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Global existence of weak solutions for parabolic triangular
reaction diffusion systems applied to a climate model

WALID BOUARIFI, NOUR EDDINE ALAA, AND SALIM MESBAHI

ABSTRACT. Over the years, reaction-diffusion systems have attracted the attention of a great
number of investigators and were successfully developed on the theoretical backgrounds. Not
only it has been studied in biological and chemical fields, some investigations range as far as
economics, semiconductor physics, and star formation. Recently particular interests have been
on the impact of environmental changes, such as climate. This work is devoted to the existence
of weak solutions for m X m reaction-diffusion systems arises from an energy balance climate
model. We consider a time evolution model for the climate obtained via energy balance. This
type of climate model, independently introduced in 1987 by V. Jentsch [29], has a spatial global
nature and involves a relatively long-time scale. Our study concerns the global existence of
periodic solutions of the nonlinear parabolic problem. The originality of this study persists in
the fact that the non-linearities of our system have critical growth with respect to the gradient
of solutions. For this reason new techniques will used to show the global existence. This is
our main goal in this article.
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1. Introduction

Energy balance models are at the bottom end of the hierarchy of climate models.
Since the climate system is probably the most complex system physical and math-
ematical theories are tried on, this hierarchy consists of a big number of models of
highly different complexity. General circulation models at the top end are based on
most of our knowledge about physical and chemical processes in the atmosphere, the
oceans, and their interface we can describe in mathematical equations. Of course,
using the increasing power of modern computational facilities, there is no way to do
more realistic simulations and climate predictions than by using these models. The
best models show how a process works and then predict what may follow. That’s
what we try to describe in this article. Various methods have been proposed for the
study of the existence and qualitative property of solutions. Most of the work in the
earlier literature is devoted to quasi-linear elliptic systems under either Dirichlet or
Newmann boundary conditions [7], [8], [16], [30], and [25], all these works examine
the classical solutions. In recent years attention has been given to weak solutions
of elliptic systems under linear boundary conditions, and different methods for the
existence problem have been used [1], [2], [3], [5], [6], [10], [11], [34], [14], [21], [24],
[22], [23], etc.

This paper has been presented at Congres MOCASIM, Marrakech, 19-22 November 2014.
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In this paper, we prove the existence of solutions for the reaction-diffusion systems
of the form

aauti —d;Au; = f; (t,r,u,Vu) in Qr
u; (0,2) = uio inQ , for 1<i<m (1)
u; =0 on X

where u = (u1,...,um), Vu = (Vur,...,Vuy), f = (f1,-..,fm), m > 2 and
Q) is an open bounded subset of RY with smooth boundary 99Q, Qr = ]0,T[ x €,
Y7 =]0,T[x 9, T > 0, —A denotes the Laplacian operator on L! (€) with Dirichlet
boundary conditions, d;, 1 < i < m, are positive constants, and the non-linearities f;,
1 <4 < m, have critical growth with respect to |Vu|. Moreover, these following main
properties hold:

e The positivity of the solution is preserved with time, which is ensured by

fi (4;) >0, where

ai = (t7xau17"'7ui7170;ui+1;-"7umapla"'7p’i71;0,pi+17"'7p’m)7 (2)
forall 1 <i<m, (u,p) € (RT)™ x RN™ and for a.e. (t,z) € Qr

ui0>0, forall 1 <i<m

e The total mass of the components uq,...,u,, is controlled with time, which is
ensured by

1<i<lr (3)

Z fZ (tvxau;p) < O, for all 1 <r< m,
for all (u,p) € (RJr)m x RN™ and a.e. (t,x) €Qr

Let us know that if the non-linearities f do not dependent on the gradient (system 1)
is semi-linear), the existence of global positive solutions have been obtained by Hollis
[17], Hollis and Morgan [18] and Martin and Pierre [21]. One can see that in all of
these works, the triangular structure, namely hypotheses (3) plays an important role
in the study of semi-linear systems. Indeed, if (3) does not hold, Pierre and Schmitt
[35] proved blow up in finite time of the solutions to some semi-linear reaction-diffusion
systems.

