
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 42(1), 2015, Pages 192–201
ISSN: 1223-6934

On a numerical approximation of a highly nonlinear parabolic
inverse problem in hydrology
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Abstract. In this paper, we consider an inverse problem in hydrology governed by a highly

nonlinear parabolic equation called Richards equation. This inverse problem consists to deter-
mine a set of hydrological parameters describing the flow of water in porous media, from some

additional observations on pressure. We propose an approximation method of this problem

based on its optimal control formulation and a temporal discretization of its state problem.
The obtained discrete nonlinear state problem is approached by the finite difference method

and solved by Picard’s method. Then, for the resolution of the discrete associated optimiza-

tion problem, we opt for an evolutionary algorithm. Finally, we give some numerical results
showing the efficiency of the proposed approach.

Key words and phrases. inverse problem, hydrology, Richards equation, optimal control,

evolutionary algorithm.

1. Introduction

The parameter identification problems are an important type of inverse problems,
that are connected to a variety of phenomena in various scientific sectors[10]. Moti-
vated by the various applications of flow in porous media in many fields of engineering,
agricultural and chemical sciences, we are interested here by an identification inverse
problem in hydrology. This problem consists in determining hydrological parameters,
from additional measurements on the observed pressure. Indeed, It’s well known that
the flow of water in the soil is characterized by parameters, which take into account
the initial condition, the boundary conditions and the soil type. However, these pa-
rameters are, in most cases, unknowns or badly measured. It is then necessary to
identify all these parameters.

The study of inverse problems has several difficulties related to their nonlinearity
and the fact that they are generally ill-posed in the sense of Hadamard [8]. This
give a primordial importance of its formulation and requires a good knowledge of
the direct problem (regularity and a priori estimation of the solution, . . . ). Beside
these difficulties, our considered inverse problem is governed by a highly nonlinear
parabolic equation called Richards equation. At this stage, it must be mentioned
that there are various numerical and theoretical investigations concerned by a direct
problem governed by Richards equation. More precisely, several papers deal with the
existence and uniqueness, regularity of the weak solution and analytical solution of
one dimensional Richards equation (see for examples [2, 3, 4, 5, 13, 18]). Moreover,
various methods for the numerical treatment of the Richards direct problem have been
done in [9, 11]. Unlike to this direct problem, mathematical works concerned by the
investigation of the associated inverse problem, are few in number [15], without citing
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some attempts by geophysicists, who try to implement some algorithms by using the
finite difference method or finite element method or some softwares like HYDRUS
[7, 17]. However, in most of all these works the proposed technics of parameters
identification does not allow us to identify all the unknown parameters simultaneously,
but they try to identify a single parameter by assuming that the others are known.
The approximation method that we propose in this work presents the advantage of
identifying all parameters simultaneously.

This paper is organized as follows. In section 2, we present the physical mod-
eling related to the problem and its formulation. In section 3, we give an optimal
control formulation of our inverse problem. The section 4 is devoted to the numeri-
cal approximation of the optimal control problem. More precisely, after a temporal
discretization, the Picard’s method is summarized in section 4.1. The numerical al-
gorithm used to solve the optimization problem is given in section 4.2. Section 5 is
devoted to computational aspects and numerical results of model examples.

2. Mathematical model

We consider the one-dimensional problem of the flow of water through porous
media. From a physical point of view, the flow in a saturated-unsaturated porous
media can be described by the equation of Richards [16], which combines the equation
of mass conservation (called continuity equation) [14] and Darcy’s law [19].

There are generally three main forms of Richards equation present in the literature
namely the mixed formulation, the ψ-based formulation and θ-based formulation,
where ψ is the weight-based pressure potential and θ is the volumetric water content.
We present all these forms in the following.

Since, we consider the one-dimensional infiltration of water in vertical direction of
unsaturated soil, the continuity equation and Darcy’s law are then given by equations
(1) and (2) respectively:

∂θ

∂t
= −∂q

∂z
(1)

and

q = −K(θ)
∂H

∂z
, (2)

where q is the volumetric flow density, t is the time, z is the depth measured positively
downward, K is the hydraulic conductivity which depends on θ and H is the hydraulic
head.

