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Homogenization of parabolic nonlinear coupled problem in heat
exchange
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ABSTRACT. This work deals with the homogenization of heat transfer nonlinear parabolic problem
in a periodic composite medium consisting in two-component (fluid/solid). This problem presents
some difficulties due to the presence of a nonlinear Neumann condition modeling a radiative heat
transfer on the interface between the two parts of the medium and to the fact that the problem
is strongly coupled. In order to justify rigorously the homogenization process, we use two scale
convergence. For this, we show first the existence and uniqueness of the homogenization problem
by topological degree of Leray-Schauder, Then we establish the two scale convergence, and identify
the limit problems.
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1. Introduction

The composite material is a macroscopic combination of two or more distinct materials,
having a recognizable interface between them. Composites are used not only for their
structural properties, but also for electrical, thermal, tribological, and environmental
applications. The resulting composite material has a balance of structural properties
that is superior to either constituent material alone. This explain the more and more
intense use of this composite material in industrials sectors such as transport, buildings
and aeronautics.

One of the important challenges is to have an optimized composite material which
achieve a particular balance of properties for a given range of applications. This is
directly dependent on the temperature evolution imposed during the injection process.
Indeed, the control of the optimality of the obtained piece requires knowledge and control
of thermal cycle. One of major difficulties in its modeling is the determination of the
effective thermal conductivity.

As the experimental measurement is not feasible in presence of the flow and even if we
try to solve numerically the Navier-Stokes equations in all structure and coupled system
fluid/solid based on physical parameters in the two phases fluid and solid, these lead to
extreme computational difficulties.

A natural way to overcome those difficulties is to replace the composite with a kind
of equivalent material model. This procedure is usually called periodic homogenization.
In many industrial areas, the multiscale nature of the problem is imposed by the mi-
crostructure of the material under consideration. As the numerical simulation of the
microstructure in detail still infeasible, an upscaled models, describing on an observation
scale much larger than the size of the microstructure, is required.
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The periodic homogenization has proven its efficiency for upscaling rigorously mathe-
matical models of multiscale process [5, 15]. From a mathematical point of view the ho-
mogenization theory consists in finding the homogenized characteristics and using them
to construct the homogenized model approximating the initial one, and giving global
description of the physical process [13].

There are many previous contributions on the homogenization of fluid flow in porous
media. The elliptic problem in linear case corresponds to different geometries or scalings
has been extensively studied (see for example [9]). The homogenization in nonlinear case
of elliptic operator in a perforated media was investigated in [3, 12]. Unlike, the studies
of the homogenization of nonlinear parabolic problems are still few in number[10]. In this
work, the homogenization of nonlinear parabolic problem in a periodic composite medium
is investigated. The main goal here is twofold: we first establish an existence result
and then perform rigorously the homogenization process. Although the homogenization
process is standard, it has still some difficulties in our situation. In fact, the problem is
time depending, strongly coupled (fluid/solid) and with nonlinear Neumann condition.

To circumvent these difficulties, first, for the existence result we use the topological
degree of Leray-Schauder, which is more powerful and more general and often easier to use
than the classical fixed point theorems [14]. We note that in this case, the compactness
of the mapping under consideration need a special attention. Indeed the fact that the
system is strongly coupled complicate the task. Then the uniqueness of the fixed point
is obtained under some assumptions on the non linear function. The second main result
is the upscaling of our problem by periodic homogenization. We note that the choice
of the correct scaling of the material parameters with the homogenization parameter is
very important, as it is well known that this has a large influence on the limit problems.
In particular, different scalings may in general lead to different types of limit problems
[16]. Moreover, the obtained convergences in periodic homogenization are of weak type.
This implies that they are not compatible with nonlinear terms a priori. Thus, in order
to characterize the limit problems, additional considerations are required [6, 7, 8].

The paper is organized as follows. In Section 2 the microscale problem is introduced
and the mathematical assumptions are stated. The remaining sections contain the details
of the rigorous homogenization procedure. More precisely, in Section 3, we show the
existence and uniqueness of the homogenization problem. The two scale convergence
and the identification of the limit problems and there existence and the uniqueness are
established in Section 4.

2. Problem setting

We are interested in a heat transfer problem in periodic porous media 2, which is an
open bounded set of R? with Lipschitz boundary, consisting in two-component composite
(solid and fluid see Figure 1). Let {¢} be a sequence of positive real numbers that tends
to zero.

