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Hermite-Padé approximation approach to exothermic
explosions with heat loss
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Abstract. We consider in this study the steady-state solutions for the exothermic chemical

reaction in a slab, taking into account the heat loss to the ambient and assuming an Arrhenius-
type temperature dependence. Analytical solutions are obtained for the governing nonlinear

boundary value problem using the homotopy analysis method. A special type of Hermite-

Padé approximation is used to extract numerical estimations of the critical Frank-Kamenetskii
parameters and the critical temperatures. The consequences of heat loss are explored within

the framework of a one dimensional, steady state model.
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1. Introduction

Study of thermal explosion of combustible materials intended at ensuring the safety
of their storage, transportation and use is an important practical aspect of evaluating
and controlling the hazard. The basic theory of the phenomenon of thermal explosion
was initiated by Semenov [1] and Frank-Kamenetskii [2] has developed the quasi-
stationary theory of thermal explosion in order to determine the critical conditions
that separate explosive and non-explosive domains of an ongoing reaction. Many
researchers ([3]-[12] and related references therein) have then generalized the theory of
Frank- Kamenestkii with various stages of heat transfer around the reactive material.
These include cases where the surface temperature is connected to the surrounding
environment by a convective heat transfer.

We assume that the material is motionless and that the heat losses are deter-
mined by the thermal conductivity of the material [8]. In this study, the steady-state
solutions are investigated in a slab obeying an Arrhenius law, with a temperature
dependence of the pre-exponential factor A(T ) and ignoring the consumption of the
material.

Analytical solutions are constructed using homotopy analysis method [13]. The
critical values of the temperature field and of the Frank- Kamenestkii parameter are
obtained using a special type of Hermite-Padé approximants [10].

The structure of this paper is as follows. Section 2 presents the boundary value
problem governing the ignition of a combustible material in a slab. In section 3, we
will apply the homotopy analysis method to this nonlinear boundary value problem.
Section 4 is assigned to a brief description of the Hermite-Padé approximation and its
application to calculate bifurcation points. The last section is devoted to the results
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obtained by the proposed method and to a comparison with other works. Conclusions
will appear in Section 6.

2. Mathematical formulation

According to the relation given by Frank-Kamenetskii for a one-dimensional steady
combustion and assuming that the chemical reaction can be represented by an Ar-
rhenius rate law, the equation of heat balance in the original variables can be written
as:
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V
(T − T0) = 0 (1)

together with the following boundary conditions, meaning that the walls are main-
tained at a fixed temperature T0 throughout the process:

T = T0 on x = a. (2)

In these equations, k is the thermal conductivity of the material, Q is the heat of
reaction, A is the reaction rate constant, ν is the vibration frequency, h is the Plank’s
constant, ρ is the density, m ∈ {−2, 0, 0.5} is a numerical exponent corresponding
respectively to the sensitized, Arrhenius and bimolecular temperature dependence
(cf. Boddington et al. [4]), K is the Boltzmann’s constant, E is the activation energy,
R is the universal gas constant, α is the convection coefficient, a is the geometry half
width, S/V is the surface area to volume ratio of the slab and T0 is the absolute
temperature of the surrounding environment.

We introduce the following dimensionless variables:

x =
x

a
, θ =

R(T − T0)

RT 2
0

, ε =
RT0

E
, δ =

a2ρQEAKmTm−2
0 e

−E
RT0

(ρhν)
m
Rk

, β =
αS

akT0

to obtain
d2θ

dx2 + δ (1 + εθ)
m
exp

(
θ

1 + εθ

)
− βθ = 0 (3)

θ = 0 on x = 1 (4)

where δ, ε, β represent respectively the Frank-Kamenetskii, the dimensionless activa-
tion energy and the heat loss parameters. Hereafter, we will drop the bar symbol for
clarity.

3. Method of solution

In this section, we apply the homotopy method [13] for solving the problem (3)-(4).
Let us define the following linear operator:

L =
d2

dx2
− βid (5)

If ~ denotes a non-zero auxiliary parameter and u0(x) an initial guess of θ, we can
construct the zero-order deformation equation as:

(1−p) (L(u(x, p))− L(u0(x))) = p~ [L(u(x, p)) + δ (1 + εu(x, p))
m
exp

(
u(x, p)

1 + εu(x, p)

)]
(6)

with the following boundary conditions:

u(x, p) = 0 on x = ±1 (7)
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where p is an embedding parameter. When p = 0, a straightforward calculation gives

u(x, 0) = u0(x).