Where f = (f1,f2) depends on the gradient, Alaa and Mounir [4] solved the
problem where the triangular structure is satisfied and the growth of f; and fo with
respect to |Vus|, |Vusg| is sub-quadratic.

{ there exists 1 < p < 2, C: [0,00)> = [0,00) non-decreasing such that
il + 12l < C(Jual fual) (1 + [Vua |” + [Vua )

About the critical growth with respect to the gradient (p = 2), we recall that for the
case of a single equation (di = ds and f; = f3), existence results have been proved
for the elliptic case in [2] and [10]. The corresponding parabolic equations have also
been studied by many authors; see for instance [2], [12], [13], [15], and [20].

This work represents a generalization to the parabolic case study we did in the
elliptic case (see [7]) for these systems of arbitrary order. This passage in parabolic
case, needs new approaches and also technical difficulties to be overcome. We will
explain in detail here.

We found a good idea to present our work as follows: we start initially with an
introduction that presents the state of the art of the area studied and some recall the
main results obtained previously. This will highlight the contribution of our work and
its originality. In the second section we give the definition of the notion of solution
used here. We then present the main results of this work. In the last section, we
give the proof of global existence of our reaction diffusion system. This is done in
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three steps: in the first we truncate the system, the latter we give suitable estimates
on the approximate solutions and in the last step we show the convergence of the
approximating system by using the technics introduced by Boccardo et al. [12] and
Dall’Aglio and Orsina [15].

2. Statement of the result

2.1. Assumptions. First, we have to clarify in which sense we want to solved prob-
lem (1).

Definition 2.1. We say that (uq,...,u,,) is a solution of (1) if, for all 1 <i <m
wi € C(10,7); 2 (@) n L} (0,73 W, ()

fi (t,z,u,Vu) € LY (Q71) (4)
wi (t) = Sa, () uo + [y Sa, (t = 8) fi (- 5,u(s), Vu(s))ds, ¥t >0

where Sy,, 1 < i < m, denote the semi-groups in L' (Q) generated by —d;A with
Dirichlet boundary conditions.

Let us, now introduce for f the hypotheses, for all 1 <i¢ <m

fi 10, T[ x @ x R™ x R™Y — R are measurable (5)

fi : R™ x R™Y — R are locally Lipschitz continuous (6)

namely
1<i<m 1<i<m 1<i<m
for a.e. (¢,z) and for all 0 < |uy|, |4, ||psl| , |9:]] < .
1 (2,0, Vu)| < C (lw]) | Fy(ba) + [Vl + D [V | (7)
2<j<m

where Cj : [0, 4+00) — [0, +00) is non-decreasing, Fy € L' (Qr) and 1 < a; < 2.

i (2w, Vu)| < Ci [ Dl | | Fota)+ D0 [Vul* |, 2<i<m  (8)

Jj=1 1<j<m

where C; : [0, +00) — [0, +00) is non-decreasing, F; € L' (Qr) for all 2 <i < m.
Example. A typical example where the result of this paper can be applied is

aui Uq 2
—d;Au; = Qi —==2— |Vu,|* + f; (t,z) in
ot i i 1§Si i Z up ‘ j| fz( ) QT
1<k<m ,for1<i<m
u; (0,2) = u;p in Q

u; =0 on X
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The main result

Theorem 2.1. Assume that (2), (3) and (5) — (8) hold. If u;o € L*(Q), for all
1 <4 < m, then there exists a positive global solution w = (uy, ..., uy) of system (1).
Moreover, uy, ... ,un € L? (0,T; H} (2)) .

Before giving the proof of this theorem, let us define the following functions. Given
a real positive number k, we set

Tk (s) = max{—k,min (k,s)} and G (s) =s— Tk (s)
We remark that for 0 < s <k, T} (s) = s and T} (s) = k for s > k.

