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Abstract. This work deals with the homogenization of heat transfer nonlinear parabolic problem

in a periodic composite medium consisting in two-component (fluid/solid). This problem presents
some difficulties due to the presence of a nonlinear Neumann condition modeling a radiative heat

transfer on the interface between the two parts of the medium and to the fact that the problem

is strongly coupled. In order to justify rigorously the homogenization process, we use two scale
convergence. For this, we show first the existence and uniqueness of the homogenization problem

by topological degree of Leray-Schauder, Then we establish the two scale convergence, and identify

the limit problems.
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1. Introduction

The composite material is a macroscopic combination of two or more distinct materials,
having a recognizable interface between them. Composites are used not only for their
structural properties, but also for electrical, thermal, tribological, and environmental
applications. The resulting composite material has a balance of structural properties
that is superior to either constituent material alone. This explain the more and more
intense use of this composite material in industrials sectors such as transport, buildings
and aeronautics.

One of the important challenges is to have an optimized composite material which
achieve a particular balance of properties for a given range of applications. This is
directly dependent on the temperature evolution imposed during the injection process.
Indeed, the control of the optimality of the obtained piece requires knowledge and control
of thermal cycle. One of major difficulties in its modeling is the determination of the
effective thermal conductivity.

As the experimental measurement is not feasible in presence of the flow and even if we
try to solve numerically the Navier-Stokes equations in all structure and coupled system
fluid/solid based on physical parameters in the two phases fluid and solid, these lead to
extreme computational difficulties.

A natural way to overcome those difficulties is to replace the composite with a kind
of equivalent material model. This procedure is usually called periodic homogenization.
In many industrial areas, the multiscale nature of the problem is imposed by the mi-
crostructure of the material under consideration. As the numerical simulation of the
microstructure in detail still infeasible, an upscaled models, describing on an observation
scale much larger than the size of the microstructure, is required.
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The periodic homogenization has proven its efficiency for upscaling rigorously mathe-
matical models of multiscale process [5, 15]. From a mathematical point of view the ho-
mogenization theory consists in finding the homogenized characteristics and using them
to construct the homogenized model approximating the initial one, and giving global
description of the physical process [13].

There are many previous contributions on the homogenization of fluid flow in porous
media. The elliptic problem in linear case corresponds to different geometries or scalings
has been extensively studied (see for example [9]). The homogenization in nonlinear case
of elliptic operator in a perforated media was investigated in [3, 12]. Unlike, the studies
of the homogenization of nonlinear parabolic problems are still few in number[10]. In this
work, the homogenization of nonlinear parabolic problem in a periodic composite medium
is investigated. The main goal here is twofold: we first establish an existence result
and then perform rigorously the homogenization process. Although the homogenization
process is standard, it has still some difficulties in our situation. In fact, the problem is
time depending, strongly coupled (fluid/solid) and with nonlinear Neumann condition.

To circumvent these difficulties, first, for the existence result we use the topological
degree of Leray-Schauder, which is more powerful and more general and often easier to use
than the classical fixed point theorems [14]. We note that in this case, the compactness
of the mapping under consideration need a special attention. Indeed the fact that the
system is strongly coupled complicate the task. Then the uniqueness of the fixed point
is obtained under some assumptions on the non linear function. The second main result
is the upscaling of our problem by periodic homogenization. We note that the choice
of the correct scaling of the material parameters with the homogenization parameter is
very important, as it is well known that this has a large influence on the limit problems.
In particular, different scalings may in general lead to different types of limit problems
[16]. Moreover, the obtained convergences in periodic homogenization are of weak type.
This implies that they are not compatible with nonlinear terms a priori. Thus, in order
to characterize the limit problems, additional considerations are required [6, 7, 8].

The paper is organized as follows. In Section 2 the microscale problem is introduced
and the mathematical assumptions are stated. The remaining sections contain the details
of the rigorous homogenization procedure. More precisely, in Section 3, we show the
existence and uniqueness of the homogenization problem. The two scale convergence
and the identification of the limit problems and there existence and the uniqueness are
established in Section 4.

2. Problem setting

We are interested in a heat transfer problem in periodic porous media Ω, which is an
open bounded set of R2 with Lipschitz boundary, consisting in two-component composite
(solid and fluid see Figure 1). Let {ε} be a sequence of positive real numbers that tends
to zero.