When p = 1, the zero-order deformation equations (6) and (7) are equivalent to the
original Eqs. (3) and (4) and we obtain:

u(x, 1) = θ(x). (8)

Thus, changing p from 0 to 1 is equivalent to transforming u(x, p) from u0(x) to θ(x).
We can expand u(x, p) :

u(x, p) = u0(x) +

∞∑
n=1

pnun(x) (9)

Assuming that the above series is convergent when p = 1 and using Eq. (8), we
obtain:

θ(x) = u0(x) +

∞∑
n=1

un(x) (10)

We will take an initial approximation u0(x) = 0 which is in fact the solution of
the linear problem. We substitute relation (9) into the governing equation (6)-(7),
and collecting the coefficients of like powers of p to obtain a sequence of differential
equations and boundary conditions. We now successively have:

u1(x) =
1

2
~(x2 − 1)

u2(x) =
1

24
~(x2 − 1)

[
δ~(x2 − 5)(εm+ 1) + β(5− x2) + 12)(~ + 1)

]
and so on. As pointed by Liao [13], the auxiliary parameter ~ can be employed to
adjust the convergence region of the series (9). For this purpose, the ~-curves of θ′′(1)
are displayed in Figure 1 for 10th and 15th approximation order. It is clear from this
figure that the range for the admissible values for ~ is −1.42 ≤ ~ ≤ −0.61.

Figure 1. ~-curves for θ′′(1), solid line: 10th-order approximation;
dashed line: 15th-order approximation.
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4. Hermite - Padé approximation technique

There is a critical value for the Frank- Kamenetskii parameter δc, meaning that
no steady state is possible and that a reaction runaway can occur. One can show
that δc is the nearest singularity of θ determined as a radius of convergence limit-
ing the convergence of the Taylor expansion of θ at δ = 0. Several techniques have
been developed to extract singularities from a finite number of Taylor series coeffi-
cients. The most commonly used are the Domb-Sykes plot ([14], [15]), Neville-Aitken
extrapolation [15] and approximant methods, such as Padé approximants [15] and
Hermite-Padé approximations ([10],[16],[17]), etc. The main tool used in this sec-
tion is a simple method of series summation derived from the generalization of the
Hermite-Padé approximants that can be summarized as follows:

Assuming that U(δ) is a local representation of an algebraic function obtained by
a Taylor expansion in the given small parameter δ:

UN (δ) =

N∑
n=0

anδ
n +O(δN+1) as δ → 0 (11)

Herein we are concerned with the determination of the dominant behavior of the
solution by using partial sum (11). Fuchs (cf. [15]) showed that the singularity must
be either a pole or logarithmic branch. Therefore, U(δ) takes the form:

U(δ) =

{
(δc − δ)γg(δ) for γ 6= 0, 1, 2, ...

(δc − δ)γ ln|δc − δ|g(δ) for γ = 0, 1, 2, ...
(12)

where g(δ) is an analytic function and δc is the critical point with the exponent γ. A
useful tool for extracting δc is the Hermit-Padé approximants, which are used in many
branches of physics and applied mathematics to evaluate singularities of perturbation
series.
Hermite-Padé approximation consists of finding polynomials P,Q,R of respective de-
grees p, q, r such that [17]:

P (δ)U1 +Q(δ)U2 +R(δ)U3 = O(δp+q+r), P (0) = 1. (13)

A particular case of such approximations are differential Hermite-Padé approximants
obtained by taking:

U1 = U, U2 = DU, U3 = D2U (14)

where D and D2 are the differential operators given by D = d
dδ , D2 = d2

dδ2 .
In this work, we employ a special type of differential Hermite-Padé approximation
technique ([10]), by rewriting the expression (13) in the form:

FM (δ, UN−1) = 1 +A1N (δ)U1 +A2N (δ)U2 +A3N (δ)U3 (15)

such that

AiN (δ) =

M+i∑
j=1

αijδ
j−1 (16)

