, un,∇un)| ≤ R1.

Proof. Considering the equations satisfied by ui,n, 1 ≤ i ≤ m, we can write

−fi,n = −∂ui,n
∂t

+ di∆ui,n

Integrating on QT and using (12), the positivity of the solutions yield

−
∫
QT

fi,n ≤
∫

Ω

ui,0dx for all 1 ≤ i ≤ m

Hence by hypothesis (3)∫
QT

|f1,n| ≤
∫

Ω

u1,0dx = ‖u1,0‖L1(Ω) (13)

Similarly, we get by hypothesis (3) for all 2 ≤ j ≤ m∫
QT

∣∣∣∣∣∣
∑

1≤i≤j

fi,n

∣∣∣∣∣∣ =

∫
QT

−∑
1≤i≤j

fi,n

 ≤ ∑
1≤i≤j

∫
Ω

ui,0dx =
∑

1≤i≤j

‖ui,0‖L1(Ω)

Then ∫
QT

|fj,n| ≤
∑

1≤i≤j

(j − i+ 1) ‖ui,0‖L1(Ω) .

�

Lemma 2.5. (i) There exists a constant R2 depending on k and
∑

1≤i≤m
‖ui,0‖L1(Ω) , such

that for all 1 ≤ j ≤ m, ∫
QT

|∇Tk (uj,n)|2 ≤ R2.

(ii) There exists a constant R3 depending on
∑

1≤j≤r
‖uj,0‖L2(Ω) such that for all

2 ≤ r ≤ m, ∫
QT

∣∣∣∣∣∣∇Tk
 ∑

1≤j≤r

uj,n

∣∣∣∣∣∣
2

≤ R3

Proof. (i) We multiply the jth equation in (10) by Tk (uj,n) and we integrate on QT ,
we obtain ∫

Ω

∫ T

0

∂

∂t
uj,nTk (uj,n) + dj

∫
QT

|∇Tk (uj,n)|2 ≤ k
∫
QT

|fj,n|

Then∫
Ω

Sk (uj,n (T )) + dj

∫
QT

|∇Tk (uj,n)|2 ≤ k
∫
QT

|fj,n|+
∫

Ω

Sk (uj,n (0))

where Sk (r) =
∫ r

0
Tk (s) ds. Since

Sk (uj,n (T )) ≥ 0 and for all r ≥ 0, |Sk (r)| ≤ k2

2
+ k (r − k)

+
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by using the result of Lemma 2.4, we have

dj

∫
QT

|∇Tk (uj,n)|2 ≤ k

∫
QT

|fj,n|+
∫

Ω

(
k2

2
+ k (uj,n (0)− k)

+

)
≤ kR1 +

k2

2
|Ω|+

∫
Ω

(uj,n (0)− k)
+ ≤ C (k, ‖uj,n (0)‖)

(ii) We consider the equation satisfied by
∑

1≤j≤r
uj,n, 2 ≤ r ≤ m, and we use

hypothesis (3) , we get

∂

∂t

 ∑
1≤j≤r

uj,n

− dr∆
 ∑

1≤j≤r

uj,n

+

 ∑
1≤j≤r−1

(dr − dj) ∆uj,n

 =
∑

1≤j≤r

fj,n

We denote Ur,n =
∑

1≤j≤r
uj,n, we obtain

∂Ur,n
∂t

− dr∆Ur,n +
∑

1≤j≤r−1

(dr − dj) ∆uj,n ≤ 0

Now, we multiply by Tk (Ur,n) and integrate on QT ,we obtain∫
QT

Tk (Ur,n)
∂Ur,n
∂t

+dr

∫
QT

|∇Tk (Ur,n)|2+
∑

1≤j≤r−1

(dr − dj)
∫
QT

∇Tk (Ur,n)∇Tk (uj,n) ≤ 0

Then

dr

∫
QT

|∇Tk (Ur,n)|2 +
∑

1≤j≤r−1

(dr − dj)
∫
QT

∇Tk (Ur,n)∇Tk (uj,n) ≤ 1

2

∫
Ω

U2
r,n (0)

