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Robust multi-frame super-resolution with non-parametric
deformations using diffusion registration
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Abstract. In this paper, we present a new approach of super-resolution. Since almost all
super-resolution problems suffer from the motion and blur estimations, new techniques are

considered to improve the registration and restoration steps. The proposed method consists

of a non parametric registration based on diffusion regularisation and a total variation restora-
tion in the reconstitution step, since super-resolution reconstruction is actually an ill-posed

problem. We consider that the deformation is not parametric and differs from one image to

another. We also prove the existence of a solution to the two well posed problems (registra-
tion and debluring). Simulation results show the effectiveness and robustness of our algorithm

against small deformations compared to other existing methods.
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1. Introduction

Currently, image super-resolution (SR) [28, 29, 27, 14] reconstruction is a relevant
research topic in image processing. The aim of this technique is to reconstruct a high-
resolution (HR) image from a set of low-resolution (LR) ones that are noisy, blurred,
deformed and down-sampled [22, 31] in two steps (finding a blurred HR image from
the LR measurements estimating and finally deblurring this HR image) [10, 35, 17,
15]. The SR is used in many applications, such as video surveillance [30], medical
diagnostics [11] and image satellite [22], ...etc.

The primary aim of SR algorithm is using motion information [5, 34] to enhance
the quality of the image sequence. A crucial step that guarantees the success of the SR
algorithm is the registration part. Since we deal with small deformed images, the dif-
fusion registration is used [23, 12, 24, 18]. In other hand, the exact selection of image
prior function in the deblurring step is very important for the image reconstruction
accuracy and on the computational cost of the algorithm, since some prior functions
are much more expensive to evaluate than others. To avoid the ill-posedness of the
restoration step we use the popular total variation (TV) function [1, 2] since it pre-
serve edge. Inspired by the efficiency of diffusion regularisation in the ill-registration
problem [1, 21] and the TV regularization in the deblurring step. We propose a
novel improved SR reconstruction specified at low resolution images with small de-
formations to avoid different and annoying artifacts such as blur, jagged edges, and
ringing.
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2. Problem formulation

The observed images of a real scene are usually in low resolution due to some
degradation operators. In practice, the acquired image is corrupted by noise, blur
and decimation. In almost cases the degradation is generated by inappropriate cam-
era parameters or configuration, in addition we have also the effects of atmospheric
turbulence. All these facts corrupt the resolution of the image, therefore improvement
of resolution techniques is desired in those cases. We assume that the LR images are
taken under the same environmental conditions using the same sensor. The relation-
ship between an ideal HR image X and a LR images Yk (represented by a column
vector of size M) can be described by this formula

Yk = DFkHX + Ek ∀k = 1, 2, ..., n. (1)

where Ek represents the additive noise for each image, H: the blurring operator of
size N × N , D represents the decimation matrix of size M × N , Fk: is a geometric
warp matrix representing a diffusion transformation that differs in all frames.

In the presence of different operators of degradation, the problem becomes very
sensitive. We use the same approach in [10] that suggest to separate it in three steps.
(1) Computing the warp matrix Fk for each image.
(2) Fusing the low-resolution images Yk into a blurred HR version B = HX.
(3) Finding the estimation of the HR image X from the blurring one B.

3. The warp matrix Fk

We choose arbitrarily one image Yi from Yk as a reference image and we look for
the deformations uk between Yi and the other images, such that

Yi(x) = Yk(uk(x)) for k 6= i and ∀x ∈ Ω. (2)

To find the deformations uk, we minimize the distance between each image. Since
this problem is ill-posed we propose to use the diffusion regularisation [24].

The registration problem is now well defined in (3).

min
uk

Jdiff (uk), (3)

with:

Jdiff (uk) = DSSD(Yi, Yk, uk) + βSdiff (uk), (4)

where

DSSD(Yi, Yk, uk) =

∫
Ω

(Yk(uk(x))− Yi(x))
2
dx,

and

Sdiff (uk) =
1

2

2∑
l=1

∫
Ω

〈∇ukl
,∇ukl

〉dx.