Note by Y = ]0, l1[ × ]0, l2[ the representative cell and by Yf and Ys two non empty
open subsets of Y such that

Y = Yf ∪ Ys.
Assume that Γ = ∂Ys Lipschitz continuous and Yf connected .

We define

Y ki := kl + Yi, k ∈ Z2,

and

Γk := kl + Γ,
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Figure 1. Periodic domain and reference cell domain.

where kl = (k1l1, k2l2) and i = s, f . Thanks to this construction we can define the
following correspondence between any x ∈ Ω and y ∈ Y

∀x ∈ Ω,∃k ∈ Z2 and y ∈ Y such that x = ε(kl + y).

We define the set Zε by

Zε =
{
k ∈ Z2/εY ki ∩ Ω 6= ∅, i = s, f

}
.

Assuming that,

∂Ω ∩ ( ∪
k∈Z2

(εΓk)) = ∅. (1)

We can define the two components of Ω and their interface by

Ωiε = Ω ∩ ( ∪
k∈Zε

(εY ki )), i = s, f, Γε = ∂Ωsε . (2)

From (1) it follows that

∂Ω ∩ Γε = ∅, (3)

and from (2) it’s clear that

Ω = Ωfε ∪ Ωsε .

Let uε be a temperature in the domain Ω decomposed as

uε =

{
ufε in (0, T )× Ωfε ,

usε in (0, T )× Ωsε .

The uε is continuous through the interface Γε. The radiative transfer between the two
parts of the media is modeled by a continuity condition on Γε and its expressed as follow

usε = ufε and −Ks
ε∇usε · n1 = −Kf

ε ∇ufε · n2 + εF (ufε ), on (0, T )× Γε,

where n1 and n2 are the outward normal vectors on Γε, where F is a function expresses
radiative exchange transfer on Γε.

The aim is to describe the asymptotic behavior, as ε → 0 of the following problem,
which models the local evolution of the temperature in the porous medium

l
∂ufε
∂t
−∇ · (Kf

ε ∇ufε ) + Vε · ∇ufε = 0, on (0, T )× Ωfε ,

∂usε
∂t
−∇ · (Ks

ε∇usε) = 0, on (0, T )× Ωsε ,

usε(t, x) = ufε (t, x), on (0, T )× Γε,

−Ks
ε∇usε .n1 = −Kf

ε ∇ufε .n2 + εF (ufε ), on (0, T )× Γε

ufε (t, x) = 0, on (0, T )× ∂Ω,

uε(0, x) = uin, on Ω.

(4)
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where uin is a given function, and Vε is a given fluid velocity

Vε(x) = V (x,
x

ε
) in Ωfε ,

such that V (x, y) is the solution of the nonlinear Stockes equation in Ωfε , which is sup-
posed Y -periodic. We denote by Kf

ε the conductivity tensor in the fluid part defined
by

Kf
ε = Kf (t, x,

x

ε
), t ∈ ]0, T [ , x ∈ Ωfε ,

and Ks
ε denotes the conductivity tensor in the solid part defined by

Ks
ε = Ks(t, x,

x

ε
), t ∈ ]0, T [ , x ∈ Ωsε ,

where Ks(t, x, y), Kf (t, x, y) are periodic symmetric positive definite tensors defined in
the unit cell Y and satisfying

∀v ∈ R2, ∀t ∈ ]0, T [ , ∀x ∈ Ω, ∀y ∈ Y, α1|v|2 ≤
2∑

i,j=1

Kf (t, x, y)vivj ,

and

∀v ∈ R2, ∀t ∈ ]0, T [ , ∀x ∈ Ω, ∀y ∈ Y, α2|v|2 ≤
2∑

i,j=1

Ks(t, x, y)vivj ,

for some constants 0 < αi for i = 1, 2 and (∂tK
f
ε , ∂tK

s
ε ) ∈ L∞((0, T );L∞(Ωfε )) ×

L∞((0, T );L∞(Ωsε)). The function F expresses radiative exchange transfer on Γε, which
verify the following conditions

(H1) F is continuous Lipschitz, F (0) = 0.
(H2) For all t1, t2 in R, we have

(F (t1)− F (t2))(t1 − t2) ≥ 0.