Which gives us

dr

∫
QT

|Tk (Ur,n)|2 ≤ 1

2

∫
Ω

U2
r,n (0)+

∑
1≤j≤r−1

(
|dr − dj |

∫
QT

|∇Tk (Ur,n)| . |∇Tk (uj,n)|
)

Using Young’s inequality, we have

dr

∫
QT

|Tk (Ur,n)|2 ≤ 1

2

∫
Ω

U2
r,n (0)+

∑
1≤j≤r−1

(
1

2
|dr − dj |

∫
QT

[
|Tk (Ur,n)|2 + |∇Tk (uj,n)|2

])
Then dr − 1

2

∑
1≤j≤r−1

|dr − dj |

∫
QT

|∇Tk (Ur,n)|2 ≤

1

2

∫
Ω

U2
r,n (0) +

∑
1≤j≤r−1

(
1

2
|dr − dj |

∫
QT

|∇Tk (uj,n)|2
)

By (i) , we have

(dr − εk)

∫
QT

|∇Tr (Uk,n)|2 ≤ 1

2

∫
Ω

U2
r,n (0) +

1

2
R2

∑
2≤j≤r−1

|dr − dj |

�
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Lemma 2.6. There exists a constant R4 depending on
∑

1≤j≤m
‖uj,0‖L2(Ω) and d1, . . . , dm

such that∫
QT

|fj,n (x, t, un,∇un)|

 ∑
1≤r≤m

(m− r + 1)uk,n

 ≤ R4, for all 1 ≤ j ≤ m.

Proof. Set, for all 2 ≤ r ≤ m

Rr,n = −
∑

1≤j≤r

fj,n

and

θn =
∑

1≤r≤m

(m− r + 1)ur,n , zn =
∑

1≤r≤m

(m− r + 1) drur,n

We have by hypothesis (3)

Rr,n ≥ 0, for all 2 ≤ r ≤ m.
Combining the equations of system (10) , we have

∂

∂t
θn −∆zn + |f1,n|+

∑
2≤r≤m

Rr,n = 0

Multiplying by θn and integrating on QT yield

1

2

∫
Ω

θ2
n (T ) +

∫
QT

∇zn∇θn +

∫
QT

θn |f1,n|+
∑

2≤r≤m

∫
QT

θnRr,n =
1

2

∫
Ω

θ2
n (0)

Then ∫
QT

∇zn∇θn +

∫
QT

θn |f1,n|+
∑

2≤r≤m

∫
QT

θnRr,n ≤
1

2

∫
Ω

θ2
n (0)

Hence∫
QT

θn |f1,n|+
∑

2≤r≤m

∫
QT

θnRr,n ≤
1

2

∫
Ω

θ2
n (0) +

∫
QT

|∇zn| . |∇θn|

Using Young’s inequality, we conclude that∫
QT

θn |f1,n|+
∑

2≤r≤m

∫
QT

θnRr,n ≤
1

2

∫
Ω

θ2
n (0) +

1

2

∫
QT

[
|∇zn|2 + |∇θn|2

]
≤ C

Then∫
QT

θn |f1,n| ≤ C and
∑

2≤r≤m

∫
QT

θn

∣∣∣∣∣∣
∑

1≤j≤r

fj,n

∣∣∣∣∣∣ ≤ C for all 2 ≤ r ≤ m (14)

We have by (14)∫
QT

θn |f2,n| ≤
∫
QT

θn |f1,n + f2,n|+
∫
QT

θn |f1,n| ≤ Ĉ

and for all 2 ≤ k ≤ m,we have∫
QT

θn |fk,n| ≤
∫
QT

θn

∣∣∣∣∣∣
∑

1≤j≤k

fj,n

∣∣∣∣∣∣+

∫
QT

θn

∣∣∣∣∣∣
∑

1≤j≤k−1

fj,n

∣∣∣∣∣∣ ≤ Ĉ.
Which gives us the result. �
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2.3. Convergence. Our objective is to show that un = (u1,n, . . . , um,n) converges
to some u = (u1, . . . , um) solution of the problem (4). The sequences un1,0, . . . , u

n
m,0

are uniformly bounded in L1 (Ω) (since they converge in L2 (Ω)), and by Lemma 2.4,
the non-linearities f1,n, . . . , fm,n are uniformly bounded in L1 (QT ). Then according
to a result in [9] the applications(

uni,0, fi,n
)
→ ui,n , 1 ≤ i ≤ m

are compact from L1 (Ω)× L1 (QT ) into L1
(

0, T ;W 1,1
0 (Ω)

)
.