Note by Y =]0,1;[ x ]0, 5] the representative cell and by Y; and Y, two non empty
open subsets of Y such that

Y = Yf U ?g
Assume that I' = 9Y; Lipschitz continuous and Y connected .
We define
Y=k +Y;, keZ?
and

Iy :=k+T,
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FIGURE 1. Periodic domain and reference cell domain.

where k; = (k1l1,kols) and @ = s, f. Thanks to this construction we can define the
following correspondence between any x € QQ and y € Y

VeeQ,dkeZ? andy €Y suchthat = =e(k; +y).
We define the set Z, by
Ze={keZ?/eYNQ#0,i=s,f}.
Assuming that,

NN (U (eTy)) = 0. (1)
keZ?
We can define the two components of 2 and their interface by
0l =0 YY), i = T =008, 2
€ n (kEUZE(e 7 ))’ ¢ S’f’ € a € ( )
From (1) it follows that
aNT, =10, 3)
and from (2) it’s clear that
Q=0 uQq:.

Let u. be a temperature in the domain 2 decomposed as
" — {ug .in (0,7) x Qf,
ud in (0,7) x Q2.
The u, is continuous through the interface I'.. The radiative transfer between the two
parts of the media is modeled by a continuity condition on I'. and its expressed as follow
uf = uf and  — K*Vus-ny = —K/Vu! -ny + eF(ul), on (0,T) x T,

where n;, and no are the outward normal vectors on I'c, where F' is a function expresses
radiative exchange transfer on T'..

The aim is to describe the asymptotic behavior, as € — 0 of the following problem,
which models the local evolution of the temperature in the porous medium

z%lf—v-(fcgwnge-w{:o, on (0,7)xQf,

ng ~ V- (KVad) = 0, on (0,T) x Q2,

us(t,x) = uf (t,z), on (0,7)x T, (4)
~K:Vuing = —KIVul ng + eF(uf), on (0,T) x T,

uf(t,z) =0, on (0,T) x 909,

UE(O,CL') = Uin, on €.
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where u;, is a given function, and V, is a given fluid velocity

Vo) =V(@,2) w9,

such that V(x,y) is the solution of the nonlinear Stockes equation in €, which is sup-

€

posed Y-periodic. We denote by K/ the conductivity tensor in the fluid part defined
by

K=K/ (t,2, D), te)o,T], zeqf,
€
and K? denotes the conductivity tensor in the solid part defined by
KS = K*(t,z,2), te€]0,T[, z€Q,
€

where K*(t,z,y), Kf(t,z,y) are periodic symmetric positive definite tensors defined in
the unit cell Y and satisfying

2
Yo eR? Yt €]0,T[, Vo eQ, VycY, aifv*< Z K (t,z,y)vv;,
ij=1
and
2
Yo eR?, Vt€]0,T[, Ve €Q, Vy €Y, asv*< Z K*(t, x,y)v;v,,
ij=1
for some constants 0 < a; for i = 1,2 and (0;K7/,0,K?) € L>((0,T); L>(Q)) x
L*>((0,T); L*>(£2)). The function F' expresses radiative exchange transfer on I'c, which
verify the following conditions
(H1) F is continuous Lipschitz, F(0) = 0.
(H2) For all ¢, t in R, we have

(F(t1) = F(t2))(t1 — t2) = 0.
Let us introduce the space
We={ue H'(Q!)/ oo =0}
equipped with the norm
[ullw. = VUl 2 qf)-
And Hﬁ1 (Y) is the closure of C’EO(RN) for the norm H' where
Coo(Y) ={u € C®(R")/u is Y-periodic}.

We need also to define the following spaces
L0, T;W) = {u:[0,T] — W summable, such that ||u(t)|| € LP(0,T)}, Vp, 1 <
p < 00, equipped by the norm

T
ooz = ([ o) )
and the space
L>°(0,T; W) = inf {C; such that ||u(t)||w < C a.ein [0,T]}.
which is equipped by the norm

[l o o0, 75w) = sup [[u(t)]|w-
t€[0,T]
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Then the variational formulation of the problem (4) is stated:

Find v = (uf[qs,ulos) € L2(0,T; Hy () and %= € L*(0,T; H~(R))

ud
such that (887 w >(W) W, +/ KIVul Vw!de+

(%e 02) Hl(Q @) + o ngunggdwrfg{ VeVulw!dx
/ F(u g‘daz =0, VYwe = (wl]gs, wila:) € L*(0,T; Hy(2)).