Let us introduce the space

Wε = {u ∈ H1(Ωfε )/ u/∂Ω = 0}

equipped with the norm

‖u‖Wε
= ‖∇u‖L2(Ωfε ).

And H1
] (Y ) is the closure of C∞] (RN ) for the norm H1 where

C∞] (Y ) = {u ∈ C∞(RN )/u is Y -periodic}.

We need also to define the following spaces
Lp(0, T ;W ) = {u : [0, T ] −→W summable, such that ‖u(t)‖ ∈ Lp(0, T )}, ∀ p, 1 ≤

p <∞, equipped by the norm

‖u‖Lp(0,T ;W ) = (

∫ T

0

‖u(t)‖pW dt)
1
p ,

and the space

L∞(0, T ;W ) = inf {C; such that ‖u(t)‖W < C a.e in [0, T ]} .

which is equipped by the norm

‖u‖L∞(0,T ;W ) = sup
t∈[0,T ]

‖u(t)‖W .
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Then the variational formulation of the problem (4) is stated:

Find uε = (ufε |Ωfε , u
s
ε |Ωsε ) ∈ L

2(0, T ;H1
0 (Ω)) and ∂uε

∂t ∈ L
2(0, T ;H−1(Ω))

such that 〈∂u
f
ε

∂t
, wfε 〉(Wε)′,Wε

+

∫
Ωfε

Kf
ε ∇ufε∇wfε dx+

〈∂u
s
ε

∂t , w
s
ε 〉(H1(Ωsε))

′,H1(Ωsε)
+
∫

Ωsε
Ks
ε∇usε∇wsεdx+

∫
Ωfε
Vε∇ufεwfε dx

+ε

∫
Γε

F (ufε )wfε dσx = 0, ∀wε = (wfε |Ωfε , w
s
ε |Ωsε ) ∈ L

2(0, T ;H1
0 (Ω)).

(5)

In order to obtain the effective model posed in an homogeneous domain with homog-
enized coefficients we will use the so-called two-scale convergence. For this, we need first
to show the existence and uniqueness of the problem (4). The principal difficulties lie
in the fact that the model is nonlinear coupled and time dependent. To overcome these
difficulties, we use the Leray-Schauder topological degree.

3. Existence and uniqueness of the homogenization problem

In the sequel we will denote by C a non negative generic constant. In order, to show
the existence of the problem (5), we use the topological degree of Leray-Schauder. For
this, we begin by stated the following Lemma, whose proof is based on the assumption
(H1)− (H2) and the fact that ∇ · Vε = 0

Lemma 3.1. If uε solution of (5), then it exists a constant C > 0, such that

‖uε‖L2(0,T ;H1
0 (Ω)) ≤ C. (6)

Now we are ready to state the existence and uniqueness of the solution of problem (5).

Theorem 3.2. The problem (5) admits an unique solution in L2(0, T ;H1
0 (Ω)).

Proof. We define the operator G by

G : L2(0, T ;H1
0 (Ω)) −→ L2(0, T ;H1

0 (Ω))

uε 7−→ uε,

where the uε is the unique solution of the following obtained thanks to [11]

〈∂u
f
ε

∂t
, wfε 〉(Wε)′,Wε

+

∫
Ωfε

Kf
ε ∇ufε∇wfε dx+ 〈∂u

f
ε

∂t
, wfε 〉(H1(Ωsε))

′,H1(Ωsε)
(7)

+

∫
Ωsε

Ks
ε∇usε∇wsεdx = −

∫
Ωfε

Vε∇ufεwfε dx−
∫

Γε

εF (ufε )wfε dσx.

such that ∂uε
∂t ∈ L

2(0, T ;H−1(Ω)). It is easy then to see that G is well defined.
A fixed point of G is a solution of (5). To prove the existence of a fixed point G, we

have to show that G is compact and continuous, and find R > 0 such that ∀τ [0, 1], there
exists no solution of u− τG(u) = 0 satisfying ‖u‖L2(0,T ;H1

0 (Ω)) = R.

In order to prove the continuity of the mapG, we take the sequence uε,n in L2(0, T,H1
0 (Ω)),

such that uε,n −→
n→∞

uε in L2(0, T,H1
0 (Ω)) we have to prove that G(uε,n) −→

n→∞
G(uε) in

L2(0, T,H1
0 (Ω)).