Therefore, we can extract a subsequence, still denoted by (u1,n, . . . , um,n) , such
that

(u1,n, . . . , um,n)→ (u1, . . . , um) in L1
(

0, T ;W 1,1
0 (Ω)

)
(u1,n, . . . , um,n)→ (u1, . . . , um) a.e. in QT
(∇u1,n, . . . ,∇um,n)→ (∇u1, . . . ,∇um) a.e. in QT

Since f1,n, . . . , fm,n are continuous, we have

fi,n (t, x, un,∇un)→ fi (t, x, u,∇u) a.e. in QT , 1 ≤ i ≤ m

This is not sufficient to ensure that (u1, . . . , um) is a solution of (4). In fact, we
have to prove that the previous convergence are in L1 (QT ). In view of the Vitali
theorem, to show that fi,n (t, x, un,∇un) , 1 ≤ i ≤ m, converges to fi (t, x, u,∇u)
in L1 (QT ), is equivalent to proving that fi,n (t, x, un,∇un) , 1 ≤ i ≤ m are equi-
integrable in L1 (QT ) .

Lemma 2.7. fi,n (t, x, un,∇un) , for all 1 ≤ i ≤ m, are equi-integrable in L1 (QT ) .

The proof of this lemma requires the following result based on some properties
of two time-regularization denoted by uγ and uσ (γ, σ > 0) which we define for a
function u ∈ L2

(
0, T ;H1

0 (Ω)
)

such that u (0) = u0 ∈ L2 (Ω) (for more details see [4]).
In the following we will denote by ω (ε) a quantity that tends to zero as ε tends to
zero, and ωσ (ε) a quantity that tends to zero for every fixed σ as ε tends to zero.

Lemma 2.8. Let (un) be a sequence in L2
(
0, T ;H1

0 (Ω)
)
∩C ([0, T ]) such that un (0) =

un0 ∈ L2 (Ω) and (un)t = ρ1,n + ρ2,n with ρ1,n ∈ L2
(
0, T ;H−1 (Ω)

)
and ρ2,n ∈

L1 (QT ) . Moreover assume that un converges to u in L2 (QT ) , and un0 converges to
u (0) in L2 (Ω) .

Let Ψ be a function in C1 ([0, T ]) such that Ψ ≥ 0, Ψ′ ≤ 0, Ψ (T ) = 0. Let ϕ be a
Lipschitz increasing function in C0 (R) such that ϕ (0) = 0.

Then for all k, γ > 0,〈
ρ1n,Ψϕ

(
Tk (un)− Tk (um)γ

)〉
+

∫
QT

ρ2nΨϕ
(
Tk (un)− Tk (um)γ

)
≥ ωγ,n

(
1

m

)
+ ωγ

(
1

n

)
+

∫
Ω

Ψ (0) Φ
(
Tk (u)− Tk (u)γ

)
(0) dx

−
∫

Ω

Gk (u) (0) Ψ (0)ϕ
(
Tk (u)− Tk (u)γ

)
(0) dx

where Φ (t) =
∫ t

0
ϕ (s) ds and Gk (s) = s− Tk (s) .

Proof. See [4], Lemma 7, p 544. �

Lemma 2.9. Suppose that uj,n, uj , 1 ≤ j ≤ m, are as above.
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i) If

|f1,n| ≤ C1 (|u1,n|)

F1 (t, x) + |∇u1,n|2 +
∑

2≤j≤m

|∇uj |αj
 (15)

where C1 : [0,+∞)→ [0,+∞) is non-decreasing, F1 ∈ L1 (QT ) and 1 ≤ αj < 2.
Then for each fixed k

lim
n→∞

∫
QT

|∇Tk (u1,n)−∇Tk (u1)|2 χ[ ∑
1≤j≤m

uj,n≤k
] = 0.

