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Iterative method for computing a Schur form of symplectic
matrix
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Abstract. We present in this paper a constructive iterative method to compute an orthog-

onal and symplectic Schur form. This structured Schur form reduction is used to compute

eigenvalues and invariant subspaces of symplectic matrices.
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1. Introduction

The computation of the eigenvalues and eigenvectors of matrices play important
roles in many applications in the physical sciences. For example, they play a promi-
nent role in image processing applications. Measurement of image sharpness can be
done using the concept of eigenvalues [6]. In this paper we are interesting in a struc-
tured eigenvalue problem. We propose a practical method to compute eigenvalues
and invariant subspaces for symplectic matrices witch are of particular importance in
applications such as optimal control [7, 8]. Symplectic matrices are widely used in SR
factorization witch is a principal step in structure-preserving methods. It is a long-
standing open problem to compute the eigenvalues and the Schur form in particular
the one how preserved the structure [3, 4]. In the case of an eigenvalue problem of
structured matrices, the preservation of this structure may help exploit the symmetry
of the problem and to improve the accuracy and efficiency calculations of invariant
subspaces and eigenvalues [5]. Our proposed method here is based on an orthogonal
and symplectic SR factorization based on orthogonal and symplectic reflectors. Or-
thogonality is used to preserve the stability and Symplecticity is used to preserve the
structure. In paragraph 3, we give and prove an orthogonal and symplectic Schur
form theorem for real symplectic matrix. An algorithm that compute this structured
Schur form reduction is given and numerical experimental results are presented to
illustrate the effectiveness of our approach.

2. Terminology, notation and some basic facts

In this section we collect several well-known properties of structured matrices, for
future reference.

An ubiquitous matrix in this work is the skew-symmetric matrix

J2n =

(
On In
−In On

)
, where In and On are the n × n identity and zero matrix,

respectively. Note that J−12n = JT2n = −J2n. In the following, we will drop the
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subscript n and 2n whenever the dimension of corresponding matrix is clear from its
context. The J-transpose of any 2n-by-2p matrix M is defined by MJ = JT2pM

TJ2n ∈
R2p×2n. Any matrix S ∈ R2n×2p satisfying the property STJ2nS = J2p (SJS = I2p) is
called symplectic matrix. This property is also called J-orthogonality. The symplectic
similarity transformations preserve structured matrix.

Remark 2.1. An augmented matrix

S =


I 0 0 0
0 P11 0 P12

0 0 I 0
0 P21 0 P22


is symplectic if and only if the matrix P =

(
P11 P12

P21 P22

)
is symplectic.

2.1. Symplectic reflectors. Setting Ei = [ei en+i] ∈ R2n×2 for i = 1, · · · , n where
ei is the i-th element of the canonical basis of R2n . We then obtain

EJi = ETi and EJi Ej = δijI2

where δij =

{
1
0

if i = j,
if i 6= j.

We recall the symplectic reflector on R2n×2 (see [1, 2]), which is defined in parallel
with elementary reflectors.

Proposition 2.1. Let U , V be two 2n-by-2 real matrices satisfying UJU = V JV = I2.
If the 2-by-2 matrix C = I2 +V JU is nonsingular, then, the transformation S = (U +
V )C−1(U+V )J−I2n is symplectic and takes U to V . It’s called a symplectic reflector.
Additionally, if UJ = UT and V J = V T , then S is orthogonal and symplectic.

Proposition 2.2. Let u ∈ R2n be a nonzero 2n-component real vector. The reflector

S = (U +
√
αE1)(αI2 +

√
αEJ1 U)−1(U +

√
αE1)J − I2n

where U = [u − Ju], is orthogonal and symplectic and verify Su =
√
αe1 where

α = uTu = ‖u‖22.

Proof. Since UJU = αI2 with α = uTu = ‖u‖22 > 0, then a simple calculation gives
the result. �

2.2. Symplectic matrices.

Proposition 2.3. If M ∈ R2n×2n is symplectic then MT is symplectic.

Proof. Since

MJ MT = MJ(MTJM)M−1J−1

= MJJM−1J−1

= −InJ−1

= J

MTJM = J ⇒MJ MT = MJ(MTJM)M−1J−1 =

= MJJM−1J−1 = −InJ−1 = J.