Let uε,n (respectively uε) be the unique solution associated to uε,n(respectively uε) for
the formulation (7). By subtracting the two weak formulations associated to uε,n and
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uε, we obtain the following equation

〈∂u
f
ε

∂t
−
∂ufε,n
∂t

, wfε 〉(Wε)′,Wε
+ 〈∂u

s
ε

∂t
−
∂usε,n
∂t

, wsε 〉(H1(Ωsε))
′,H1(Ωsε)

+

∫
Ωfε

Kf
ε (∇ufε −∇ufε,n)∇wfε dx+

∫
Ωsε

Ks
ε (∇usε −∇ufε,n)∇wsεdx

=

∫
Ωfε

Vε∇(ufε,n − ufε )wfε dx+

∫
Γε

ε(F (ufε,n)− F (ufε ))wfε dσx.

Taking wfε = ufε − ufε,n, wsε = usε − usε,n and integrating in t∫ T

0

〈∂u
f
ε

∂t
−
∂ufε,n
∂t

, ufε − ufε,n〉(Wε)′,Wε
dt+

∫ T

0

〈∂u
s
ε

∂t
−
∂usε,n
∂t

, usε − usε,n〉(H1(Ωsε))
′,H1(Ωsε)

dt

+

∫ T

0

∫
Ωfε

Kf
ε (∇ufε −∇ufε,n)(∇ufε −∇ufε,n)dxdt+

∫ T

0

∫
Ωsε

Ks
ε (∇usε −∇ufε,n)(∇usε −∇usε,n)dxdt

=

∫ T

0

∫
Ωfε

Vε∇(ufε,n − ufε )(ufε − ufε,n)dxdt+

∫ T

0

∫
Γε

ε(F (ufε,n)− F (ufε ))(ufε − ufε,n)dσxdt.

Since Wε has continous injection and dense in L2(Ωfε ) (respectivly H1(Ωsε) has continous
injection and dense in L2(Ωsε)), also L2(Ωfε ) has continous injection in (Wε)

′ (respectivly

L2(Ωsε) has continous injection (H1(Ωsε))
′) and

∂ufε
∂t ∈ L

2(0, T ; (Wε)
′) (respectivly

∂usε
∂t ∈

L2(0, T ; (H1(Ωsε))
′), we have the following results (see for example [11])

1

2
‖ufε (T )− ufε,n(T )‖2

L2(Ωfε )
=

∫ T

0

〈∂u
f
ε

∂t
−
∂ufε,n
∂t

, ufε − ufε,n〉(Wε)′,Wε
dt

and

1

2
‖usε(T )− usε,n(T )‖2L2(Ωsε)

=

∫ T

0

〈∂u
s
ε

∂t
−
∂usε,n
∂t

, usε − usε,n〉(H1(Ωsε))
′,H1(Ωsε)

dt.

Then we get

1

2
‖ufε (T )− ufε,n(T )‖2

0,Ωfε
+

1

2
‖usε(T )− usε,n(T )‖20,Ωsε

+ α1‖∇ufε −∇ufε,n‖2L2(0,T ;L2(Ωfε ))
+ α2‖∇usε −∇usε,n‖2L2(0,T ;L2(Ωsε))

(8)

≤
∫ T

0

∫
Ωfε

Vε∇(ufε,n − ufε )(ufε,n − ufε )dxdt+ ε

∫ T

0

∫
Γε

(F (ufε,n)− F (ufε ))(ufε − ufε,n)dσxdt.

We decompose the right term in the above inequality, as following

I1 =

∫ T

0

∫
Ωfε

Vε(∇ufε,n −∇ufε )(ufε − ufε,n)dxdt,

I2 =

∫ T

0

∫
Γε

∫
Γε

ε(F (ufε,n)− F (ufε ))(ufε − ufε,n)dσxdt

since we have Vε ∈ H1
0 (Ωfε ) ∩ H2(Ωfε ), which means that Vε ∈ L∞(Ωfε ) and by Hölder

inequality, we have

|I1| ≤ ‖Vε‖L∞(Ωfε )

∫ T

0

‖ufε (t)− ufε,n(t)‖L2(Ωfε )‖∇u
f
ε,n(t)−∇ufε (t)‖L2(Ωfε )dt.