In order to obtain the effective model posed in an homogeneous domain with homog-
enized coefficients we will use the so-called two-scale convergence. For this, we need first
to show the existence and uniqueness of the problem (4). The principal difficulties lie
in the fact that the model is nonlinear coupled and time dependent. To overcome these
difficulties, we use the Leray-Schauder topological degree.

3. Existence and uniqueness of the homogenization problem

In the sequel we will denote by C' a non negative generic constant. In order, to show
the existence of the problem (5), we use the topological degree of Leray-Schauder. For
this, we begin by stated the following Lemma, whose proof is based on the assumption
(H1) — (H2) and the fact that V-V, =0

Lemma 3.1. If u. solution of (5), then it exists a constant C' > 0, such that
well20,7:m1 () < C- (6)

Now we are ready to state the existence and uniqueness of the solution of problem (5).
Theorem 3.2. The problem (5) admits an unique solution in L*(0,T; H:()).
Proof. We define the operator G by

G L0, T HY(Q) — LP(0,T HY(Q))
Ue > U,

where the wu, is the unique solution of the following obtained thanks to [11]

<8uf
ot’

ou f
w!)w.yw. +/ KIVulVw!dz + 8t w!) (1)) (00 (7)

+ KiVuVwlde = —/ V.Val w! dae — / eF(ul)w! do,.
Qs of r.
such that 2% € L2(0,T; H~1(2)). It is easy then to see that G is well defined.

A fixed point of G is a solution of (5). To prove the existence of a fixed point G, we
have to show that G is compact and continuous, and find R > 0 such that V7 [0, 1], there
exists no solution of u — 7G(u) = 0 satisfying [ullz2(0, 7,11 (0) = R

In order to prove the continuity of the map G, we take the sequence . ,, in L2(0, T, H} (2)),
such that @ , 2 e in L2(0,T, H}(2)) we have to prove that G (e ) = G(u) in
L2(0,T, Hy ().

Let u. ,, (respectively ue) be the unique solution associated to T ,, (respectively %.) for
the formulation (7). By subtracting the two weak formulations associated to u. , and
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Ue, We obtain the following equation
oul  Oul, oug  Oug,

€

o o 5><w5y,w5+<at — o Welur@y H s

+ /. K/ (Vul —vu! ) )\Vwlde+ | K:(Vui—Vu!,)Vwide
Q! Qs

= [ vy, ~whulde s [ rd,) - Fabuldo..
Qf r

e

Taking wf = uf —uf,, wd =us — ug ,, and integrating in ¢

€,n>

T T s
5“5 8u{n 8’11: o”'ue n s
/0 < ot 8t7 7U£ - ug,n>(WE)’,W€dt + /0 < ot 81&7 7’11,? — /U’(e,n>(H1(Q§))’,H1(Q§)dt

T T
/ ;{f (Vul =Vl ) (Vul — Vul,)dzdt + / K:(Vui — Vaul,)(Vui — Vu?, )ddt
Q 8

T T
— [ [ vy, —whd —af izt [ [ er@l,) - F@h ! - of oy
0Jaf 0JTI'.

Since W, has continous injection and dense in L?(Q2/) (respectivly H'(£2?) has continous
injection and dense in L2(Q?)), also L?(Q2/) has continous injection in (W)’ (respectivly
L?(Q2?) has continous injection (H'(Q%))") and ng € L2(0,T; (W.)') (respectivly 2 5 €
L2(0,T; (HY(22))"), we have the following results (see for example [11])

1 T 3u{ 8u{n
I =l (D, = [T = =l =l eyt

and
1 s s 2 r 6“2 8“’2)” s
e (1) = w2 (T)lz2 ) =/0 (5 5 Ue — Uem) (@) 1 () -

Then we get

1 1
S (1) = wl (DI or + 5 16E(T) = wl (D)5 0

+ag ||V’LL VU€ n”Lz 0,T;L2(0])) + aQHVUi - vui,n||2L2(0,T;L2(Qg)) (8)

T T
< [ [ vy, —whl, - ubydsde v [ [ (Pl - F@) ! - uf dodr
0Ja! 0JIe

We decompose the right term in the above inequality, as following

I = / V.(val,, — val)(ul —uf,)dzdt,
Qf ’