β: is the regularization parameter of the registration problem.
The first question that may be asked is about the existence of a solution to the

problem (3). The choice of the functional space is very important to demonstrate the
ellipticity of the functional J . A natural choice is the Sobolev space [4] defined as

T = {uk ∈ H1(Ω) anduk = 0 on ∂Ω}. (5)
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Theorem 3.1. Let Ω be a regular bounded open subset of R2 and f be in L2(Ω).
Then the minimization problem

min
uk∈T

Jdiff (uk) (6)

Admits an unique solution.

Proof. Step 1: Existence.
To demonstrate this theorem, we have to prove that Jdiff is elliptic and weakly
sequentially l.s.c.
Ellipticity:
For the ellipticity, we have to prove that

lim
‖uk‖H1(Ω)→+∞

Jdiff (uk) = +∞,

Let uk ∈ T , then

Jdiff (uk) =
1

2

∫
Ω

|∇uk(x)|2 + 〈f(x), uk(x)〉dx

≥ 1

2

∫
Ω

|∇uk(x)|2dx− ‖f‖L2(Ω)‖uk‖H1(Ω),

(7)

where

‖f‖L2(Ω) = ‖Yi‖L∞(Ω) × ‖Yk‖L2(Ω).

Since uk ∈ T , using the Poincaré inequality, the norm ‖.‖H1(Ω) is equivalent to the

norm uk →
∫

Ω
|∇uk|2, thus, there exists a constant C such as∫

Ω

|∇uk|2 ≥ C‖uk‖H1(Ω),

then

Jdiff (uk) ≥ C

2
‖uk‖2H1(Ω) − ‖f‖L2(Ω)‖uk‖H1(Ω).

Using the Young inequality

Jdiff (uk) ≥ C

2
‖uk‖2H1(Ω) − C(ε)‖f‖2L2(Ω) −

ε

2
‖uk‖2H1(Ω)

≥ (
C

2
− ε

2
)‖uk‖2H1(Ω) − C(ε)‖f‖2L2(Ω),

(8)

where ε is chosen such as C−ε
2 > 0.

We get finally Jdiff (uk) → +∞ if ‖uk‖H1(Ω) → +∞, we obtain that Jdiff is
elliptic.
Weak sequentially l.s.c:
We have to prove that Jdiff is continuous and convex.

The continuity :
Since Sdiff is a bilinear function on uk, it’s easy to check there continuity.

Indeed lets firstly define the bilinear form Sdiff

Sdiff (uk, vk) =
1

2

2∑
l=1

∫
Ω

〈∇ukl
,∇vkl

〉dx.
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We have then

|Sdiff (uk, vk)| = |1
2

2∑
l=1

∫
Ω

〈∇ukl
,∇vkl

〉dx|

≤ 1

2
‖∇uk‖L2(Ω)‖∇vk‖L2(Ω)

≤ 1

2
‖∇uk‖H1(Ω)‖∇vk‖H1(Ω).

(9)

Concerning the linear part DSSD, we have also

|DSSD(Yi, Yk, uk)| = |
∫

Ω

(Yk(uk(x))− Yi(x))
2
dx|

≤ ‖f‖L2(Ω)‖uk‖L2(Ω)

≤ ‖f‖L2(Ω)‖uk‖H1(Ω).

(10)

Where f is defined above.
From (9) and (10) we can deduce that Jdiff is continuous.

The convexity:
It is easy to demonstrate the convexity of the function Jdiff , since uk → Sdiff (uk, uk)
is strictly convex (because the norm ‖.‖L2(Ω) is strictly convex). In addition, since
DSSD is linear its also strictly convex. Then the function Jdiff is strictly convex.
Which concludes the proof. �

4. The fusion of Yk

To compute the blurred HR image B from the LR frames Yk, we use the Maximum
Likelihood (ML) estimator. Finally we obtain

B̂ = argmin
B

n∑
k=1

‖Yk −DFkB‖2L2 (11)

5. The de-blurring step

Finding the HR image X̂ is equivalent to solve the minimization problem (10),
using the Maximum a posteriori (MAP) [10, 16].