Using Poincaré inequality and the Hölder inequality, we obtain

|I1| ≤ C‖ufε − ufε,n‖L2(0,T ;Wε)‖∇u
f
ε,n −∇ufε ‖L2(0,T ;L2(Ωfε )).
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On the other hand, we have

|I2| ≤
∫ T

0

∫
Γε

ε(F (ufε,n)− F (ufε ))(ufε − ufε,n)dσxdt,

by using Hölder inequality and the fact that F is Lipschitz, we have

|I2| ≤ C‖ufε − ufε,n‖L2(0,T ;L2(Γε))‖u
f
ε − ufε,n‖L2(0,T ;L2(Γε)).

Then by using the continuity of trace operator, we get

|I2| ≤ C‖ufε − ufε,n‖L2(0,T ;Wε)‖u
f
ε − ufε,n‖L2(0,T ;Wε),

then the inequality (8) becomes

1

2
‖ufε,n(T )− ufε (T )‖2

0,Ωfε
+

1

2
‖usε,n(T )− usε(T )‖20,Ωsε + α1‖∇ufε,n −∇ufε ‖2L2(0,T ;Ωfε )

+ α2‖∇usε,n −∇usε‖2L2(0,T ;Ωsε)
≤ C‖ufε − ufε,n‖L2(0,T ;Wε)‖u

f
ε − ufε,n‖L2(0,T ;Wε),

hence

‖∇uε,n −∇uε‖2L2(0,T ;L2(Ω)) ≤ C‖uε − uε,n‖L2(0,T ;H1
0 (Ω))‖uε − uε,n‖L2(0,T ;H1

0 (Ω)). (9)

Since the sequence uε,n converge to uε in L2(0, T,H1
0 (Ω)), we conclude that G is contin-

uous.
Now, let us show that G is compact. For this, let (uε,n)n be a bounded sequence in

L2(0, T ;H1
0 (Ω)), and let uε,n = G(uε,n) be the unique solution of (7) associated to uε,n.

Indeed by taking wε = uε,n and integrating in t, we have

1
2 (‖ufε,n(T )‖2

L2(Ωfε )
+ ‖usε,n(T )‖2L2(Ωsε)

) + α1‖∇ufε,n‖2L2(0,T ;L2(Ωfε ))
+ α2‖∇usε,n‖2L2(0,T ;L2(Ωsε))

≤ C‖∇ufε,n‖L2(0,T,L2(Ωfε ))‖∇u
f
ε,n‖L2(0,T,L2(Ωfε )) + 1

2 (‖ufin‖2L2(Ωfε )
+ ‖usin‖2L2(Ωsε)

)

(10)
then

‖∇uε,n‖2L2(0,T ;L2(Ω)) ≤ C‖∇uε,n‖L2(0,T ;L2(Ω)) + C

by using the Young inequality, we obtain

‖∇uε,n‖2L2(0,T ;L2(Ω)) ≤ C.

Using the fact that uε,n ∈ L2(0, T ;H1
0 (Ω)) and

∂uε,n
∂t ∈ L

2(0, T ;H−1(Ω)), according to
[17], we have

〈∂uε,n
∂t

, wε〉(H−1(Ω))′,H1
0 (Ω) =

d

dt

∫
Ω

uε,nwεdx,

and from the weak formulation (5), we get

‖∂uε,n
∂t
‖L2(0,T ;H−1(Ω)) ≤ C.

Thanks to the compact embedding of H1
0 (Ω) in L2(Ω) and the continous embedding of

L2(Ω) in H−1(Ω), we can extract a subsequence denoted again (uε,n)n which converges
in L2(0, T ;L2(Ω)) (see [11]), and satisfies

‖∇ufε,n‖2L2(0,T ;L2(Ωfε ))
≤ C.

From the first equation of (4), we get

‖
∂ufε,n
∂t
‖L2(0,T ;H−1(Ωfε )) ≤ C.

Thanks to the compact embedding of Wε in H1−δ(Ωfε ) for 0 < δ < 1
2 and the continuous

embedding of H1−δ(Ωfε ) in H−1(Ωfε ) we can extract a subsequence denoted again (uε,n)n
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which converges in L2(0, T ;H1−δ(Ωfε )) and by using the continuous trace operator from
H1−δ(Ωfε ) in L2(Γε), the subsequence (uε,n)n converge in L2(0, T ;L2(Γε)) (see [11]).

