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Blind source separation using measure on copulas

Abdelghani Ghazdali and Abdelilah Hakim

Abstract. The paper introduces a novel BSS algorithm for instantaneous mixtures of both

independent and dependent sources. This approach is based on the minimization of Kullback-
Leibler divergence between copula densities. This latter takes advantage of copulas to model

the dependency structure of the source components. The new algorithm can efficiently achieve

good separation standard BSS methods fail. Simulation results are presented showing the
convergence and the efficiency of the proposed algorithms.
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1. Introduction

The blind source separation problem is a fundamental issue in applications of many
different fields such as signal and image processing, medical data analysis, communica-
tions, etc. The BSS aims to recover unknown source signals from a set of observations
which are unknown linear mixture of the sources. It was introduced and formulated
by Bernard Ans, Jeanny Herault and Christian Jutten [1] since the 80’s, describing
a biological problem. In order to separate the data set, different assumptions on
the sources have to be made. The most common assumptions are statistical inde-
pendence of the sources and the condition that at most one of the components is
gaussian, which leads to the field of Independent Component Analysis (ICA), see for
instance [2]. Many methods of BSS have been proposed [3, 4, 5, 6], using second
or higher order statistics [7], maximizing likelihood [8], maximizing nongaussianity
[9], minimizing the mutual information [10], ϕ-divergences [11], etc. An interesting
overview of the problem can be found in [12]. Recently, it has been shown in [13]
that, based on copula without the assumption of the independence of the sources,
we can still determine the sources (up to scale and permutation indeterminacies) of
both independent and dependent sources components. In this paper, we use copulas
to model the dependency structure of the source components, and we will focus on
the criterion of modified Kullback-Leibler divergence, viewed as measure of difference
between copulas, and we will use it to propose a new BSS approach that applies both
in the standard case of independent source components, and in the non standard one
of dependent source components. The method proceeds in two steps: the first one
consists of spatial whitening and the second one consists to apply a series of Givens
rotations, minimizing the estimate of the modified Kullback-Leibler divergence.

The outline of this paper goes like that: we briefly review the principle of BSS
and its extensions in Section 2. The main conclusions of copula theory are briefly
introduced with some of their fundamental properties and examples in Section 3. In
Section 4, we describe the new model proposed for BSS, and in Section 5 we present
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some experimental results, in addition we compare our approach with some existing
ones in the literature. Finally, we conclude the paper and give some further research
directions.

2. Principle of BSS

BSS can be modeled as follows. Denoting A the mixing operator, the relationship
between the observations and sources is

x(t) := A[s(t)] + b(t), t ∈ R, (1)

where x is a set of observations, s is a set of unknown sources, and b is an additive
noise. In this paper, we consider the linear BSS model with instantaneous mixtures,
the operator A corresponds then to a scalar matrix, and the additive noise is either
considered as an additional set of sources, or it is reduced by applying some form of
preprocessing [14]. We assume that the number of sources is equal to the number of
observations. The model writes

x(t) := A s(t), ∀t ∈ R, (2)

where x ∈ Rp represents the observed vector, s ∈ Rp is the unknown vector of sources
to be estimated, and A is the unknown mixing matrix. The goal of BSS, is therefore
to estimate the unknown sources s(t) from the set of observed mixtures x(t). The
estimation is performed with no prior information about either the sources or the
mixing process A ∈ Rp×p. Specific restrictions are made on the mixing model and
the source signals in order to limit the generality. The separating system is defined
by

y(t) := B x(t), ∀t ∈ R. (3)

The vector y(t) ∈ Rp is the output signal vector (estimated source vector) and B ∈
Rp×p is called the separating operator. In other words, the problem is to obtain an

estimator B̂ closing to the ideal solution A−1 using only the observation x(t), which
leads to accurate estimation of the source s(t)

ŷ(t) := B̂ x(t) ' ŝ(t). (4)

3. Recalls on copula

Let’s recall some elementary facts about copulas. Let Z := (Z1, . . . , Zp)
> ∈

Rp, p ≥ 1, a random vector, with cumulative distribution function (c.d.f.)