ii) If

|fi,n (t, x, u,∇u)| ≤ Ci

 i∑
j=1

|uj |

Fi (t, x) +
∑

1≤j≤m

|∇uj |2
 , 2 ≤ i ≤ m (16)

where Ci : [0,+∞)→ [0,+∞) is non-decreasing, Fi ∈ L1 (QT ) for all 2 ≤ i ≤ m.
Then for each fixed k and for all 2 ≤ i ≤ m

lim
n→∞

∫
QT

∣∣∣∣∣∣∇Tk
 ∑

1≤j≤i

uj,n

−∇Tk
 ∑

1≤j≤i

uj

∣∣∣∣∣∣
2

χ[ ∑
1≤j≤m

uj,n≤k
] = 0.

Proof. (i) This is a direct consequence of the resulting output established in [4] in
the case of system 2× 2 (see [4], proof of Lemma 6, p 548). The generalization in the
case of any system is immediate.

(ii) Let k and γ be positive real numbers, let ` ∈ N, and choose Ψ as in previous
lemma. Let ϕ (s) = s exp

(
µs2
)
, with µ to be fixed later. Consider the equation

satisfied by (u1,n + u2,n) .

∂

∂t
(u1,n + u2,n) = d2∆ (u1,n + u2,n)− (d2 − d1) ∆u1,n + f1,n + f2,n

and use again Ψϕ
(
Tk (u1,n + u2,n)− Tk (u1,n + u2,n)γ

)
as a test function, then we

will integrate on QT . Finally we will use Lemma 2.8 to get the result.
For simplicity, we denote

Ur,n =
∑

1≤j≤r

uj,n , Ur =
∑

1≤j≤r

uj for all 2 ≤ r ≤ m

Since
∂

∂t
(U2,n) = ρ

(2)
1,n + ρ

(2)
2,n where{

ρ
(2)
1,n = d2∆ (U2,n)− (d2 − d1) ∆u1,n ∈ L2

(
0, T ;H−1 (Ω)

)
ρ

(2)
2,n = f1,n + f2,n ∈ L1 (QT )

we have by Lemma 2.8∫
QT

∂

∂t
(U2,n) Ψϕ

(
Tk (U2,n)− Tk (U2,`)γ

)
≥ ωγ,n

(
1

`

)
+ ωγ

(
1

n

)
−
∫

Ω

Ψ (0) Φ
(
Tk (U2)− Tk (U2)γ

)
dx

−
∫

Ω

Gk (U2) (0) Ψ (0)ϕ
(
Tk (U2)− Tk (U2)γ

)
(0) dx
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Hence

I+J + λ+ β

= d2

∫
QT

∇ (U2,n) Ψϕ′
(
Tk (U2,n)− Tk (U2,`)γ

)
∇
(
Tk (U2,n)− Tk (U2,`)γ

)
−
∫
QT

(f1,n + f2,n) Ψϕ
(
Tk (U2,n)− Tk (U2,`)γ

)
− (d2 − d1)

∫
QT

(∇u1,n −∇u1) Ψϕ′
(
Tk (U2,n)− Tk (U2,`)γ

)
∇
(
Tk (U2,n)− Tk (U2,`)γ

)
− (d2 − d1)

∫
QT

∇u1Ψϕ′
(
Tk (U2,n)− Tk (U2,`)γ

)
∇
(
Tk (U2,n)− Tk (U2,`)γ

)
≤ ωγ,n

(
1

`

)
+ ωγ

(
1

n

)
+

∫
Ω

Ψ (0) Φ
(
Tk (U2)− Tk (U2)γ

)
+

∫
Ω

Gk (U2) (0) Ψ (0)ϕ
(
Tk (U2)− Tk (U2)γ

)
(0)