The first form of Richards equation (called mixed formulation) obtained by com-
bining the equation (1) and (2) is given by:

∂θ

∂t
=

∂

∂z
[K(θ)(

∂ψ

∂z
− 1)]. (3)

Introducing the diffusivity coefficient

D(θ) = K(θ)
∂ψ

∂θ
, (4)

the second form of Richards equation (θ-based formulation) is stated as follows:

∂θ

∂t
=

∂

∂z
[D(θ)

∂θ

∂z
−K(θ)], (5)

this equation can be used only in saturated conditions [15].
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For a unsaturated environment, the equation (3) is expressed as a function of the
actual pressure ψ, by introducing the concept of capillary capacity

C(ψ) =
∂θ

∂ψ
, (6)

the third form of Richards equation (ψ-based formulation) is given by:

C(ψ)
∂ψ

∂t
=

∂

∂z
[k(ψ)(

∂ψ

∂z
− 1)]. (7)

As we see the three forms of Richards equation depends on parameters K(θ), D(θ)
and C(ψ). These parameters are in general empirically defined. This explain the
wide and different expressions of hydrological models [15]. In order to get a complete
description of infiltration process, all these hydrological parameters must be known.
It is therefore necessary to develop an efficient strategy to determine these parameters
based on the measure taken on the soil.

In this paper, we are interested by the flow problem described by the equation (7).
Unfortunately, we can not use equation (3) which is more simpler than (7), since it
does not allow us to identify all the parameters, especially the parameters involved
in the capillary capacity.

Then the aim of this problem is to find the pressure ψ, the hydraulic conductivity
K(ψ) and the capillary capacity C(ψ) solution of:

(P )


C(ψ)

∂ψ

∂t
− ∂

∂z
(k(ψ)(

∂ψ

∂z
− 1)) = f(z, t), (z, t) ∈]0, L[×(0, T ),

ψ(0, t) = ψmin, t ∈ (0, T ),

ψ(L, t) = ψmax, t ∈ (0, T ),

ψ(z, 0) = ψ0(z), z ∈]0, 1[,

(8)

from the following additional observations on the pressure taken in Nobs points in the
soil:

ψ(t, zi) = ψobs(t, zi) ∀t ∈ [0, T ], i = 1, . . . , Nobs (9)

where ψmin, ψmax, and ψ0 are given functions.

3. Optimal control formulation

In the following, we will reformulate the problem (8)-(9) into an optimal control
problem. For this, we consider the cost functional J defined by:

J(P (ψ)) =
1

2

Nobs∑
i=1

∫ T

0

|ψ(z, t;P (ψ))− δ(z, zi)ψobs(t)|2 dt, (10)

where ψ(z, t) is the solution of (8) associated to P (ψ) = (C(ψ),K(ψ)) and δ(z, zi) is
the Dirac mass concentrated at the point zi.
Then the optimal control problem consists to find P ∗(ψ) = [C∗(ψ),K∗(ψ)] solution
of:

J(P ∗(ψ)) = inf
P (ψ)∈Θad

J(P (ψ))

where ψ is the solution of (8) and Θad is the set of admissible controls, defined as
follows:

Θad ={P (ψ) = (C(ψ),K(ψ)) continuous functions defined from R to R and there

exist, c0, c1, k0, k1 ≥ 0 such that c0 ≤ C(ψ) ≤ c1, k0 ≤ K(ψ) ≤ k1 a.e. in R}.
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We note that, for the choice of Θad, we assume that C(ψ) andK(ψ) are continuous and
bounded functions. In fact, this assumption is not restrictive. Indeed the capillary
capacity and the hydraulic conductivity are continuous positive and bounded with
respect to ψ, and independent on the characteristic of the soil [15].

Hence, our optimal control problem is summarized as follows:

(PO)

{
inf

P∈Θad

J(ψ(P );P (ψ))

Where ψ(P ) is the solution of (8).
(11)

4. Numerical approach

In order to approximate the direct problem, we propose a time and space dis-
cretization of equation (8). The time discretization is done by using an implicit Euler
scheme, while the space discretization is performed using finite difference progressive
scheme. Denote by i (respectively j) the space index discretization (respectively time
index discretization), ∆z (respectively ∆t) the space mesh size (respectively time
mesh size), Then we have zi = i∆z, for i = 1, . . . , N and tj = j∆t, for j = 1, . . . ,M .
We consider then an approximation of problem (8) by the discrete problem (Pd)
stated as follows :

(Pd)


Cj+1
i

ψj+1
i − ψji

∆t
− 1

∆z
(kj+1
i+1 (

ψj+1
i+1 − ψ

j+1
i

∆z
− 1)− kj+1

i (
ψj+1
i − ψj+1

i−1

∆z
− 1)) = f j+1

i ,

ψj+1
0 = ψmin,

ψj+1
N+1 = ψmax,

ψ0
i = ψ0,

(12)

for i = 1, . . . , N and j = 1, . . . ,M , where Cji , Kj
i , ψji and f ji are respectively, the

approximates functions of C(ψ) , K(ψ), ψ and f in the point (zi, tj). Hence, the
matrix form of this problem is given by