Let uε,n (respectively uε,m) be the unique solution of the formulation (7) associated
to uε,n (respectively uε,m). By subtracting the two formulations we obtain the following
inequality

‖∇uε,n−∇uε,m‖2L2(0,T ;L2(Ω)) ≤ C‖∇u
f
ε,n−∇ufε,m‖L2(0,T ;L2(Ωfε ))‖u

f
ε,n − ufε,m‖L2(0,T ;L2(Ωfε ))

+ ε‖F (ufε,n)− F (ufε,m)‖L2(0,T ;L2(Γε))‖u
f
ε,n − ufε,m‖L2(0,T ;L2(Γε)).

Using the fact that F is Lipschitz and the continuity of the trace operator, we get

‖∇uε,n −∇uε,m‖2L2(0,T ;L2(Ω)) ≤ C‖ufε,n − ufε,m‖L2(0,T ;Wε)(‖u
f
ε,n − ufε,m‖L2(0,T ;L2(Ωfε ))

+ ‖ufε,n − ufε,m‖L2(0,T ;L2(Γε)))

then

‖∇uε,n −∇uε,m‖2L2(0,T ;L2(Ω)) ≤ 2Csup
m

(‖ufε,m‖L2(0,T ;Wε))(‖u
f
ε,n − ufε,m‖L2(0,T ;L2(Ωfε ))

+ ‖ufε,n − ufε,m‖L2(0,T ;L2(Γε)))

the sequence is a Cauchy one in L2(0, T ;H1
0 (Ω)). This end the proof of the compactness

of G.
Since G is continuous and compact, to show that G admits a fixed point, we consider
the open ball B, defined by:

B = {uε ∈ L2(0, T ;H1
0 (Ω)), ‖uε‖L2(0,T ;H1

0 (Ω)) < R}

with R = C + 1. The map G has no fixed point on ∂B. Then deg[I −G,B, 0] is defined
and independent of τ . By using the theorem of the topological degree of Leray-Schauder,
since G0 corresponding to the trivial problem:

〈∂u
f
ε

∂t
, wfε 〉(Wε)′,Wε

+〈∂u
s
ε

∂t
, wsε 〉(H1(Ωsε))

′,H1(Ωsε)
+

∫
Ωfε

Kf
ε ∇ufε∇wfε dx+

∫
Ωsε

Ks
ε∇usε∇wsεdx = 0

(11)
which has a unique uε (obtained thanks to [11]), then deg[I − G0, B, 0] = 1. Therefore
deg[I −G1, B, 0] = 1.
Consequently, there exists uε ∈ L2(0, T ;H1

0 (Ω)), such that G1(uε) = uε and moreover
∂uε
∂t ∈ L

2(0, T ;H−1(Ω)). To prove the uniqueness of the solution, we suppose that u1
ε and

u2
ε are two solutions of the problem (5), by subtracting the weak formulations associated

to the solutions u1
ε and u2

ε and integrating in t, we use the assumption (H2) to find

‖u1
ε − u2

ε‖L2(0,T ;H1
0 (Ω)) ≤ 0.

This achieves the proof. �

4. Two scale convergence

To use the two-scale convergence method, we first need to show some a priori estimates on
the uε. Indeed, using the continuity of the trace operator, the assumptions (H1)− (H2),
the fact that ∇ · Vε = 0 and Young and Gronwall inequalities, we show the following
result.
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Lemma 4.1. From the weak formulation (5), we have the following estimation:

‖uε‖L∞(0,T ;L2(Ω)) ≤ C (12)

‖∂uε
∂t
‖L2(0,T ;L2(Ω)) ≤ C (13)

‖uε‖L2(0,T ;L2(Γε)) ≤ C (14)

Now, we recall some classical results on two-scale convergence which can be found in [1,
9]. Then we prove a rigorous homogenization results, using the two-scale convergence
method.