≤ ωγ,n
(

1

`

)
+ ωγ

(
1

n

)
+ ω

(
1

γ

)
since Tk (U2)γ → Tk (U2) in L2

(
0, T ;H1

0 (Ω)
)

weakly.
The term I can be written as

I = d2

∫
QT

∇ (U2,n) Ψϕ′
(
Tk (U2,n)− Tk (U2,`)γ

)
∇
(
Tk (U2,n)− Tk (U2,`)γ

)
+d2

∫
En≥k

∇ (U2,n) Ψϕ′
(
Tk (U2,n)− Tk (U2,`)γ

)
∇
(
Tk (U2,n)− Tk (U2,`)γ

)
= I1 + I2

For I2, we have

I2 =− d2

∫
En≥k

∇ (U2,n) Ψϕ′
(
Tk (U2,n)− Tk (U2,`)γ

)
∇
(
Tk (U2,`)γ

)
χ[En≥k]

= ωγ,n
(

1

`

)
− d2

∫
QT

∇ (U2,n) Ψϕ′
(
Tk (U2,n)− Tk (U2,`)γ

)
∇
(
Tk (U2)γ

)
χ[En≥k]

= ωγ,n
(

1

`

)
− d2

∫
QT

∇ (U2,n) Ψϕ′
(
Tk (U2,n)− Tk (U2)γ

)
∇
(
Tk (U2)γ

)
χ[En≥k]χ[E≥k]

− d2

∫
QT

∇ (U2,n) Ψϕ′
(
Tk (U2,n)− Tk (U2)γ

)
∇
(
Tk (U2)γ

)
χ[En≥k]χ[E<k]

= ωγ,n
(

1

`

)
+ I2.1 + I2.2

For I2.1, we have by Hölder’s inequality

|I2.1| ≤ d2

∥∥∥∇ (U2,n)ϕ′
(
Tk (U2,n)− Tk (U2)γ

)∥∥∥
L2(QT )

∥∥∥∇(Tk (U2)γ

)
χ[E≥k]

∥∥∥
L2(QT )

Using the fact that ϕ′
(
Tk (U2,n)− Tk (U2)γ

)
≤ ϕ′ (2k) and Lemma 2.5, we obtain

|I2.1| ≤ d2C
∥∥∥∇(Tk (U2)γ

)
χ[E≥k]

∥∥∥
L2(QT )

= ω

(
1

γ

)
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since Tk (U2)γ → Tk (U2) in L2
(
0, T ;H1

0 (Ω)
)

and ∇Tk (U2)χ[E≥k] = 0 a.e. in QT .
Now we study the term I2.2

I2.2 = −d2

∫
QT

∇ (U2,n) Ψϕ′
(
Tk (U2,n)− Tk (U2)γ

)
∇
(
Tk (U2)γ

)
χ[En≥k]χ[E<k]

= ωγ
(

1

n

)

since χ[En≥k]χ[E<k] → 0 a.e. in QT . Thus

I2 ≥ ωγ,n
(

1

`

)
+ ωγ

(
1

n

)
+ ω

(
1

γ

)