This proves that MT is symplectic. �
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Proposition 2.4. If M =

(
A C
B D

)
∈ R2n×2n where A,B,C,D ∈ Rn×n, then M

is symplectic if and only if the matrices A,B,C,D verify :{
ATB and CTD are symmetric,

ATD −BTC = In.

Proof. We have

MTJM =

(
BTA−ATB BTC −ATD
DTA− CTB DTC − CTD

)
.

Then

M is symplectic ⇔
{

BTA = ATB and DTC = CTD
ATD −BTC = DTA− CTB = In

⇔
{
ATB and CTD are symmetric,

ATD −BTC = In.

�

Theorem 2.5. A matrix M ∈ R2n×2n is orthogonal and symplectic if and only if M
is in the following form

M =

(
A −B
B A

)
where A,B ∈ Rn×n verify {

ATB is symmetric,
ATA+BTB = In

Proof. If M =

(
A C
B D

)
is orthogonal and symplectic, where A,B,C,D ∈ Rn×n,

then
J = MJMT = MJM−1.

That proves JM = MJ. Then C = −B and D = A. By the result of Proposition
2.4, A,B ∈ Rn×n verify {

ATB is symmetric,
ATA+BTB = In

�

2.3. Ortho-SR decomposition. By using ortho-symplectic reflectors defined above,
we decompose a symplectic real 2n-by-2n matrix A on the form A = SR where
S ∈ R2n×2n is orthogonal and symplectic and R is symplectic and is in the following
form

R =



n

n←−−−−−−−−−−−−→xy
? ? · · · ?

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗

n←−−−−−−−−−−−→
∗ ∗ · · · ∗

∗ ∗
. . .

...
...

. . .
. . . ∗

∗ · · · ∗ ∗

n

xy
0 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 0

∗ 0 · · · 0

∗ ∗
. . .

...
...

. . .
. . . 0

∗ · · · ∗ ∗


. (1)
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Algorithm : Ortho-symplectic SR-decomposition

Hereafter, Matlab notations are used
Input : A ∈ R2n×2n a symplectic matrix
Output: A 2n × 2n orthogonal and symplectic matrix S and
a symplectic matrix R in the form (1) such that A = SR
For k=1 to n do

u := A(:, k);Ek = [ek,−Jek]; I = eye(2n);
Ik = blkdiag(−eye(k), eye(n− k),−eye(k), eye(n− k))
For j=1 to k-1 do

u(j) = 0;u(n+ j) = 0

end For
If (‖u‖ 6= 0) then

u =
u

‖u‖
U = (u,−J u)
C = I − 2EJk U
If (detC 6= 0) then

T = (U + E)C−1(U + Ek)J − Ik

else
C = I + 2EJ U
T = (U + E)C−1(U + Ek)J + I

end If
S := ST ;A := TA

end If
end For

3. Ortho-symplectic Schur form

Lemma 3.1. If A is a symplectic matrix and u ∈ C2n an eigenvector corresponding
to an eigenvalue λ of A. Suppose that λ is outside the unit circle, then there exists
an unitary and symplectic reflector S such that Su = αe1.

Proof. Let u be an eigenvector corresponding to an eigenvalue λ of A such that |λ| 6= 1
and ‖u‖ = 1.
U = [u,−Ju] ∈ C2n×2 is unitary and symplectic (UHU = UJU = I2). Indeed,

UJU = JTUHJU =

(
0 −1
1 0

)(
uHJu uHu
−uHu uHJu

)
=

(
‖u‖2 uHJu
−uHJu ‖u‖2

)
.

The matrix A is symplectic, then AHJA = J and,

uHJu =
1

|λ|2
(Au)HJAu =

1

|λ|2
uHJu.

Since |λ| 6= 1, then uHJu = 0. Let set N = EJ1 U . If −1 is not eigenvalue of the
2-by-2 matrix N , then the reflector S = (U + E1)(I2 + EJ1 U)−1(U + E1)J − I2n is



162 A. MESBAHI, A.H. BENTBIB, A. KANBER, AND F. ELLAGGOUNE

unitary and symplectic and verify SU = αE1. Then Su = αe1( here α = 1). If
−1 is eigenvalue of N , then 1 is not eigenvalue of EJ1 U . Indeed, we have EJ1 U =(
eT1 u −eT1 Ju
eTn+1u −eTn+1Ju

)
=

(
u1 −un+1

un+1 u1

)
then det(EJ1 U) = |u1|2 + |un+1|2 ≥ 0. The

reflector S = (U − E1)(I2 − EJ1 U)−1(U − E1)J − I2n is unitary and symplectic and
verify SU = αE1 and then Su = αe1 ( here α = −1). �

Theorem 3.2. Let A be a 2n-by-2n real symplectic matrix such that all eigenvalues
of A are outside the unit circle. Then there exists an unitary and symplectic matrix
Q such that A = QRQT where R is symplectic and is in the following form

R =



n

n←−−−−−−−−−−−−→xy
? ? · · · ?