FZ(·) : z ∈ Rp 7→ FZ(z) := FZ(z1, . . . , zp) := P(Z1 ≤ z1, . . . , Zp ≤ zp), (5)

and continuous marginal functions

FZi
(·) : zi ∈ R 7→ FZi

(zi) := P(Zi ≤ yi), ∀i = 1, . . . , p. (6)

The following characterization theorem of Sklar [15] shows that there exists a
unique p-variate function called copula that ties the joint and the margins together.

Theorem 3.1. Given Z := (Z1, . . . , Zp)
> a random vector, with joint distribution

function FZ and continuous distribution margins FZ1
, . . . , FZp

. Then there exists a

unique copula C such that for all z := (z1, . . . , zp)
> ∈ Rp,

FZ(z) := CZ(FZ1
(z1), . . . , FZp

(zp)). (7)
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A copula function CZ of z is itself a multivariate probability distribution function
C : [0, 1]p −→ [0, 1], with uniform margins on [0, 1]. Recall that the copula density
c(·), if it exists, is the componentwise derivative of C

c(u) :=
∂pC(u)

∂u1 . . . ∂up
, ∀u ∈ [0, 1]p. (8)

If the components Z1, . . . , Zp are statistically independent, then the corresponding
copula writes

C∏(u) :=

p∏
i=1

ui, ∀u ∈ [0, 1]p. (9)

It is called the copula of independence, and the independent copula density is the
function taking the value one on [0, 1]p and zero otherwise, namely,

c∏(u) := 1[0,1]p(u), ∀u ∈ [0, 1]p. (10)

Let fZ(·), if it exists, be the probability density on Rp of the random vector Z =
(Z1, . . . , Zp)

>, and, respectively, fZ1(·), . . . , fZp(·), the marginal probability densities
of the random variables Z1, . . . , Zp. Then, a straightforward computation shows that,
for all z := (z1, . . . , zp)

> ∈ Rp, we have

fZ(z) =

p∏
i=1

fZi
(zi)cZ(FZ1

(z1), . . . , FZp
(zp)). (11)

As previously highlighted, copulas play an important role in the construction of
multivariate d.f.’s. Therefore, several investigations have been carried out concerning
the construction of different families of copulas and their properties. In the mono-
graphs by [16],[17], the reader may find detailed ingredients of the modeling theory
as well as surveys of the commonly used semiparametric copulas.

4. The proposed approach

The discrete version of the original problem (2) writes

x(n) := As(n), n = 1, . . . , N. (12)

The source signals s(n), n = 1, . . . , N , will be considered as N copies of the random
source vector S, and then x(n), y(n) := Bx(n), n = 1, . . . , N are, respectively, N
copies of the random source vector X and Y := BX.

4.1. A separation procedure for independent sources.
Assume that the source components are independent. The mutual information of Y

is defined by

MI(Y ) :=

∫
Rp

− log

p∏
i=1

fYi(yi)

fY (y)
fY (y) dy1, . . . ,dyp. (13)

It is called also the modified Kullbak-Leibler divergence (KLm), between the product
of the marginal densities and the joint density of the vector. Note also that MI(Y ) :=

KLm

(
n∏
i=1

fYi , fY

)
is nonnegative and achieves its minimum value zero iff fY (.) =

p∏
i=1

fYi
(.) i.e., iff the components of the vector Y are statistically independent.

Using the relation (11), and applying the change variable formula for multiple
integrals, we can show that MI(Y ) can be written via copula densities as
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MI(Y ) :=

∫
[0,1]p

− log

(
1

cY (u)

)
cY (u) du =: KLm (c∏, cY ) , (14)

where cY is the density copula of Y , and c∏(u) := 1[0,1]p(u) is the product copula
density.