We investigate I1

I1 = ωγ,n
(

1

`

)
+ d2

∫
QT

∇Tk (U2,n) Ψϕ′
(
Tk (U2,n)− Tk (U2)γ

)
∇
(
Tk (U2,n)− Tk (U2)γ

)
= ωγ,n

(
1

`

)
+ d2

∫
QT

∇Tk (U2) Ψϕ′
(
Tk (U2,n)− Tk (U2)γ

)
∇
(
Tk (U2,n)− Tk (U2)γ

)
+ d2

∫
QT

∇ (Tk (U2,n)− Tk (U2)) Ψϕ′
(
Tk (U2,n)− Tk (U2)γ

)
∇
(
Tk (U2,n)− Tk (U2)γ

)
= ωγ,n

(
1

`

)
+ ωγ

(
1

n

)
+ d2

∫
QT

∇Tk (U2) Ψϕ′
(
Tk (U2)− Tk (U2)γ

)
∇
(
Tk (U2)− Tk (U2)γ

)
+ d2

∫
QT

∇ (Tk (U2,n)− Tk (U2)) Ψϕ′
(
Tk (U2,n)− Tk (U2)γ

)
∇
(
Tk (U2,n)− Tk (U2)γ

)
= ωγ,n

(
1

`

)
+ ωγ

(
1

n

)
+ ω

(
1

γ

)
+ d2

∫
QT

|∇ (Tk (U2,n)− Tk (U2))|2 Ψϕ′
(
Tk (U2,n)− Tk (U2)γ

)
+ d2

∫
QT

∇ (Tk (U2,n)− Tk (U2)) Ψϕ′
(
Tk (U2,n)− Tk (U2)γ

)
∇
(
Tk (U2)− Tk (U2)γ

)
= ωγ,n

(
1

`

)
+ ωγ

(
1

n

)
+ ω

(
1

γ

)
+ d2

∫
QT

|∇ (Tk (U2,n)− Tk (U2))|2 Ψϕ′
(
Tk (U2,n)− Tk (U2)γ

)
Hence

I ≥ ωγ,n
(

1

`

)
+ ωγ

(
1

n

)
+ ω

(
1

γ

)
+d2

∫
QT

|∇ (Tk (U2,n)− Tk (U2))|2 Ψϕ′
(
Tk (U2,n)− Tk (U2)γ

)
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For J, we have

J = ωγ,n
(

1

`

)
−
∫
QT

(f1,n + f2,n) Ψϕ
(
Tk (U2,n)− Tk (U2)γ

)
= ωγ,n

(
1

`

)
−
∫
En>k

(f1,n + f2,n) Ψϕ
(
Tk (U2,n)− Tk (U2)γ

)
−
∫
En≤k

(f1,n + f2,n) Ψϕ
(
Tk (U2,n)− Tk (U2)γ

)
Then

J ≥ ωγ,n
(

1

`

)
−
∫
En≤k

(f1,n + f2,n) Ψϕ
(
Tk (U2,n)− Tk (U2)γ

)
since ϕ

(
Tk (U2,n)− Tk (U2)γ

)
≥ 0 on [En > k] , Ψ ≥ 0 and − (f1,n + f2,n) ≥ 0 by

hypothesis (3) . On the other hand∣∣∣∣∣
∫
{En≤k}

(f1,n + f2,n) Ψϕ
(
Tk (U2,n)− Tk (U2)γ

)∣∣∣∣∣
≤ C1 (k)

∫
{En≤k}

F1 (t, x) Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
+C1 (k)

∑
2≤j≤m

∫
{En≤k}

|∇uj,n|αj Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
+C1 (k)

∫
{En≤k}

|∇Tk (u1,n)|2 Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
+C2 (k)

∫
{En≤k}

F2 (t, x) Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
+C2 (k)

∑
1≤j≤m

∫
{En≤k}

|∇Tk (uj,n)|2 Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
= J1 + J2 + J3 + J4 + J5

We set

J1 = C1 (k)

∫
{En≤k}

F1 (t, x) Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
= ωγ

(
1

n

)
+ ω

(
1

γ

)
Similarly for J4

J4 = C2 (k)

∫
{En≤k}

F2 (t, x) Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
= ωγ

(
1

n

)
+ ω

(
1

γ

)
Since 1 ≤ αj < 2, for all 2 ≤ j ≤ m, we have

J2 = C1 (k)
∑

2≤j≤m

∫
{En≤k}

|∇uj |αj Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
= ωγ

(
1

n

)
+ ω

(
1

γ

)
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and

J3 = C1 (k)

∫
{En≤k}

|∇Tk (u1,n)|2 Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
= C1 (k)

∫
{En≤k}

|∇ (Tk (u1,n)− Tk (u1))|2 Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
+2C1 (k)

∫
{En≤k}

∇Tk (u1,n)∇Tk (u1) Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
−C1 (k)

∫
{En≤k}

|∇Tk (u1)|2 Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
= ωγ

(
1

n

)
+ ω

(
1

γ

)
+C1 (k)

∫
{En≤k}

|∇ (Tk (u1,n)− Tk (u1))|2 Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
and

J5 = C2 (k)
∑

1≤j≤m

∫
{En≤k}

|∇Tk (uj,n)|2 Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
= ωγ

(
1

n

)
+ ω

(
1

γ

)
since ∫

{En≤k}
|∇Tk (uj,n)|2 ≤ lim inf

n→∞

(∫
{En≤k}

|∇Tk (uj,n)|2
)
≤ R2

Thus

−
∫
{En≤k}

(f1,n + f2,n) Ψϕ
(
Tk (U2,n)− Tk (U2)γ

)
≥ ωγ

(
1

n

)
+ ω

(
1

γ

)
−C1 (k)