Proof of Theorem 2.1

Approximating scheme. For every function h defined from Rt x Q x R™ x R™N
into R, we associate ¢ = ¢ (¢, z,u, p) such that

go(t7x7u17"'7um7p17"'7p’m) lfu12071§2§m
@Z (p(tax7u17"'aui7170aui+1a"'au’m7pl7~-~7pm) lfulgoandujzovj#l
ga(t7x707'--707p17"'7pm) 1fu1§0,1§2§m
and consider the system
(91,61‘ 2 .
" —diAu; = f; (t,x,u, Vu) in ]0,+oo x Q
u; (O,fE) — ui’o in Q 5 fOI“ 1 S (3 S m. (9)
u; =0 on |0, 4o0[ x 9N

It is obviously seen, by the structure of f;, 1 < i < m, that systems (1) and (9)
are equivalent on the set where u; > 0, 1 <14 < m. Consequently, to prove Theorem
2.1, we have to show that problem (9) has a weak solution which is positive.

To this end, we define 1,, a truncation function by 1, € C* (R), 0 <, <1, and

1 ifjz<n
¢”(2)_{ 0 if [z >n+1
and the mollification with respect to (¢,z) is defined as follows. Let p € CZ° (R x RY)
such that

suppp C B(0,1) , /p:l, p>0onR xRY

and p,, (y) = n"p(ny). One can see that
1
pn € CF (R x RY), SupppncB<0,), /pnzl, pn>0o0n R x RY.
n

We also consider non-decreasing sequences u;'y € C2° (Q2) such that
Uiy = Ui inL?(Q), 1<i<m

and define for all (¢,z,u,p) in RT x Q@ x R™ x R™YN and 1 <1i < m,

1<j<m

Note that these functions enjoy the same properties as f;, 1 < ¢ < m, moreover

they are Holder continuous with respect to (¢t,z) and |f; | < M,, 1 <1i < m, where
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M, is a constant depending only on n (these estimates can be derived from (4), the
properties of the convolution product, and the fact that f pn=1).
Let us now consider the truncated system

QUi .

gt’ B diAuim = fi," ("Tv i, un, vun) in Qr
Ui,n (0,$) = u?o in Q , for 1< <m. (10)
Uip = 0 on ET

It is well known that problem (10) has a global classical solution (see [19], theorem
7.1, p. 591) for the existence and ([20], Corollary of Theorem 4.9, p. 341) for the
regularity of solutions. It remains to show the positivity of the solutions.

Lemma 2.2. Let up, = (U1,p,---,Umn) be a classical solution of (10) and suppose
that uf g, ..., Uy, o = 0. Then uy py ...y Umpn > 0.
Proof. See [4], Lemma 1, p 537. O

2.2. A priori estimates. The hypotheses (2) and (3) allowed the following lemma.
Lemma 2.3. There exists a constant M depending on > |[ujoll 1 (q) such that

1<j<m

/ Z wjn (t) | <M, forallte|0,T]. (11)
Q

1<j<m

Proof. We consider the equation satisfied by >~ w;,
1<j<m

0
n oot | = D didujn= > fin
1<j<m 1<j<m 1<j<m
Hypothesis (3) implies
0
o ST ujm | <> diduyn
1<j<m 1<j<m

Since uj,, > 0 for all 1 < j < m and the operator A is dissipative on L (Q), then
/ Aujn, <0foralll1<j<m (12)
Q

Hence
0
L[| w0
1<j<m

Integrating this inequality on [0,¢], for all 0 < ¢ < T, yields

/Q Yo oua)] < / S owo] = 3 e

1<j<m 2 \1<j<m 1<j<m

21

This ends the proof of the lemma. (I
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Lemma 2.4. There exists a constant Ry depending on Y ||Uj,o||L1(Q) , such that
1<j<m

> / | fim (2,1, U, Vu,)| < Ry
1<j<m 7§
Proof. Considering the equations satisfied by u; ., 1 <i < m, we can write

3u,-7n

_.fi,n = - ot
Integrating on @ and using (12), the positivity of the solutions yield

*/ fi,ng/uivodx foralll1<i<m
T Q

+ diAuML

Hence by hypothesis (3)

/ |finl < / ur,0dz = [ur ol (q) (13)
Qr Q

Similarly, we get by hypothesis (3) for all 2 < j <m

/ > fin :/ =Y fin| < Z‘/Quz',odéf: > l[wioll s (q)

QT |1<i< Qr \  1<i<j 1<i<j 1<i<j

L1l S 3 G4 ) ol

1<i<;