X̂MAP = argmin
X
{−log(p(B̂/X))− log(p(X))} (12)

where p(B̂/X) represents the likelihood term.
p(X): denotes the prior knowledge on the high-resolution image.
To solve this problem we need to describe the prior Gibbs function (PDF) p, we use
the generalized TV [1] as we know that it tends to preserve edges in the reconstruction,
as it does not severely penalize steep local gradients.

p(X) = exp{α‖ϕ(|∇X|)‖1} (13)

where:
α: the regularization parameter;
ϕ: is a strictly convex, non-decreasing function from R+to R+, with ϕ(0) = 0 (without
a loss of generality)

lim
X→+∞

ϕ(X) = +∞.
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The norm |.| is defined like that

|X| =
√
X2

1 +X2
2 ∀(X1, X2) ∈ R2.

A typical choice of ϕ is the so-called hyper-surface minimal function defined as:

ϕ(X) =
√

1 +X2.

5.1. Resolution of the MAP estimator problem. Since we have defined the
operators Fk and the prior function p, we deduce the equation of the MAP estimator

X̂MAP = argmin
X
{
∑
x∈Ω

‖HX(x)− B̂(x)‖1 + α‖ϕ(|∇X|)‖1}, (14)

where Ω contains all the pixels on the HR grid X.

The norm ‖HX − B̂‖1 is used because it’s very robust against outliers [10].
Before solving this minimisation problem, we have to prove the existence and the
uniqueness of the solution. In order to use the classical method of the calculus of
variations, we have to assume another hypothesis on ϕ. We suppose that ϕ grows at
most linearly i.e.: ∃c > 0 and b ≥ 0 such that

cx− b ≤ ϕ(x) ≤ cx+ b. (15)

According to (15), a natural choice of the functional space on which we can seek a
solution is the Sobolev Space W 1,1(Ω), defined as:

W 1,1(Ω) = {X ∈ L1(Ω), ∇X ∈ [L1(Ω)]2}.
Unfortunately, this space is not reflexive. In this case, it is classical to use the relaxed
function on the space of bounded variation BV (Ω).

BV (Ω) = {X ∈ L1(Ω) ;

∫
Ω

|DX| < +∞},

where ∫
Ω

|DX| = sup{
∫

Ω

X div ϕ dx ; ϕ ∈ C1
0(Ω)N , ||ϕ||∞ ≤ 1}

For the reason that every bounded sequence in W 1,1(Ω) is also bounded in BV (Ω),
we use the characteristics of the BV − ω∗ topology to deduce the existence of a
subsequence that converge BV −ω∗. We define the relaxed function by the same way
in [1] and we use the same technique to demonstrate the existence of the solution. We

cannot say anything about the uniqueness since the norm ‖HX − B̂‖1 is not strictly
convex.

To minimise the problem (14) we use the classical steepest descent algorithm. We

finally compute the HR image X̂ as follows.

X̂n+1(x) = X̂n(x)− η

{
Hᵀsing(HX̂n(x)− B̂(x)) + α div

(
ϕ

′
(|∇Xn|)
|∇Xn|

∇Xn

)}
, (16)

where α is the steepest descent parameter.
div: is the divergence operator defined by the adjoint operator of ∇ as div = −∇∗.
The second part of the problem is used as a discrete part. We will denote by

Xi,j , i, j = 1, ...N a discrete image and M = RN2

: the set of all discrete images.
The discretization of the operators ∇ and div is given by