A(ψj+1)ψj+1 = B(ψj+1),

where ψj+1 is the water pressure vector at time step j + 1. Moreover, the matrix
A(ψj+1) is symmetric tridiagonal whose elements are given by:

Ai,i+1 = Ai+1,i = −Kj+1
i+1

Ai,i = Kj+1
i +Kj+1

i+1 +
∆z2

∆t
Cj+1
i

and B(ψj+1) is the global vector whose elements are functions of the hydraulic con-
ductivity and capillary capacity,

B(i) =
∆z2

∆t
Cj+1
i ψji + (Kj+1

i −Kj+1
i+1 )∆z + ∆z2f j+1

i .

4.1. Picard’s method. The successive iteration of Picard is a linearization method
widely used by several authors (see for example [1]). This process gives a sequence of
functions, which converges asymptotically to the solution. This method consists, at
each time step j + 1, to construct a sequence (ψj+1,m)m, from a given ψj+1,0, such
that

A(ψj+1,m)ψj+1,m+1 = B(ψj+1,m).
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By introducing the pressure vector ∆ψj+1,m+1 = ψj+1,m+1 − ψj+1,m, the previous
system is written as follows:

A(ψj+1,m)∆ψj+1,m+1 = B(ψj+1,m)−A(ψj+1,m)ψj+1,m. (13)

Then the considered Picard algorithm is summarized as follows: (for a given precision
ε)
Step 1 : Put ψj+1,0 = ψj the initial vector where ψj is the pressure at time tj .
Step 2 : For m = 0, 1, 2, ..., N do
• Build the system (13).
• Solve the system (13) for ∆ψj+1,m+1.
• Calculate the new solution ψj+1,m+1 = ∆ψj+1,m+1 + ψj+1,m.
• Test if |∆ψj+1,m| < ε, then ψj+1,m+1 is the approximate solution at time step
j + 1,
else m = m+ 1 and go to step 2.

4.2. Numerical algorithms. For the discretization of the optimal control problem,
let us define a family of discrete admissible controls

Θh
ad = {(Ch,Kh) ∈ C([0, 1])2 | Ch|[zm,zm+1] and Kh|[zm,zm+1] ∈ P1([zm, zm+1]),

∀m = 1, . . . , N} ∩Θad,

and we approach the cost functional by the following discrete one

Jh(Ph(ψh)) =
1

2

N∑
m=1

M∑
j=0

∫ tj+1

tj

(ψm(t)− ψobs,m(t))2 dt,

where ψm(t) is the solution of (12) in all time in the point zm and h is the space mesh
size.
We state our discrete optimal shape problem as follows

(PO)

 inf
Ph∈Θh

ad

Jh(ψh(Ph);Ph(ψh))

where ψh(Ph) is the solution of (12).
(14)

with ψh = (ψjm)1≤m≤N, 1≤j≤M .
To solve this discrete optimal problem (14), we developed a numerical algorithm

based on a genetic algorithm procedure [12]. Genetic algorithms (GA), primarily
developed by Holland [6], have been successfully applied to various optimization
problems. It is essentially a searching method based on the Darwinian principles
of biological evolution. In GA a new generation of individuals is produced using the
simulated genetic operations crossover and mutation. The probability of survival of
generated individuals depends of their fitness: the best ones survive with the high
probability, the worst die rapidly. This procedure can be summarized in the following
algorithm see [12].
(1) Iteration k = 0, generate randomly an admissible population.
(2) Solve (8) for each individual of population.
(3) Evaluate the fitness (10) for each individual of population.
(4) If the termination criteria is hold J < ε, then stop.

Else set k = k + 1 and go to step 5.
(5) Roulette wheel selection
(6) Applied to the selected individuals, the barycenter crossover procedure.
(7) Select randomly some individual, and applied to them the mutation.
(8) Go to step 2
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5. Numerical results

In this section, we present some numerical results in which the exact functions
C(ψ) and K(ψ) are known. For different configurations, one is asked to reconstruct
the exact functions by using the optimal control formulation (14). In all the follow-
ing numerical examples, we solve the identification problem considering the domain
Ω = [0, 1].

5.1. Validation of the method against an exact solution. We consider an
example in which the exact solution is known analytically. Indeed, for these given
data

ψ0 = z, ψmin(t) = t, ψmax(t) = 1 + t and f = 0,

C(ψ) = 2ψ K(ψ) = ψ2,

the exact solution is:
ψexacte = z + t.