L = / / F(@)) (! — uf ,)do,dt

since we have V, € H3(Qf) N H? Qf), which means that V. € L>(Q/) and by Hélder
inequality, we have

T
112 Vellimqary | 100 = 0Ol 190 (0) = VL (0]
0
Using Poincaré inequality and the Holder inequality, we obtain

L] < Cllaf =l re

tn =Vl 2071208
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On the other hand, we have

T
< [ [ dF@!,) - Fah)! -l )dod
0 I'.

by using Holder inequality and the fact that F' is Lipschitz, we have
\L| < Cllaf —ul,ll22aolul = ul L2 omce )
Then by using the continuity of trace operator, we get

L| < Clul —u! ul o\l 205w,

then the inequality (8) becomes

1

§||u£n(T) — Ue ( )||2 Qf +35 ||ue n(T) - ( )HO Qs + Oq”vue n vufHLz(OTQf)

+ OZQHVU?,L - vue HL2(0,T;Q§) < C”He - HE,nH U‘E - ue,n||L2(07T;We)7

hence
[Vtte,n — VUEH%"’(O,T;Lz(Q)) < Clte = Uenll 20,111 () lIte = Uen 20,012 (2 (9)

Since the sequence . ,, converge to %, in L?(0,T, H}(2)), we conclude that G is contin-
uous.
Now, let us show that G is compact. For this, let (e, )n be a bounded sequence in
L2(0,T; H}()), and let u,,, = G(Te,,) be the unique solution of (7) associated to Te .
Indeed by taking w. = u.  and integrating in ¢, we have

%(Huen( )||i2(Q£)+Hu§,n( )HLQ(Q )—|—0¢1||Vuf HiQ(OTLz(Qf))—i_a2Hvuﬁ,n||%2(07T;L2(Qi))

< C”Vﬂz,n"[,?((),T,]ﬂ(Q{))”Vue,nHL?(O,T,LZ(Qf (Hu ||L2 ©h + ||ufn||%2(ﬂf))
(10)
then
< C|VuenllLz0,r;22) + C

by using the Young inequality, we obtain

IVuenl|720.r:0200)) < C-

Using the fact that u., € L?(0,7;Hg(£2)) and 6%}’" € L*(0,T; H (), according to
[17], we have

Oue p, d
<77we>(H*1(Q))’,Hé(Q) =% Que,nwedxa

and from the weak formulation (5), we get

Ou,
| at7n||L2(O,T;H*1(Q)) <C.

Thanks to the compact embedding of H}(Q) in L?(Q) and the continous embedding of
L2(2) in H1(Q), we can extract a subsequence denoted again (e ), which converges
in L2(0,T; L?(2)) (see [11]), and satisfies

|Vl <C.

€n||L2 OTLZ(Qf

From the first equation of (4), we get

=5 l20.mm-1 000y < C-

Thanks to the compact embedding of W, in H'~%(Q/) for 0 < § < % and the continuous
embedding of H'~°(Qf) in H~1(Qf) we can extract a subsequence denoted again (e, )n
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which converges in L?(0,7; H~°(Q2/)) and by using the continuous trace operator from
H'79(Q7) in L3(T,), the subsequence (u ), converge in L?(0,T; L*(T.)) (see [11]).

Let uc,, (respectively ue ) be the unique solution of the formulation (7) associated
to Te , (vespectively e ., ). By subtracting the two formulations we obtain the following
inequality

||vu5,n*vu67m||2L2(0,T;L2(Q)) < C|‘VE£n*va£mHLz(o,T;Lz(Q{))Huz,n - Uz,m”Lz(oyT;Lz(Qg))
+ €||F(U£,n) - F(ﬂz,m)||L2(0,T;L2(Fe)) ||u£,n - ug,m|lL2(0,T;L2(FE))~
Using the fact that F' is Lipschitz and the continuity of the trace operator, we get

IVtten = Vtteml|Z2 0122 < Claln =L mllrzomwoy (el n = wl ol 120,702 00
+llul,, —ul 2 r2r.))

then
”vuem - vUE,m”%Z(O,T;LZ(Q)) < 2CSInllp(Hﬂ{,m|‘L2(0,T;We))(||u£n - u{,m”L2(07T;L2(Q£))
+llul = ud e omiee.y)

the sequence is a Cauchy one in L?(0,T; H}(Q2)). This end the proof of the compactness
of G.