Definition 4.1. For all sequence bounded uε in L2(0, T ;L2(Ωε)) is said converge in
two scale sense to the function u0(t, x, y) in L2(0, T ;L2(Ω, L2(Y ))) if there exists sub-
sequence still denoted also uε, such that, for all Y-periodic function test ϕ(t, x, y) ∈
C∞0 (0, T ;C∞0 (Ω;C∞] (Y ))), we have :

lim
ε→0

∫ T

0

∫
Ωε

uε(t, x)ϕ(t, x,
x

ε
)dxdt =

1

| Y |

∫ T

0

∫
Ω

∫
Y

u0(t, x, y)ϕ(t, x, y)dydxdt. (15)

In fact, we have the following lemma

Lemma 4.2. From each bounded sequence uε the L2(0, T ;L2(Ωε)), we can extract a
subsequence and there exists a limit u0(t, x, y) ∈ L2(0, T ;L2(Ω, L2(Y ))) such that the
subsequence two-scale converge to u0.

Now, we will show the following convergence result associated to the nonlinear term on
the boundary. This result can be used to show the two scale convergence of our problem.

Lemma 4.3. Let uε ∈ L2(0, T,H1
0 (Ω)) and u0 ∈ L2(0, T, L2(Ω)) such that uε two scale

converges to u0 then

lim
ε→0

ε

∫ T

0

∫
Γε

F (uε)φεdσxdt =
| Γ |
| Y |

∫ T

0

∫
Ω

F (u0(t, x))φ(t, x)dxdt.

Proof. Form the Lemma 3.1 and the inequality (13), we have uε → u0 strongly in
L2((0, T );L2(Ω)). Using the continuity of F we have that F (uε) → F (u0) strongly
in L2((0, T );L2(Ω)).

Moreover, since

‖∇F (uε)‖L2((0,T );L2(Ω)) = ‖∂uF (uε)∇uε‖L2((0,T );L2(Ω))

is bounded, we deduce the weak convergence of a subsequence F (uε) in L2(0, T ;H1(Ω))
and for any φ ∈ C∞0 (0, T ;C∞0 (Ω)) it holds that

φF (uε) ⇀
ε→0

φF (u0) weakly L2(0, T ;H1(Ω)).

Put zε = φF (uε(t)), according to [7], we have

〈µε1, φF (uε(t))〉 →
| Γ |
| Y |

∫
Ω

φF (u0(t))dx, (16)

for almost every t ∈ [0, T ]. Finally, we are in the position to use the Lebesgue’s conver-
gence theorem and get

lim
ε→0

∫ T

0

∫
Γε

εF (uε)φεdσxdt =
| Γ |
| Y |

∫ T

0

∫
Ω

F (u0)φdxdt.

�
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Having proved the convergence of the nonlinear term, we are ready to identify the
limit problems. This result is stated in the following theorem.

Theorem 4.4. Let uε ∈ L2(0, T ;H1
0 (Ω)) be the solution of (5). Then, there exist a

subsequence denoted again (uε), u0(t, x) in L2(0, T ;H1
0 (Ω)) and u1(t, x, y) in

L2(0, T ;L2(Ω;H1
6=(Y )/R)), such that

• uε two scale converges to u0(t, x) solution of (17).
• ∇usε two scale converges to χs(y)(∇xu0(t, x) +∇yu1(t, x, y))
• ∇ufε two scale converges to χf (y)(∇xu0(t, x) +∇yu1(t, x, y))

where χsε(x) (resp. χsε(x)) the characteristic function of Ωsε (resp. Ωfε ) and χs(y) (resp.
χf (y)) that of Ys (resp. Yf )

|Yf |+|Ys|
|Y |

∂u0(t,x)
∂t +∇(K∗∇u0(t, x)) + V ∗∇u0(t, x)+

|Γ|
|Y |F (u0(t, x)) = 0, on (0, T )× Ω,

u0(t, x) = 0, in (0, T )× ∂Ω,
u0(0, x) = uin, in Ω,

(17)

and the effective (homogenized) conductivity tensor K∗(t, x) is given by:

K∗i,j =
1

| Y |

∫
Yf

Kf (t, x, y)(ej +∇wfj (y))(ek +∇wfk (y))dy (18)

+
1

| Y |

∫
Ys

Ks(t, x, y)(ej +∇wsj (y))(ek +∇wsk(y))dy, j, k = 1, 2,

and the homogenized velocity is defined by

V ∗ =
1

| Y |

∫
Yf

V0(x, y)dy, (19)

where

wj =

{
wsj in Ys,

wfj in Yf ,
(20)

is solution of the following system:

∇(Ks(t, x, y)(ej +∇wsj )) = 0, in Ys.