O

Lemma 2.5. (i) There exists a constant Re depending on'k and " ||u1-70||L1(Q) , such
1<i<m

that for all 1 < j < m,
| VT i)l < R
T

(#3) There exists a constant Rs depending on Y Huj70||L2(Q) such that for all
1<5<r
2<r<m,
2

[ v 2w <
T

1<j<r

Proof. (i) We multiply the j'* equation in (10) by Tk (u;,) and we integrate on Q7

we obtain
T 8 9
VLA &Wmﬂ@%m+daélvﬂﬁﬁﬂlﬁﬁé | fiml
T T
Then

[ St )+ /Q IV g < /Q Al | St 0)

where Sy, (r) = [; Tk (s) ds. Since

2
Sk (ujn (T)) > 0 and for all » >0, |Sy ()| < % +k(r—k)"
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by using the result of Lemma 2.4, we have

k?2
i [ 9T <k [l [ (k0 <07

2
KRy + 190+ [ (50 (0) = 1) < C s (O))

IN

(i1) We consider the equation satisfied by > u;n, 2 < r < m, and we use
1<5<r
hypothesis (3), we get

0
& Z Ujn | — d,A Z Ujn | + Z (dr - d]) Au]‘m = Z fjﬂl

1<j<r 1<j<r 1<j<r—1 1<j<r

We denote Uy, = > u;n, We obtain
1<5<r
8Ur,n
ot

—d AU+ Y (dy = dj) Aug, <0

1<j<r—1

Now, we multiply by T} (U ) and integrate on Qr,we obtain

aUrn
/Tk (Unn) 6t7 +dr/ ‘VT/C (Ur,n)|2+ Z (dr—dj) VT, (Ur,n) VT, (uj,n)go
T Qr 1<j<r—1 Qr
Then
1
b [ NLUEE Y -d) [ VU VT ) < 5 [ U2,00)
T T Q

1<j<r—1
Which gives us
1

o [ <y [oon ¥ (-l [ 9T )

Qr Q <= Qr

Using Young’s inequality, we have

2 _ 1 1 2 2

& [ 0 <5 (020 3 (Gl = dil [ [0+ 19T (3]

Qr 2 Ja = \2 Q

1<<r—1 T

Then

1 2
d'r‘ — 5 Z |d,« — d]| /QT |ka (U7,n)| <

1<j<r—1
1 9 1 2
5 [ Urn (0) + > 5 ldr = dj VT (wjn)l
@ 1<j<r—1 Qr
By (i), we have
1 1
d, — T.(Ue)> <= | U2 (0)+ =R d, —d;
=) [ VT W < [ U0 5B 30 1

2<j<r—1
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Lemma 2.6. There exists a constant Ry depending on 1<2 Huj,0||L2(Q) anddy,...,dmn
SJsm
such that
/ | fin (@t upn, Vuy,)| Z (m—r+1uk, | <R4, foralll <j<m.
Qr 1<r<m
Proof. Set, forall 2 <r <m
Rr,n = - Z fj,n
1<j<r
and
0, = Z (m—r+Dur, , 2n= Z (m—r+1)diupn,
1<r<m 1<r<m
We have by hypothesis (3)
R.pn >0, forall2<r <m.
Combining the equations of system (10), we have
0
aan - Azn + |f1,n| + Z Rr,n =0
2<r<m
Multiplying by 6,, and integrating on Q7 yield
1 1
7/ 62 (T) +/ V2, V0, +/ On |finl+ Y / Op Ry = 7/ 62 (0)
2 Ja T Qr 2<r<m Y @T 2 Ja
Then
1
/ Vvaen +/ 971 ‘fl,n' + Z / anRr,n S 7/ 972L (O)
Q 2 Ja
T T 2<r<m T
Hence
1
Qr 2<r<m’ QT 2 Ja Qr
Using Young’s inequality, we conclude that
1 1
[ olriol+ 3 [ tbnss [RO+5 [ [wal+wof]<c
Qr 2<r<m Qr 2 Q 2 Qr
Then
/ On|fin] <C and )~ / On| > fin|<Clorall2<r<m  (14)
Qr 2<r<m ” QT 1<j<r
We have by (14)
/ 0n‘f2,n S/ 97l‘fl,n+f2,n|+/ 9n|f1,nlgé
T Qr Qr
and for all 2 < k < m,we have
/ 9n|fk,n S/ en Z fj,n +/ en Z fj,n Sé
Qr T |1<i<k Qr  |1<j<k—1
Which gives us the result. O
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2.3. Convergence. Our objective is to show that u, = (u1,...,Um,,) converges
to some u = (u1,...,Uy,) solution of the problem (4). The sequences uy,...,uy, o
are uniformly bounded in L! () (since they converge in L? (£2)), and by Lemma 2.4,
the non-linearities fi n,..., fm.n are uniformly bounded in L' (Qr). Then according