Since G is continuous and compact, to show that G admits a fixed point, we consider
the open ball B, defined by:

B = {uc € L*(0,T; Hy (), |[uell 20,1312 02)) < R}

with R = C + 1. The map G has no fixed point on dB. Then deg[l — G, B, 0] is defined
and independent of 7. By using the theorem of the topological degree of Leray-Schauder,
since Gy corresponding to the trivial problem:
S
<87uz, w£>(W€)/ W, +<%, wﬁ>(H1(Qs))/ H1(Qs) —‘r/ Keruswfdx—i—/KjVuswjdm =0
5'15 ’ 675 € € Q! Qs

(11)
which has a unique u,. (obtained thanks to [11]), then deg[I — Gg, B,0] = 1. Therefore
deg[I — G1,B,0] = 1.
Consequently, there exists u. € L?(0,T; H}(Q)), such that Gy (u.) = u. and moreover
% € L*(0,T; H~()). To prove the uniqueness of the solution, we suppose that u! and
u? are two solutions of the problem (5), by subtracting the weak formulations associated

€
to the solutions u! and u? and integrating in ¢, we use the assumption (H2) to find

[uf — USHLQ(O,T;H(%(Q)) <0.

This achieves the proof. O

4. Two scale convergence

To use the two-scale convergence method, we first need to show some a priori estimates on
the u.. Indeed, using the continuity of the trace operator, the assumptions (H1) — (H2),
the fact that V - V., = 0 and Young and Gronwall inequalities, we show the following
result.



HOMOGENIZATION OF PARABOLIC NONLINEAR 125

Lemma 4.1. From the weak formulation (5), we have the following estimation:

luellLoo,mi222) < C (12)
Oue
”E”LZ(O,T;LZ(Q)) < C (13)
luellz20,7:2ryy < C (14)

Now, we recall some classical results on two-scale convergence which can be found in [1,
9]. Then we prove a rigorous homogenization results, using the two-scale convergence
method.

Definition 4.1. For all sequence bounded u. in L?(0,T; L*(Q.)) is said converge in
two scale sense to the function ug(t,z,y) in L?(0,T; L*(Q, L3(Y))) if there exists sub-
sequence still denoted also u., such that, for all Y-periodic function test ¢(¢,x,y) €
C5°(0,T;C5°(2; €2 (Y))), we have :

1im/ / u(t, ) )da:dt / / / uo(t, z, y)p(t, x,y)dydzdt.  (15)
€0 [V Q

In fact, we have the following lemma

Lemma 4.2. From each bounded sequence u. the L?(0,T;L?(2.)), we can extract a
subsequence and there exists a limit ug(t,z,y) € L*(0,T;L?(Q, L?(Y))) such that the
subsequence two-scale converge to ug.

Now, we will show the following convergence result associated to the nonlinear term on
the boundary. This result can be used to show the two scale convergence of our problem.

Lemma 4.3. Let u. € L*(0,T, H}(Q)) and ug € L*(0,T, L*(Q)) such that u. two scale
converges to ug then

T T
li_r)r(l)e/o /Fe F(ue)pedo,dt = ||}I;||/0 /QF(uo(t,x))qﬁ(t,x)dmdt.

Proof. Form the Lemma 3.1 and the inequality (13), we have u, — ug strongly in
L2((0,T); L*(Q)). Using the continuity of F we have that F(u.) — F(ug) strongly
in L2((0,T); L*(2)).
Moreover, since
IVE (ue)llL2(0,r):2(9)) = 10uF (ue) Vel L2 ((0,7);22 ()

is bounded, we deduce the weak convergence of a subsequence F(u.) in L2(0,T; H*(Q))
and for any ¢ € C§°(0,T; C§°(Q)) it holds that

OF (1)) — GF (ug) weakly L*(0, T H'(©).

Put z. = ¢F(uc(t)), according to [7], we have

(1, SF (ue(t) '£'| R (16)

for almost every t € [0,7]. Finally, we are in the position to use the Lebesgue’s conver-
gence theorem and get

I /T/ Fud)pododt |F|/T/F( Yodadt
im eF(ue)pedoydt = — U dt.
e=0Jo Jr. 1Y [ Jo Ja 0
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Having proved the convergence of the nonlinear term, we are ready to identify the

limit problems. This result is stated in the following theorem.