Moreover, the above criterion (14) can be written as follows:

KLm (c∏, cY ) := E
[
log

(
cY (FY1

(Y1), . . . , FYp
(Yp))

c∏(FY1(Y1), . . . , FYp(Yp))

)]
, (15)

where E(.) denotes the mathematical expectation.
The modified Kullbak-Leibler divergence KLm (c∏, cY ) is nonnegative and attains

its minimum value zero at B = DPA−1, where D and P are, respectively a diagonal
and permutation matrix. Therefore, to achieve separation, the idea is to minimize

some statistical estimate K̂Lm (c∏, cY ), of KLm (c∏, cY ), constructed from the data
y(1), . . . ,y(n). The separation matrix is then estimated by

B̂ = arg min
B

K̂Lm (c∏, cY ) , (16)

leading to the estimated source signals ŷ(n) = B̂ x(n), n = 1, . . . , N . In view of
(15), we propose to estimate the criterion KLm (c∏, cY ) through

K̂Lm (c∏, cY ) :=
1

N

N∑
i=1

log
(
ĉY (F̂Y1

(y1(n)), . . . , F̂Yp
(yp(n)))

)
, (17)

where

ĉY (u) :=
1

NH1 · · ·Hp

N∑
m=1

p∏
j=1

k

(
F̂Yj (yj(m))− uj

Hj

)
,∀u ∈ [0, 1]p, (18)

is the kernel estimate of the copula density cY (.), and F̂Yj
(x), j = 1, . . . , p, is the

smoothed estimate of the marginal distribution function FYj
(x) of the random variable

Yj , at any real value x ∈ R, defined by

F̂Yj
(x) :=

1

N

N∑
m=1

K

(
yj(m)− x

hj

)
, ∀j = 1, . . . , p (19)

where K(.) is the primitive of a kernel k(.), a symmetric centered probability density.
In our forthcoming simulation study, we will take for the kernel k(.) a standard Gauss-
ian density. A more appropriate choice of the kernel k(.), for estimating the copula
density ,can be done according to [19], which copes with the boundary effect. The
bandwidth parameters H1, . . . ,Hp and h1, . . . , hp in (18,19) will be chosen according
to Silverman’s rule of thumb, see [18], i.e., for all j = 1, . . . , p, we take

Hj =

(
4

p+ 2

) 1
p+4

N
−1
p+4 Σ̂j ,

hj =

(
4

3

) 1
5

N
−1
5 σ̂j ,

(20)

where Σ̂j and σ̂j are, respectively, the empirical standard deviation of the data

F̂Yj
(yj(1)), . . . , F̂Yj

(yj(N)) and yj(1), . . . , yj(N).

In order to compute the estimate of the de-mixing matrix B̂, our method proceeds
in two steps: the first one consists of spatial whitening and the second one consists to
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apply a series of Givens rotations, minimizing the estimate of the KLm-divergence.
The whitened mixture vector z can be written as

z(n) = Wx(n), n = 1, . . . , N, (21)

where W is the whitening p × p-matrix. Let U be a unitary p × p- matrix, namely,
the matrix U satisfying UU> = Ip. It can be written as U(θ) :=

∏
1≤i<≤p

G(i, k, θm),

where G(i, k, θm) is the p× p-matrix with entries

G(i, k, θm)j,l :=



cos(θm) if j = i, l = i or j = k, l = k;

sin(θm) if j = i, l = k;

−sin(θm) if j = k, l = i;

1 if j = l;

0 else,

(22)

for all 1 ≤ j, l ≤ p, and θm ∈]−π/2, π/2[, m = 1, . . . , p(p−1)/2, are the rotation angles
(the components of the vector θ). The estimated source signals take then the form
y(n) = U(θ)z(n), n = 1, . . . , N , and the separating matrix is B = U(θ)W . The

estimate K̂Lm (c∏, cY ), of KLm (c∏, cY ), can be seen as a function of the parameter

vector θ. Let θ̂ := arg min
θ

K̂Lm (c∏, cY ) which can be computed by a descent gradient

(in θ) algorithm. The de-mixing matrix is then estimated

B̂ = U(θ̂)W , (23)

leading to the estimated source signals

ŷ(n) = B̂ x(n) = U(θ̂)Wx(n), n = 1, . . . , N. (24)

We summarize the above methodology in the following algorithm.

Algorithm 1 The separation algorithm for independent source components.

Data: the observed signals x(n), n = 1, . . . , N .
Result: the estimated sources ŷ(n), n = 1, . . . , N .