to a result in [9] the applications

(u;l,vai,n) — Uin 1<i<m

are compact from L (Q) x L' (Qr) into L* (O,T; Wyt (Q))

Therefore, we can extract a subsequence, still denoted by (u1,n,--.,Umn), such
that
(Ut s Umm) = (U1, -, Um) in L! <0,T; Wt (Q))
(Ut )y ey Umn) = (U1, Um) a.e. in Qr
(Vui oo, Vg n) = (Vug, ..., Vuy,) ae. in Qr
Since fin, ..., fm,n are continuous, we have

fim (&2, un, V) = fi (t,z,u, Vu) ae. inQr, 1<i<m

This is not sufficient to ensure that (u1,...,u,,) is a solution of (4). In fact, we
have to prove that the previous convergence are in L' (Qr). In view of the Vitali
theorem, to show that f;, (¢, z,un, Vuy,), 1 < i < m, converges to f; (¢,z,u, Vu)
in L' (Qr), is equivalent to proving that fi, (¢,z,un, Vu,), 1 < i < m are equi-
integrable in L' (Qr).

Lemma 2.7. f;, (t,2,un, Vuy,), for all 1 <i < m, are equi-integrable in L' (Qr) .

The proof of this lemma requires the following result based on some properties
of two time-regularization denoted by u, and u, (v, ¢ > 0) which we define for a
function u € L2 (0,T; Hg (Q2)) such that u (0) = ug € L? () (for more details see [4]).
In the following we will denote by w (¢) a quantity that tends to zero as € tends to
zero, and w? () a quantity that tends to zero for every fixed o as € tends to zero.

Lemma 2.8. Let (uy) be a sequence in L? (0,T; Hg (2))NC ([0, T7]) such that u, (0) =
uy € L*(Q) and (un), = p1n + p2n with pr, € L2 (0,T;H™' () and pan €
L' (Qr). Moreover assume that u, converges to u in L? (Qr), and ul} converges to
u(0) in L? (Q).

Let W be a function in C* ([0, T]) such that ¥ >0, W' <0, ¥ (T)=0. Let ¢ be a
Lipschitz increasing function in C° (R) such that ¢ (0) = 0.

Then for all k, v > 0,

<P1n7 L% (Tk (un) — 7)> / p2n Y (Tk (un) — Ty, (um)7>

> W ( ) +w (;) (Tk (u) — T} (u)v) (0) da
- / G () (0) W (0) (Tk () = Ty (w), ) (0) da

where ® (¢ fo s)ds and Gy (s) = s — Ty (s) .
Proof. See [4], Lemma 7, p 544. O

Lemma 2.9. Suppose that u;,, uj, 1 < j < m, are as above.
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i) If

<Oy (Jurn)) | Fr(b2) + [ Vura* + ) [Vuy|™ (15)

2<j<m

|f1,n

where Cy : [0, +00) — [0, +00) is non-decreasing, Iy € L' (Qr) and 1 < a; < 2.
Then for each fized k

1<5<m

lim VT (u1.0) — VT (ur)] X[ 1 =0.

oo QT E uj,ngk

i) If

‘fl,n (taxau’vu)|§01 Z|UJ| Fz (t,l‘)+ Z |vuj‘2 72S2§m (16)

j=1 1<j<m

where C; : [0, +00) — [0, +00) is non-decreasing, F; € L* (Qr) for all 2 <i < m.
Then for each fized k and for all 2 < i <m
2

lim VI D wjn | =V [ D X{

n—oo Q
T 1<5<i 1<j<i

=0.