Theorem 4.4. Let u. € L?(0,T; H(Q)) be the solution of (5). Then, there exist a

subsequence denoted again (u.), ug(t,x) in L*(0,T; HY(Q)) and uy(t,z,y) in
L2(0,T;L2(Q;H;(Y)/R)), such that

o u. two scale converges to ug(t,x) solution of (17).

o Vu? two scale converges to x*(y)(Vyuo(t, z) + Vyui(t, z,y))

o Vu! two scale converges to x/ (y)(Vuo(t, z) + Vyui (t,z,y))

where x2(x) (resp. x2(x)) the characteristic function of QF (resp. Qf) and x*(y) (resp.

x!(y)) that of Yy (resp. Yy)
Yy |+ Y| Quo(t,x) + V(K*Vuo(ta .Z‘)) + V*Vuo(t7 -1')‘1'

Y] ot
%F(Uo(tax)) =0, on (0,T) x Q,
uo(t, ) =0, in (0,T) x 99,
UO(O,.I‘) = Ujn, 0 Q,

and the effective (homogenized) conductivity tensor K*(t,x) is given by:
1

Ki; = v K1 (t,2,9)(ej + Vw! (1)) (e + Vwl (y))dy
Yy

1 ) .
+m/¥ Ké(t,x,y)(ej + ij(y))(ek -+ Vwi(y))d:% 7, k=12,

and the homogenized velocity is defined by
. 1
V' = / VO(xay)dya
Y,

Y 1y,

wj in Y,
’LU]' = o
wj in Yy,

where

is solution of the following system:

V(K (t, 2, y)(e; + Vws)) =0, in Y.
V(K (t,z,y)(ej + ijf)) =0, in Y;.
K3(t,z,y)(e; + Vw]) = K7 (t,2,y)(e; + wa), onT
7,
wjf is Y — periodic
wf is Y — periodic.

wj»:w onT

and uy(t, z,y) denote the first corrector defined by:

2 Auo(t, z)

ul(tazvy) :Zw](y) 833]

Jj=1

(19)

(20)

(22)

Proof. When passing to the limit by the convergence two scale it is necessary to respect

the choice of test functions.
Let

¢€(tax) = d)o(t,.f) + 6¢1(t,$7 %)a
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where (¢o, ¢1) € Cg°(0,T; C5°(2)) x C5°(0, T; Cg° (€2, €72 (Y))), and

¢5 in (0,T) x Q2
¢i = I 7
¢i m (03T) X Qe?

for:=0,1.

Due to the analogy between u/ and u?, the determination of the limit problems will
be showed only for u;.
By using a similar technique as in [16], we obtain the following convergence results,

. 6u | Yy | 1 Oug(t, )
f 14f10 0\Ys
glr%/ /f qS drdt = |Y| /0 / : ¢0(t,z)d:cdt,

T
lim / / , KIVul V! dudt
Qe

e—0 0

and

1 T
= m/ / L, K7 (t,2,9)Vauo(t, 2)(Vaedo(z,t) + Vo1 (t, z,y))dydedt

1 T
Yy

The two scale convergence of V; to Vy(x,y) can be easily obtained by using the same way
as in [2]. Since we have that Vu, two scale converges to Vg ug + Vyu1, then by using the
two scale convergence results stated in [1], we show that

1
V.Vul — v Vo(z, y)(Veuo + Vyur)dy, in D'((0,T) x Q),
Yy
which means that for ¢g in D((0,T) x Q), we get
T
/ / V.vul ol (t,z) — / / Vo(z,y)(Vauo + Vyur)go(t, z)dydedt.
o Jaf | Y | Y;

From the Lemma 4.3 and previous results, the obtained limit problem is defined as follow

|Yf|//8uota: |Y|//6u0tx
x)dxdt + dxdt
VT Jodo V1 o Ja )

| i // Tty 2, y)(Vauo(t, z) + Vyuy (t, 2,9)) (Vado(, t) + Vb1 (t, =, y))dydadt

T / / K (t,2,9) (Voo (1,2) + Vit (b 2, 9))(Tao (2, 1) + V1 (1 2, ) )dydadt

|Y|// Vo(z,y)(Veuo + V, u1)¢o(t:v)dyda:dt+|y|/// ug)po(t, x)doy,dxdt.

It remains to take ¢9 = 0 to obtain the cell problem (21) and to take ¢1 = 0 to obtain
the homogenized problem (17). O

The existence and uniqueness result of the problem (21) is obtained thanks to Lax-
Milgram result, when the existence and uniqueness result of problem (17) can be showed
in similar way as in [4].
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