For all following numerical examples, we take these numerical data

N = 11, M = 10, ε = 10−5, Nobs = 1, zobs = 0.5

For the evolutionary algorithm, after several numerical tests, the optimal numerical
data allowing us to get a better solution with a reasonable computational cost are:

population size = 10, crossover probability = 0.6, probability of mutation = 5%

In order to study the numerical behavior and show the efficiency of our approach,
different configurations are investigated. Through some numerical examples, we show
the convergence and the performance of our approach.

First configuration:
case (a): In this case, we suppose that the hydraulic conductivity K(ψ) is known,

and capillary capacity C(ψ) is a linear function.

C(ψ) = αψ and K(ψ) = ψ2

The identification problem in this case, is reduced to find the parameter α.
case (b): In this new case, the hydraulic conductivity is the same as in the case

(a), but the capillary capacity is supposed to be an affine function.

C(ψ) = 2ψ + β and K(ψ) = ψ2,

we look to identify the parameter β. In the Figure 1, we illustrate the decrease

Figure 1. Cost functional.
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of the cost functional Jh with the iteration numbers. We note that, for these
two cases, the cost function decreases quickly, in about four order of magnitude
occurring over 5 or 6 iterations. The approached values of α and β are:

αapp = 2.01973 and βapp = 0.03122;

It can be seen that we have obtained a good approximations of the parameters
α and β.

case (c): We keep the same data as in the case (b), and we look to identify the
both parameters α and β simultaneously

Figure 2. Cost functional.

In Figure 2, we present the variation of the cost function with respect to the
iteration number. In this case, we note that at the first five iterations, the cost
function decreases quickly to reach a precision 1.510−2, then the cost function
continues to decrease until it reaches a precision less than 5.10−3 in 40 iterations.
The approached values of α and β are:

αapp = 2.197 and βapp = 0.0223;

We note that in this case the accuracy is not better than the previous cases,
in fact, this is due to the difficulty of approximating both of the parameters
simultaneously.

Second configuration:
case (a): In this case, we suppose that the capillary capacity C(ψ) is known, and

hydraulic conductivity K(ψ) is a quadratic function of ψ.

C(ψ) = 2ψ and K(ψ) = λψ2.

The identification problem, in this case, is reduced to find the parameter λ.
case (b): We maintain the same function Cψ) as in the previous case, and we

introduce another parameter σ in the expression of hydraulic conductivity K(ψ).

C(ψ) = 2ψ and K(ψ) = ψ2 + σ,

we seek in this stage, to identify the parameter σ.
In the Figure 3, we illustrate the decrease of the cost functional Jh with the
iteration number. It is noted that in these two cases, the functional Jh doesn’t
decreases quickly as in the first configuration, which justifies the difficulty related
to the determination of hydraulic conductivity. The approached values of λ and
σ are:

λapp = 0.9873 and σapp = 0.03.
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Figure 3. Cost functional.

also, in this case we obtains an excellent approximation of approached values.
case (c): As in the case (c) of the first configuration, we keep the same functions

for C(ψ) and K(ψ), and we are interested in identifying the parameters λ and σ
simultaneously.

Figure 4. Cost functional.

The Figure (4) shows the decrease of the cost function with respect to iteration
number, which decreases slowly compared to the case (c) of the first configura-
tion. Then, the functional continues to decreased until it reaches the precision
2.10−3 at iteration 50. The approached values of λ and σ are:

λapp = 0.9642 and σapp = 0.0324.

The accuracy in this case is great, in fact, this case demonstrates the complex
nature of this problem.

Third configuration:
: In this case, the previous configurations will be mixed, we assume that the capil-

lary capacity is linear and the hydraulic conductivity is quadratic.

C(ψ) = αψ + β and K(ψ) = λψ2 + σ,

Here, we are looking for the identification of these four parameters simultane-
ously. In the Figure 5, we give the variation of the cost functional with respect to
the number of iteration, we note that for this configuration, the cost functional
decrease slowly compared to the previous configurations. We note that in this
case, despite the complicated nature of the problem due to to the fact that we
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Figure 5. Cost functional.

have to identify four parameters from a single observation, the numerical results
remain good. The approached values in this case are:

αapp = 2.134, βapp = 0.052, λapp = 0.9342 and σapp = 0.042.

Conclusion

In this work, we have proposed an effective method for the approximation of an
inverse problem governed by a highly nonlinear equation. This method is based on its
formulation on an optimal control problem and its discretization by a finite difference
method combined with the Picard’s iteration. The discrete associate optimization
problem is solved by an evolutionary algorithm. This method has the advantage of
identifying all parameters simultaneously with a reasonable computational cost, even
if we take only a single observation data (Nobs = 1).
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