Whitening and Initialization: z(n) := Wx(n), ŷ0(n) = U(θ̂0)z(n). Given
ε > 0 and µ > 0.
Do: • Update θ and y

θk+1 = θk − µ
dK̂Lm (c∏, cy)

dθ
.

yk+1(n) = U(θk+1)z(n), n = 1, . . . , N .
• Until ||θk+1 − θk|| < ε

ŷ(n) = yk+1(n), n = 1, . . . , N .

4.2. A separation procedure for dependent sources.
In the case where the source components are dependent, we assume that we dispose of

some prior information about the density copula of the random source vector S. Note
that this is possible for many practical problems, it can be done, from realizations of S,
by a model selection procedure in semiparametric copula density models {cα(.); α ∈
Θ ⊂ Rd}, typically indexed by a multivariate parameter α, see [20]. The parameter
α can be estimated using maximum semiparametric likelihood, see [21]. We denote
by α̂, the obtained value of α and cα̂(.) the copula density modeling the dependency
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structure of the source components. Obviously, since the source components are
assumed to be dependent, cα̂(.) is different from the density copula of independence
c∏(.). Hence, we naturally replace in (15), c∏ by cα̂, then we define the separating
criterion KLm (cα̂, cY ) by

KLm (cα̂, cY ) := E
[
log

(
cY (FY1

(Y1), . . . , FYp
(Yp))

cα̂(FY1
(Y1), . . . , FYp

(Yp))

)]
, (25)

Moreover, we can show that KLm (cα̂, cY ), is nonnegative and attains its minimum
value zero at B = DPA−1. The separation for dependent source components, is
reached in

B̂ = arg min
B

K̂Lm (cα̂, cY ) , (26)

where

K̂Lm (cα̂, cY ) :=
1

N

N∑
i=1

log

(
ĉY (F̂Y1

(y1(n)), . . . , F̂Yp
(yp(n)))

ĉα̂(F̂Y1
(y1(n)), . . . , F̂Yp

(yp(n)))

)
. (27)

The estimates of copula density and the marginal distribution functions are defined

as before. The solution B̂ can be computed by a descent gradient (in θ) algorithm.

The estimated source signals are by ŷ(n) = B̂x(n), n = 1, . . . , N ; see Algorithm 2.

Algorithm 2 The separation algorithm for dependent source components.

Data: the observed signals x(n), n = 1, . . . , N .
Result: the estimated sources ŷ(n), n = 1, . . . , N .

Whitening and Initialization: z(n) := Wx(n), ŷ0(n) = U(θ̂0)z(n). Given
ε > 0 and µ > 0.
Do: • Update θ and y

θk+1 = θk − µ
dK̂Lm (cα̂, cy)

dθ
.

yk+1(n) = U(θk+1)z(n), n = 1, . . . , N .
• Until ||θk+1 − θk|| < ε

ŷ(n) = yk+1(n), n = 1, . . . , N .

5. Simulation results

In this section, we present representative simulation results for the proposed method.
We will limit ourselves to the case of 2 mixtures 2 sources. We start by illustrating the
performance of BSS-copula with a simple experiment on independent sources. Then
we turn to use BSS-copula to separate dependent sources. The results will be com-
pared with the classical independent MI criterion, see, [10], for the same data. The
2 sources are mixed with the matrix A := [1 0.8; 0.8 1]. A Gaussian noise was also
added to the mixtures. The gradient descent parameter is taken µ = 0.1. And the
number of samples is N = 2000, and all simulations are repeated 20 times. The accu-
racy of source estimation is evaluated through the signal-noise-ratio (SNR), defined
by

SNRi := 10 log10


N∑
k=1

ŷi(k)2

N∑
k=1

(ŷi(k)2 |si(k)=0)

 , i = 1, 2. (28)
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5.1. Independent source components:
In this experiment, we consider two mixed signals of two kinds of sample sources:

uniform i.i.d with independent components Figure 1; i.i.d sources with independent
components drawn from the 4-ASK (Amplitude Shift Keying) alphabet Figure 2. Ve
observe from Figure 1 and Figure 2, that the proposed method (Algorithm 1) gives
good results for the standard case of independent component sources.

Figure 1. Average output SNRs versus iteration number : Uniform in-
dependent sources.