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗

n←−−−−−−−−−−−→
∗ ∗ · · · ∗

∗ ∗
. . .

...
...

. . .
. . . ∗

∗ · · · ∗ ∗

n

xy
0 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 0

∗ 0 · · · 0

∗ ∗
. . .

...
...

. . .
. . . 0

∗ · · · ∗ ∗


.

Proof. The proof can be seen by using the principe of induction on n.
Let λ be an eigenvalue of A and u a normalized corresponding eigenvector. U =

[u,−Ju] ∈ R2n×2 is unitary and symplectic (UHU = UJU = I). From Lemma 3.1
there exists an unitary and symplectic reflector S1 such that S1u = αe1 and then

S1AS
T
1 e1 = λe1.

The matrix R1 = S1AS
H
1 is symplectic and it is in the following form

S1AS
H
1 = R1 =



n

n←−−−−−−−−−−−→xy
λ ∗ · · · ∗

0 ∗
. . .

...
...

...
. . . ∗

0 ∗ . . . ∗

n←−−−−−−−−−−−→
∗ ∗ · · · ∗

∗ ∗
. . .

...
...

. . .
. . . ∗

∗ · · · ∗ ∗

n

n←−−−−−−−−−−−→xy
0 0 · · · 0

0 ∗
. . .

...
...

...
. . . ∗

0 ∗ . . . ∗

1
λ

0 · · · 0

∗ ∗ . . . ∗
...

. . .
. . . ∗

∗ · · · ∗ ∗



=


n

n←−−−−−−→xy λ vT

0 A

n←−−−−−→
x wT

X B

n

n←−−−−−→xy 0 0
0 C

y 0
Y D


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The matrix R2 =

(
A B
C D

)
is also symplectic. Indeed,

R1 =

(
A′ B′

C ′ D′

)
, A′, B′, C ′, D′ ∈ Rn×n

We have

R1
TJR1 =

(
C ′TA′ −A′TC ′ C ′TB′ −A′TD′
D′TA′ −B′TC ′ D′TB′ −B′TD′

)
.

And

R2
TJR2 =

(
CTA−ATC CTB −ATD
DTA−BTC DTB −BTD

)
.

By block multiplication, we have

C ′TA′ −A′TC ′ =

(
0 O
0 CTA−ATC

)
, C ′TB′ −A′TD′ =

(
−1 0
X CTB −ATD

)
.

D′TB′ −B′TD′ =

(
x X
X DTB −ATD

)
, D′TA′ −B′TC ′ =

(
1 X
X DTA−BTC

)
.

R1 is symplectic then R1
TJR1 = J and

C ′TA′ −A′TC ′ = 0, C ′TB′ −A′TD′ = −I,
D′TA′ −B′TC ′ = I and D′TB′ −B′TD′ = 0.

Consequently

CTA−ATC = 0, CTB −ATD = −I,
DTA−BTC = I and DTB −BTD = 0

That proves that R2 is symplectic (see, Proposition 2.4).

By induction hypothesis there exist unitary and symplectic reflector, S̃2, such that

S̃2R2S̃2

T
= R̃2,

R̃2 =



n− 1

n−1←−−−−−−−−−−−→xy
∗ ∗ · · · ∗

0 ∗
. . .

...
...

...
. . . ∗

0 0 . . . 0

n−1←−−−−−−−−−−−→
∗ ∗ · · · ∗

∗ ∗
. . .

...
...

. . .
. . . ∗

∗ · · · ∗ ∗

n− 1

n−1←−−−−−−−−−−−→xy
0 0 · · · 0

0 0
. . .

...
...

...
. . . 0

0 0 . . . 0

∗ 0 · · · 0
∗ ∗ . . . 0
...