2. u;n<k
1<j<m

Proof. (i) This is a direct consequence of the resulting output established in [4] in
the case of system 2 x 2 (see [4], proof of Lemma 6, p 548). The generalization in the
case of any system is immediate.

(7i) Let k and v be positive real numbers, let £ € N, and choose ¥ as in previous
lemma. Let ¢ (s) = sexp (,us2) , with p to be fixed later. Consider the equation
satisfied by (u1,, + u2.4,) -

0
a (ul,n + u?,n) = dQA (ul,n + u2,n) - (d2 - dl) Aul,n + fl,n + f2,n

and use again P (T;€ (U1, +u2p) — Tk (U1, + U2.p) ) as a test function, then we

gl
will integrate on @Qr. Finally we will use Lemma 2.8 to get the result.

For simplicity, we denote

Urn = Zujn , Up= Zuj forall2<r<m

1<j<r 1<j<r
0
Since oy (Uzn) = ,0;([2,)1 + pé27)l where
pC) = doA (Us,y) — (do — dy) Aury € L2 (0,T; H ()
qu)l = fl,n + fZ,n erL! (QT)

we have by Lemma 2.8

/Q % (Ua,n) T (Tk (Ua,n) = T, (UM)V)

sorn (D v (B - [wo)e Ty, (Uz) — Ty, (Ua),,) da
(1) (5)- [ v )

- [ 6L O O (T W) - T (V). ) ©do
Q
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Hence
I+J+2+3
—dy |V (U20) W' (T (Uzin) = Th (U), ) V (The (Uz) = Ti (Uae),)

Qr
- / (fin + f2,0) T (Tk (Uzn) — Ty, (U2,e)y)

T

—(da — dl)/ (Vur = Vi) W' (T (Uzn) = Th (Uz,e), ) V (T (Ua) = T (V). )

—(dy—di) | VurWg (Te (Uan) = T (Ua0),) ¥ (T (Uan) = Tic (Us0), )
Qr

< W' (2) +w (Tll) + /Q U (0)® (Tk (Us) — Ty (Ug)v)
Gi (U2) (0) ¥ (0) ¢ (Ty (V) = Ty (1), ) (0)

s ()

),

since Ty, (Uz)., — Ty, (Uz) in L? (0,T; H} (2)) weakly.
The term I can be written as

I = d2/ V (Ugn) Wy’ (Tk (Uz,n) — T (U2,e)v) \% (Tk (Uz,n) — Tk (Uz,e)y)

bl [V (U)W (T (Wa) = T (Ua), ) ¥ (T Un) = T (U20),)
E,>k
= LI+

For I, we have

=y [ V(a0 (T Wa) = T (U2r),) ¥ (T Ua), ) i
E,>k

o @) s | VU2 9 (T Ua) =T 020, ) ¥ (T 02), ) g2

1
=W (5) —dy [V (Un0) O (Th Uan) = Te (U2), ) V (T (U2, ) X, 21 X(2w
Qr
—dy \Y% (Ugm) \Il(p/ (Tk (UQJL) — T (Ug) ) (Tk U2 ’Y) K| X[E<K]
Qr

1
=" (ﬁ) + 11+ Iz
For 151, we have by Holder’s inequality

Lol < ds |V U20) @' (Tic Ua) = T (U2), )|

’V (Tk (UQ)A,) X[Ezk]’

L?(Qr) L*(Qr)

Using the fact that ¢ (Tk (Uan) — Tk (Ug),y) < ¢’ (2k) and Lemma 2.5, we obtain

()
N
L2(Qr1) Y

[I2.1] < doC HV (Tk (Ua) ) X[E>k]'
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since T}, (Ug),y — Ty, (Uz) in L? (O,T; H} (Q)) and VT} (UQ)X[EZM =0 a.e. in Q.
Now we study the term I o

ha=dy | Y (Uan) B (T Ua0) = T (U2), ) 9 (T (U2), ) Xi, b1 X152

(3

since X[En>K|X[E<K] — 0 a.e. in QT. Thus

1
oo (o))
4 n ~

We investigate I

I =wrn (2) +da | VT, (Ua) Uy (T (Uzn) = T (U2), ) V (Ti Uan) = T (U2),)
= Wrn (2) + dy g VT (Uz) Uy’ (Tk (Uz,n) — Tk (Uz)v) \ (Tk (Uan) — Tk (U2)v>