FM (δ, U) = O(δN+1)as : δ → 0 (17)

where M ≥ 1, i = 1, 2, 3. The unknowns coefficients αij depend only on the N given
coefficients ai and we shall take

N = 3(2 +M) (18)

so that the number of equations equals the number of unknowns.
The dominant singularities of the branches of solutions of (11) are located at the zeros
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of A3N , as shown by Della Dora and Di. Crescenzo [17]. The critical exponent γc can
be obtained by using Newton’s polygon algorithm and may be approximated by:

γc = 1− A2N (δcN )

DA3N (δcN )
. (19)

5. Results and discussion

The maximum temperature θmax is reached along the reacting slab centerline and
is a characteristic quantity which qualifies the thermal stability. Thermal ignition
criticality is governed by the values of the parameters δc and θc = θmax(δc, ε,m). In
order to obtain these values, the Hermite-Padé approximation procedure described in
section (4) above was applied to the first few terms of the Taylor series of the solution
(10) of the boundary value problem (3-4). The results are shown in tables (1-4) below:

m ε δc θc
-2,0,0.5 0 0.8784576579 1.119265476

- 2
0.01 0.9062277502 1.019446420
0.1 0.9422258805 1.174428219

0
0.01 0.8878052761 1.120757730
0.1 0.9882096285 1.221481288

0.5
0.01 0.8833192541 1.103164459
0.1 0.9322155839 1.281171740

Table 1. Variation of δc and θc with respect to ε, when β = 0.

ε δc θc
0 0.8784575617 1.112480950

0.01 0.8877953343 1.120993488
0.05 0.9284003489 1.229733359
0.1 0.9882117413 1.39214472

Table 2: Computation showing criticality for Arrhenius reaction (m = 0) for different

values of ε, when β = 1.

ε M δc θc

0.01
2 0.8832992986 1.101141822
3 0.8833200120 1.101342655
4 0.8832854664 1.101007276

0.1
2 0.9322165287 1.262830935
3 0.9322150065 1.262799659
4 0.93221678454 1.262831870

Table 3: Computation showing the rapid convergence of criticality for bimolecular reaction

(m = 0.5) for different values of ε, when β = 1.

ε M δc θc

0.01
2 0.9062232837 1.135824308
3 0.9062818966 1.136418609
4 0.9062207229 1.135797806

0.1
2 1.313889395 2.020559500
3 1.313889450 2.019024696
4 1.313980247 2.020559500

Table 4: Computation showing the rapid convergence of criticality for sensitized reaction

(m = −2) for different values of ε, when β = 1.
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Tables 3-4 show the rapid convergence of the Hermite-Padé procedure to evaluate
dominant singularity δc and crtical temperature θc with progressive increase in the
number of series coefficients employed in the approximants.

Figure 2. Variation of δc with dimensionless activation energy ε for var-
ious values of β. Case m = 0.5.

Figure 3. Variation of θc with dimensionless activation energy δc for
various values of β. Case m = 0.5.
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In the case of no heat exchange between the combustible material and the walls of
the slab (β = 0), we get the critical values δc and θc, as shown in Table 1. We find
that they are substantially equal to those calculated by other authors ([10],[11],[12]).

In the non-adiabatic case, i.e β > 0, Figures 2-3 show that as heat loss param-
eter β increases, critical ignition temperature θc decreases whereas critical Frank-
Kamenetskii parameter δc increases for increasing values of ε. This leads to a delay
in the development of thermal runaway in the reacting slab, due to an increase in the
heat loss to the surrounding environment.

6. Conclusions

In this paper we applied the homotopy analysis method to solve a nonlinear bound-
ary value problem arising from exothermic explosions. Furthermore, the obtained so-
lutions are used to investigate thermal criticality by means of Hermite-Padé approach.
The procedure shows the effect of heat loss parameter on the critical values of ignition
temperature and on the Frank-Kamenetskii parameter.

The thermal runaway phenomena are investigated and the corresponding critical
values are obtained through a bifurcation procedure. It is shown that an increase on
the magnitude of the rate of heat transfer leads to an increase of thermal criticality
as well as to a decrease of the maximum temperature. This enhances the thermal
stability of the system.
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