∫
{u1,n≤k}

|∇ (Tk (u1,n)− Tk (u1))|2 Ψ
∣∣∣ϕ(Tk (u1,n)− Tk (u1)γ

)∣∣∣
hence

J ≥ ωγ
(

1

n

)
+ ω

(
1

γ

)
−C1 (k)

∫
{En≤k}

|∇ (Tk (u1,n)− Tk (u1))|2 Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
For λ, we have

λ = − (d2 − d1)

∫
QT

(∇u1,n −∇u1) Ψϕ′
(
Tk (U2,n)− Tk (U2,`)γ

)
∇
(
Tk (U2,n)− Tk (U2,`)γ

)
= ωγ,n

(
1

`

)
+ ωγ

(
1

n

)
+ ω

(
1

γ

)
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since ∇Tk (u1,n)→ ∇Tk (u1) strongly in L2
(
0, T ;H1

0 (Ω)
)
. We have

β = − (d2 − d1)

∫
QT

∇u1Ψϕ′
(
Tk (U2,n)− Tk (U2,`)γ

)
∇
(
Tk (U2,n)− Tk (U2,`)γ

)
= ωγ,n

(
1

`

)
+ ωγ

(
1

n

)
+ ω

(
1

γ

)
Then

I + J + λ+ β ≥ ωγ,n
(

1

`

)
+ ωγ

(
1

n

)
+ ω

(
1

γ

)
+ d2

∫
QT

|∇ (Tk (U2,n)− Tk (U2))|2 Ψϕ′
(
Tk (U2,n)− Tk (U2)γ

)
− C1 (k)

∫
{En≤k}

|∇ (Tk (u1,n)− Tk (u1))|2 Ψ
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
We choose

µ ≥
(
C1 (k)

2d2

)2

we have

d2ϕ
′ (s)− C1 (k) |ϕ (s)| > d2

2

We conclude that∫
QT

|∇ (Tk (U2,n)− Tk (U2))|2 Ψd2ϕ
′
(
Tk (U2,n)− Tk (U2)γ

)
−

−
∫
QT

|∇ (Tk (U2,n)− Tk (U2))|2 ΨC1 (k)
∣∣∣ϕ(Tk (U2,n)− Tk (U2)γ

)∣∣∣
≤ωγ,n

(
1

`

)
+ ωγ

(
1

n

)
+ ω

(
1

γ

)
Then we have

lim
n→∞

∫
QT

|∇ (Tk (U2,n)− Tk (U2))|2 χ[U2,n≤k] = 0.

We get step by step by considering the equation satisfied by Ur,n =
∑

1≤j≤r
uj,n. Arguing

in the same way as before, choosing

µ ≥ max

{(
C1 (k)

2dj

)2

, 1 ≤ j ≤ r

}
We obtain∫

QT

|∇ (Tk (Ur,n)− Tk (Ur))|2 Ψdrϕ
′
(
Tk (Ur,n)− Tk (Ur)γ

)
−

−
∫
QT

|∇ (Tk (Ur,n)− Tk (Ur))|2 ΨC1 (k)
∣∣∣ϕ(Tk (Ur,n)− Tk (Ur)γ

)∣∣∣
≤ωγ,n

(
1

`

)
+ ωγ

(
1

n

)
+ ω

(
1

γ

)
which shows the desired result. �
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Proof of Lemma (2.7). Let A be a measurable subset of Ω, we have∫
A

|f1,n (t, x, un,∇un)| =

∫
A∩[En>k]

|f1,n|+
∫

A∩[En≤k]

|f1,n|

≤
∫

A∩[θn>k]

|f1,n|+
∫

A∩[En≤k]

|f1,n|

with En =
∑

1≤j≤m
uj,n and θn =

∑
1≤k≤m

(m− k + 1)uk,n

Thanks to Lemma 2.5, we obtain ∀ε > 0, ∃k0 such that if k ≥ k0 then for all n∫
A∩[En>k]

|f1,n (t, x, un,∇un)| ≤ 1

k

∫
[En>k]

k |f1,n| ≤
1

k

∫
QT

En |f1,n| ≤
1

k

∫
QT

θn |f1,n| ≤
ε

m+ 2

Hypothesis (7) implies that for all k > k0∫
A

|f1,n (t, x, un,∇un)| ≤ ε

m+ 2
+ C1 (k)