+dy | (T} (Un) = T (U2)) ' Ty (Uz) = T (U2), ) ¥ (Th (Uzn) = T (U2), )
Qr

(o3

+dy / VT (U2) W' (T (U2) = T (U),) V (T (U2) = T (U2),)

T

+dy / V (Tk (Uz) = T (U2)) 9! (T, (Uz,0) = T (U2), ) ¥ (Th (Ua,n) = T (U2),)

T

(e () ()
+da | V(T (Uan) = T U)W (Ti Uz) = T (U2), )

+dy | V(T (Uan) = T (02)) W' (Th (Unn) = Ty (U2),) V(T (U2) = Ti (U2),)
Qr

() ()
+da | V(T Uan) = Te (W) 0 (T2 Uz) = T2 (U2),)

Hence

1 1 1
2 ) ()l
l n v

vy [ 19 (T W) = T 02 ¥ (Ti (V) = T (02),)
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For J, we have

J

(1) = | Gt o e (T 0, = Tu (02,

— 1> B .
w (z /En>k (fin + fon) Yo (Tk (Uz,n) — T (UQ)W)

- /E Gt o) W (T (V) ~ Ti (02, )
Then
!
J > w? <£> - /En<k (fl,n + f2,n) \:[190 (Tk (U2,n) — T} (U2)’Y)

since (Tk (Usn) — T (UQ)W) >0on[E, >k, U>0and —(fin+ fon) > 0 by
hypothesis (3). On the other hand

[t fan) W (T (Ua) - T (02),)
{En<k}

< Gk /{ oy D] (T 00) - T (),

+C1 (k) > /

2<j<m

+Cy (k) /{E _, VT (ur)* W | (Tk (Uzn) = T (U2), )|

Vil W [ (T (Uzn) = i (U2), )|
E,<k}

+Cy (k) /{ L o (T W) ~ T3 (1), )|

+Cy (k) > /

1<j<m
= Ji++Js5+Js+J5

We set

. <k}|VTk win)|? w)w (Tk (Usn) — T (Us) )‘

L o= G (k)/ P (t,x)\I/’go (Tk (Usn) — T (UQ),Y)‘
{En<k}
o)
n Y
Similarly for Jy

Ji = Cy(k) /{E P () ¥ | (Tk (Uzn) = Ti (U2), )|

1 1
n 8
Since 1 < o5 < 2, for all 2 < j < m, we have

Jy = Ci(k) Z/

90,1 0| (Th (U) = T (U2), )|



GLOBAL EXISTENCE FOR REACTION DIFFUSION SYSTEMS FOR CLIMATE MODEL 93

and
Js = Ci(k) /{En<k}VTk (urn) P | (Ti (V) = Tic (112),)
— O (k) /E LTSRS () | (L0 ) ~ T3 (03), )|
+201 (k) /{E _, VT wr) VT () ¥ [ (Tk (Uz) = T (U2), )|
_o (/g)/{EnSk}wTk ()P ¥ | (T Ua.n) = T (U2), )|
L1 1
- o)l
+Cy (k) /{E |7 (T (wn) =T (W) | (T Uan) = T (U2), )|
and
Js = 1<;m/En<k}|VT,c wjn)|? qf‘w(Tk (Us.) — T, (Us) )’
. 1
- () (5)
[ VI <timint ( [ v (uj,n>|2> <R,
{E. <k} {En<k}
Thus

Gt e W (T ) ~ T (02),)
(B, <k}

o))
—C4 (k) /{u . IV (T (u1,0) — T (u))]* @ \w (74 () = Tk (), ‘

hence

o))
W) [ I o) = TP o (T (V) - T 0,

For A, we have

A= (ds—dy) / (Vu o — V) W' (Ti (Us,0) — T (Us,), ) ¥ (Tic (Un,0) — T (U0),

o ()5 ()2
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since VT, (u1,,) — VTy (uy) strongly in L? (0,T; Hg (2)) . We have