∇(Kf (t, x, y)(ej +∇wfj )) = 0, in Yf .

Ks(t, x, y)(ej +∇wsj ) = Kf (t, x, y)(ej +∇wfj ), on Γ

wsj = wfj , on Γ

wfj is Y − periodic
wfj is Y − periodic.

(21)

and u1(t, x, y) denote the first corrector defined by:

u1(t, x, y) =

2∑
j=1

wj(y)
∂u0(t, x)

∂xj
. (22)

Proof. When passing to the limit by the convergence two scale it is necessary to respect
the choice of test functions.

Let

φε(t, x) = φ0(t, x) + εφ1(t, x,
x

ε
),
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where (φ0, φ1) ∈ C∞0 (0, T ;C∞0 (Ω))× C∞0 (0, T ;C∞0 (Ω, C∞] (Y ))), and

φi =

{
φsi in (0, T )× Ωsε ,

φfi in (0, T )× Ωfε ,

for i = 0, 1.
Due to the analogy between ufε and usε , the determination of the limit problems will

be showed only for ufε .
By using a similar technique as in [16], we obtain the following convergence results,

lim
ε→0

∫ T

0

∫
Ωfε

∂ufε (t, x)

∂t
φfε dxdt =

| Yf |
| Y |

∫ T

0

∫
Ω

∂u0(t, x)

∂t
φ0(t, x)dxdt,

and

lim
ε→0

∫ T

0

∫
Ωfε

Kf
ε ∇ufε∇φfε dxdt

=
1

|Y |

∫ T

0

∫
Ω

∫
Yf

Kf (t, x, y)∇xu0(t, x)(∇xφ0(x, t) +∇yφ1(t, x, y))dydxdt

+
1

|Y |

∫ T

0

∫
Ω

∫
Yf

Kf (t, x, y)∇yu1(t, x, y)(∇xφ0(x, t) +∇yφ1(t, x, y))dydxdt.

The two scale convergence of Vε to V0(x, y) can be easily obtained by using the same way
as in [2]. Since we have that ∇uε two scale converges to ∇xu0 +∇yu1, then by using the
two scale convergence results stated in [1], we show that

Vε∇ufε ⇀
1

| Y |

∫
Yf

V0(x, y)(∇xu0 +∇yu1)dy, in D′((0, T )× Ω),

which means that for φ0 in D((0, T )× Ω), we get∫ T

0

∫
Ωfε

Vε∇ufε φ
f
0 (t, x)→ 1

| Y |

∫ T

0

∫
Ω

∫
Yf

V0(x, y)(∇xu0 +∇yu1)φ0(t, x)dydxdt.

From the Lemma 4.3 and previous results, the obtained limit problem is defined as follow

0 =
| Yf |
| Y |

∫ T

0

∫
Ω

∂u0(t, x)

∂t
φ0(t, x)dxdt+

| Ys |
| Y |

∫ T

0

∫
Ω

∂u0(t, x)

∂t
φ0(t, x)dxdt

+
1

| Y |

∫ T

0

∫
Ω

∫
Yf

Kf (t, x, y)(∇xu0(t, x) +∇yu1(t, x, y))(∇xφ0(x, t) +∇yφ1(t, x, y))dydxdt

+
1

| Y |

∫ T

0

∫
Ω

∫
Ys

Ks(t, x, y)(∇xu0(t, x) +∇yu1(t, x, y))(∇xφ0(x, t) +∇yφ1(t, x, y))dydxdt

+
1

| Y |

∫ T

0

∫
Ω

∫
Yf

V0(x, y)(∇xu0 +∇yu1)φ0(t, x)dydxdt+
| Γ |
| Y |

∫ T

0

∫
Ω

∫
Γ

F (u0)φ0(t, x)dσydxdt.

It remains to take φ0 = 0 to obtain the cell problem (21) and to take φ1 = 0 to obtain
the homogenized problem (17). �

The existence and uniqueness result of the problem (21) is obtained thanks to Lax-
Milgram result, when the existence and uniqueness result of problem (17) can be showed
in similar way as in [4].
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B.P.523, Béni-Mellal, Maroc.

E-mail address: chakib@fstbm.ac.ma, aissamhadri20@gmail.com (corresponding author),

nachaoui@gmail.com
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