(∇X)1
i,j =

{
Xi+1,j −Xi,j if i < N

0 if i = N
,



134 A. LAGHRIB, A. HAKIM, S. RAGHAY, AND M. EL-RHABI

(∇X)2
i,j =

{
Xi,j+1 −Xi,j if j < N

0 if j = N
,

and
(div)i,j = (div)1

i,j + (div)2
i,j ,

where

(div p)1
i,j =


p1
i,j − p1

i−1,j if 1 < i < N

p1
i,j if i = 1

0 if i = N

,

(div p)2
i,j =


p2
i,j − p2

i,j−1 if 1 < j < N

p2
i,j if j = 1

−p2
i,j−1 if j = N

,

6. Numerical result

In this section, we present simulation results for the proposed method. We dealt
with slightly deformed low resolution images. We evaluate the performance of the pro-
posed algorithm using the peak-signal-to-noise ratio (PSNR) criterion. We construct
a synthetic LR images in the example 1 and 2, to test our algorithm and compare it
with classical method such as the bi-cubic interpolation and robust super resolution
algorithms (RSR) [10]. The bi-cubic interpolation is used after a diffusion registra-
tion, while we use the same data for the RSR resolution and our proposed method.
We choose in example 1 the famous Cameraman as an original image in (1) of size
256× 256.

We illustrate in Figure 1 one of the N = 8 input low-resolution frames chosen
arbitrary and blurring with 5× 5 Gaussian blur kernel with standard deviation equal
to 3, and sub-sampling by a factor of 2. In addition we add a noise Ek arbitrary
in each frame. The parameters chosen for our algorithm are η = 0.1, α = 0.4 and
maxiter = 100 iteration for the steepest descent, finally we choose β = 0.1 in the
registration step.

In Figure 2 (B), the result is obtained by the bi-cubic interpolation after a diffusion
registration, in the Figure 2 (C) the RSR result and finally the Figure 2 (D) illustrate
the obtained image by the proposed method, we can clearly see the efficiency of our
algorithm.
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Figure 1. The original image of Cameraman.

Figure 2. Comparison between classical method and the proposed algo-
rithm for the example 1.

In the example 2, we take an image document as an original (3) of size 187×182. We
keep the same parameters using above. The Figure 4 illustrates a comparison between
our algorithm and the two classical methods (bi-cubic interpolation and RSR).
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Figure 3. The original image of text.

Figure 4. Comparison between classical method and the proposed algo-
rithm for the example 2.

In the last example we take a 40 LR images of size 126×126, and we consider that
the transformations between all LR frames are not parametric. In the Figure 5, we
compare the result obtained with a resolution augmentation factor r = 4.



ROBUST MULTI-FRAME SUPER-RESOLUTION 137

Figure 5. Comparison between classical method and the proposed algo-
rithm for the example 3.

The algorithm used Noise σ = 3 Noise σ = 5
Exemple 1 (Cameraman)

bi-cubic interpolation 19.18 17.66
RSR resolution (BTV regulizer) 27.33 26.11
The proposed method 28.03 27.77

Exemple 2 (Image document)
bi-cubic interpolation 17 16.07
RSR resolution (BTV regulizer) 26.88 25.91
The proposed method 26.44 26.36

Exemple 3 (Papers)
bi-cubic interpolation 18.25 17.88
RSR resolution (BTV regulizer) 29.658 28.881
The proposed method 29.5078 28.777

Figure 6. The PSNR table.

In the table in Figure 6, we measure the quality of the reconstruction using the
PSNR criterion for the three examples. In this table, the bold numbers represent the
best results.
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7. CONCLUSION

Recently, the registration and the regularization approaches are considered the
most and recent techniques that can be used in solving the SR reconstruction problem.
Thus, we present a new approach to the SR image reconstruction problem based
on diffusion registration and a generalized TV restoration. The proposed algorithm
differs from the others in the registration and deblurring steps. We prove existence and
uniqueness of minimizers of the diffusion registration and we assure also the existence
of the solution of the final SR problem. Numerical results show the robustness of our
approach compared with other methods in the literature.
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(Mohammed El-Rhabi) École des Ponts ParisTech (ENPC) Paris, France
E-mail address: mohammed.el-rhabi@enpc.fr