= (hd) | Vuly (T Uz.n) = Th (U0), ) ¥ (The (Uz0) = Ti (Ua0),)

l n ¥
Then
1 1 1
I+J+X+8>wr" () + w7 () +w ()
12 n y

b [ |9 (T (Un) = T (O W (T0 Ua) = T (U2),)

—CMMAMngaumm—ﬂwmfﬂw@uwm—namg\

-+ (58)
da

dz¢' (s) = C1 (k) [@ ()] > =

‘We choose

we have

We conclude that

|1V @ (U0) ~ T 02 W' (T V) = T (U2),) -
Qr

— [ 190 Ua) ~ T ) WO (B[ (T (V) - T V),

T

1 1 1
14 n ¥
Then we have

lim IV (Tk (Ua,n) = T, (U2)) | X(v, <) = O-

n—oo QT
We get step by step by considering the equation satisfied by U, , = > u; . Arguing

1<5<r
in the same way as before, choosing

2
NZmaX{<C;C§f)) ) 1§j§r}
‘We obtain

/ ‘V (Tk (Ur,n) - Tk (U7))|2 \I’dr@/ (Tk (Ur,n) - Tk (U,),Y) -

T

[ V@) - TP RO ) [ (T ) - T (0,

T

o () (2) ()

which shows the desired result. O
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Proof of Lemma (2.7). Let A be a measurable subset of €2, we have

[iftawvul = f [ 15l

AN[E,, >k] AN[E,, <K]
< Sl t [ 1
AN[0n>k] AN[En<Kk]
with B, = > uj,andf,= > (m—k+1)ug,
1<5<m 1<k<m

Thanks to Lemma 2.5, we obtain Ve > 0, Jkg such that if £ > kg then for all n

1 1 1
|f1,n (taxaunyvun” S E /k|f1,n| S %/En |f1,n| S '
Qr Qr

AN[E, >k] [En>k]

Hypothesis (7) implies that for all k > kg

/|f1,n<t,x,un,wn>| < Sora /let / Va2
A

m
A[En<k]
wam Y|
2555m \ AN (B, <k
< /F1 (z,t) / VT (ur0)|?
m
AN[En<k]

o) Y / VT (.0)|
2855m \ An[E, <k

Using Holder’s inequality for 1 < a; < 2 and Lemma 2.5, we obtain

o

aw [ W < am ([ WTk(uM)@;

AN[E, <K

25 2-qy 5
< 2 AT <
< (k) RQ | | =~ m+2

P

d Cfl(ngz) 2<j<m

m+ 2
To deal with the second integral we write

/‘\Vﬂ@mmfg2 /'|Vﬂumm—Vﬂ@mﬁ+2/ﬂvmmgF
AN[E, <k] AN[E, <k] 4

Whenever |A| < p;, with g; = <

According to Lemma 2.5, |[VTk (uy.,) — VT (u1)]? X[E, <k] 18 equi-integrable in L' (2)
since it converges strongly to 0 in L' (). So, there exists g,,+1 such that if |A] <
Om+1, then

€

m+ 2

20 (k) / VT (w1 ) — VT (1)) <
AN[E,<K]
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On the other hand Fy, |VT} (u1)]> € L* (Q), therefore there exists 012 such that

Cr (k) (2A|VTk(ul)|2+AFl (t’x)> Smi2

whenever |A| < gp,42. Choose g9 = inf {p;, 2 < j < m+ 2}, If |A] < gy we obtain

/ |f1,7’L (wvun7vun)| SE
A

Similarly, we get for all 2 <i <m

€ 2 2
/A|fz,n| < 5 +Cik) /AF (a,1) + / (619wt + 6 VT (w1,0) = VT (1))
AN[E,

<k]
2

vewm Y| [ v X

25rsm \ An(E, <k] l<j=<r

2

+ SCZ (k) Z VTk Z Ujn - VTk Z Uy

2<r<m \ an(B, <k] 1<j<r 1<j<r

Arguing in the same way as before, we obtain the required result. ([l
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