∫
A

F1 (x, t) +

∫
A∩[En≤k]

|∇u1,n|2


+C1 (k)

∑
2≤j≤m

 ∫
A∩[En≤k]

|∇uj,n|αj


≤ ε

m+ 2
+ C1 (k)

∫
A

F1 (x, t) +

∫
A∩[En≤k]

|∇Tk (u1,n)|2


+C1 (k)

∑
2≤j≤m

 ∫
A∩[En≤k]

|∇Tk (uj,n)|αj


Using Hölder’s inequality for 1 ≤ αj < 2 and Lemma 2.5, we obtain

C1 (k)

∫
A∩[En≤k]

|∇Tk (uj,n)|αj ≤ C1 (k)

(∫
A

|∇Tk (uj,n)|2
)αj

2

|A|
2−αj

2

≤ C1 (k)R
αj
2

2 |A|
2−αj

2 ≤ ε

m+ 2

Whenever |A| ≤ %j , with %j =

(
ε

m+ 2
C−1

1 (k)R
−
αj
2

2

) 2
2−αj

, 2 ≤ j ≤ m.

To deal with the second integral we write∫
A∩[En≤k]

|∇Tk (u1,n)|2 ≤ 2

∫
A∩[En≤k]

|∇Tk (u1,n)−∇Tk (u1)|2 + 2

∫
A

|∇Tk (u1)|2

According to Lemma 2.5, |∇Tk (u1,n)−∇Tk (u1)|2 χ[En≤k] is equi-integrable in L1 (Ω)

since it converges strongly to 0 in L1 (Ω) . So, there exists %m+1 such that if |A| ≤
%m+1, then

2C1 (k)

∫
A∩[En≤k]

|∇Tk (u1,n)−∇Tk (u1)|2 ≤ ε

m+ 2



96 W. BOUARIFI, N.E. ALAA, AND S. MESBAHI

On the other hand F1, |∇Tk (u1)|2 ∈ L1 (Ω) , therefore there exists %m+2 such that

C1 (k)

(
2

∫
A

|∇Tk (u1)|2 +

∫
A

F1 (t, x)

)
≤ ε

m+ 2

whenever |A| ≤ %m+2. Choose %0 = inf {%j , 2 ≤ j ≤ m+ 2} , If |A| ≤ %0 we obtain∫
A

|f1,n (x, un,∇un)| ≤ ε

Similarly, we get for all 2 ≤ i ≤ m∫
A

|fi,n| ≤
ε

m+ 2
+ Ci(k)

∫
A

Fi (x, t) +

∫
A∩[En≤k]

(
6 |∇u1|2 + 6 |∇Tk (u1,n)−∇Tk (u1)|2

)
+ 8Ci (k)

∑
2≤r≤m

 ∫
A∩[En≤k]

∣∣∣∣∣∣∇Tk
 ∑

1≤j≤r

uj

∣∣∣∣∣∣
2


+ 8Ci (k)
∑

2≤r≤m

 ∫
A∩[En≤k]

∣∣∣∣∣∣∇Tk
 ∑

1≤j≤r

uj,n

−∇Tk
 ∑

1≤j≤r

uj

∣∣∣∣∣∣
2


Arguing in the same way as before, we obtain the required result. �
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I, 1995.

(Walid Bouarifi) Department of Computer Engineering, National School of Applied

Sciences of Safi, Cadi Ayyad University, Morocco
E-mail address: w.bouarifi@uca.ma

(Nour Eddine Alaa) Department of Mathematics, Faculty of Sciences and Technologies,
Cadi Ayyad University, Morocco
E-mail address: n.alaa@uca.ma

(Salim Mesbahi) Department of Mathematics, Faculty of Science, University Ferhat
Abbas, Setif - 19000, Algeria

E-mail address: salimbra@gmail.com