. . .
. . . 0

∗ · · · ∗ ∗


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Let

S̃2 =



n− 1

n−1←−−−−−−−−−−−−−−−−−−→xy
s
(1)
1,1 . . . s

(1)
1,n−1

s
(1)
2,1 . . . s

(1)
2,n−1

...
...

...

s
(1)
n−1,1 . . . s

(1)
n−1,n−1

n−1←−−−−−−−−−−−−−−−−−→
s
(1)
1,n . . . s

(1)
1,2n−1

s
(1)
2,n . . . s

(1)
2,2n−1

...
...

...

s
(1)
n−1,n . . . s

(1)
n−1,2n−1

n− 1

n−1←−−−−−−−−−−−−−−−−−−−→xy
s
(1)
n,1 . . . s

(1)
n,n−1

s
(1)
n+1,1 . . . s

(1)
n+1,n−1

...
...

...

s
(1)
2n−1,1 . . . s

(1)
2n−1,n−1

s
(1)
n,n . . . s

(1)
n,2n−1

s
(1)
n+1,n . . . s

(1)
n+1,2n−1

...
...

...

s
(1)
2n−1,n . . . s

(1)
2n−1,2n−1


We take

S2 =



n

n←−−−−−−−−−−−−−−−−−−−−−→xy

1 0 . . . 0

0 s
(1)
1,1 . . . s

(1)
1,n−1

0 s
(1)
2,1 . . . s

(1)
2,n−1

...
...

...
...

0 s
(1)
n−1,1 . . . s

(1)
n−1,n−1

n←−−−−−−−−−−−−−−−−−−−−→
0 0 · · · 0

0 s
(1)
1,n . . . s

(1)
1,2n−1

0 s
(1)
2,n . . . s

(1)
2,2n−1

...
...

...
...

0 s
(1)
n−1,n . . . s

(1)
n−1,2n−1

n

n←−−−−−−−−−−−−−−−−−−−−−−→xy

0 0 · · · 0

0 s
(1)
n,1 . . . s

(1)
n,n−1

0 s
(1)
n+1,1 . . . s

(1)
n+1,n−1

...
...

...
...

0 s
(1)
2n−1,1 . . . s

(1)
2n−1,n−1

1 0 · · · 0

0 s
(1)
n,n . . . s

(1)
n,2n−1

0 s
(1)
n+1,n . . . s

(1)
n+1,2n−1

...
...

...
...

0 s
(1)
2n−1,n . . . s

(1)
2n−1,2n−1


Then S2 is unitary and symplectic and verify S2S1AS

H
2 S

H
1 = R were R is symplectic

and in the following form

R =



n

n←−−−−−−−−−−−−→xy
? ? · · · ?

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗

n←−−−−−−−−−−−→
∗ ∗ · · · ∗

∗ ∗
. . .

...
...

. . .
. . . ∗

∗ · · · ∗ ∗

n

xy
0 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 0

∗ 0 · · · 0

∗ ∗
. . .

...
...

. . .
. . . 0

∗ · · · ∗ ∗


�

3.1. Algorithm 3.1. Algorithm : Iterative method to compute Schur form of
symplectic matrix
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Input : A ∈ R2n×2n Symplectic , X0 ∈ R2n×n

Output: Ortho-symplectic Schur form of A
V = X0

Repeat
W = AV
W = SR ortho-symplectic SR decomposition
V = S[:, 1 : n]
RR = R[1 : n, 1 : n]

until (Convergence)

3.2. Numerical examples. We compared and tested the numerical results obtained
by Algorithm 3.1 with Matlab eig function. Our numerical experiments were carried
out with Matlab (R2009a) and run it on a Core Duo Pentium processor. The sym-

plectic matrix A is obtained from the matrix

(
M M
0 M−T

)
where M = diag(v) and

by using symplectic similarity transformations randomly generated by symplectic re-
flectors as :

A = S

(
M M
0 M−T

)
SJ .

Example 3.1. In this example n = 20 and v is constructed as follows.
For k = 1 to fix(n/2) (Here Matlab notation is used)
v(k) = k + 1 and v(n2 + k) = k−1
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Example 3.2. In this example n = 10 and v is constructed as follows.
For k = 1 to fix(n/2) (Here Matlab notation is used)

v(k) = 1
k+1 and v(n2 + k) = (

√
k

1000 )−1
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