Figure 2. Average output SNRs versus iteration number : ASK inde-
pendent sources.

Figure 3 shows the criterion value vs iterations. We can see that our criterion
converges to 0 when the separation is achieved.

5.2. Dependent source components:
In this subsection we show the capability of the proposed method (Algorithm 2 for

dependent sources) to successfully separate two dependent mixed signals, we dealt
with instantaneous mixtures of four kinds of sample sources:

1 i.i.d.(with uniform marginals) vector sources with dependent components gener-

ated from Ali-Mikhail-Haq (AMH) copula with θ̂ = 0.8.
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Figure 3. The criterion value vs iterations : uniform independent sources.

2 i.i.d.(binary phase-shift keying(BPSK)-marginals) vector sources with dependent

components generated from Fairlie-Gumbel-Morgenstern (FGM) copula with θ̂ =
0.85.

3 i.i.d.(with uniform marginals) vector sources with dependent components gener-

ated from Clayton copula with θ̂ = 2.5.
4 i.i.d.(with binary phase-shift keying(BPSK)-marginals) vector sources with de-

pendent components generated from Frank copula with θ̂ = 3.
In Figures 4- 7, we have shown the SNRs for each kind of sample sources. It can

be seen from the simulations that the proposed method is able to separate, with good
performance, the mixtures of dependent source components.

Figure 4. Average output SNRs versus iteration number : Uniform de-
pendent sources from AMH-copula.

Moreover, Figures 8-9 show the criterion value versus iterations for AMH and Frank
copulas. We can see that our criterion converges to 0 when the separation is achieved.

5.3. Comparison. In this section, both independent and dependent signal sources
are tested to confirm the performance of our proposed method, and compared with
the MI method proposed by [10] for instantaneous linear mixture, under the same
conditions. At the top of Figure 10- 13, we have shown the means of the SNRs of
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Figure 5. Average output SNRs versus iteration number : Bpsk depen-
dent sources from FGM-copula.

Figure 6. Average output SNRs versus iteration number : Uniform de-
pendent sources from Clayton-copula.

Figure 7. Average output SNRs versus iteration number : Bpsk depen-
dent sources from Frank-copula.

two sources for each kind of sample sources. It can be seen from the simulations of
Figure 10 (the standard case of independent component sources), that the method
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Figure 8. The criterion value vs iterations : Uniform dependent sources
from AMH-copula.

Figure 9. The criterion value vs iterations : BPSK dependent sources
from Frank-copula.

proposed achieves the separation with same similar accuracy as [14]. Likewise in the
case of dependent component sources, one can seen from the simulations of Figure 11
to Figure 13 that our method exhibits better performance than the MI one. At the
bottom of Figure 11- 13, we show the criterion value vs iterations. As we can see, the
both criteria of the two methods converges to zero when the separation is achieved.
But the proposed method gives two well separate sources, unlike the MI one provides
two independent sources very far from the sources. And that, is clearly seen at the
top of Figure 11- 13, representing, the means of the SNRs of the two sources for each
kind of sample sources.

6. Conclusions

We have presented a new BSS algorithm. The approach is able to separate instan-
taneous linear mixtures of both independent and dependent source components. It
proceeds in two steps: the first one consists of spatial whitening and the second one
consists to apply a series of Givens rotations, minimizing the estimate of the modified
Kullback-Leibler divergence. In Section 5, the accuracy and the consistency of the
obtained algorithms are illustrated by simulation, for 2× 2 mixture-source. It should
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Figure 10. Average output SNRs versus iteration number: uniform in-
dependent sources.

Figure 11. Average output SNRs versus iteration number: BPSK de-
pendent sources from FGM-copula.
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Figure 12. Average output SNRs versus iteration number: uniform de-
pendent sources from Clayton-copula.

Figure 13. Average output SNRs versus iteration number: Bpsk depen-
dent sources from Frank-copula.
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be mentioned that our proposed algorithms based on copula densities, rather than
the classical ones based on probability densities, are more time consuming, since we
estimate both copulas density of the vector and the marginal distribution function
of each component. The present approach can be extended to deal with convolutive
mixtures, that will be addressed in future communications.
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