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A domain decomposition method for boundary element
approximations of the elasticity equations

Abdellatif Ellabib and Abdeljalil Nachaoui

Abstract. In this paper, we discuss a domain decomposition method to solve linear elasticity

problems in complicated 2-D geometries Ω. We describe in details algebraic system corre-
sponding to Dirichlet-Neumann and Schwarz methods. The alternating iterative algorithm

obtained is numerically implemented using the boundary element method. The stopping and

accuracy criteria, and two type of domain are investigated which confirm that the iterative
algorithm produces a convergent and accurate numerical solution with respect to the number

of iterations.
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1. Introduction

Domain decomposition ideas have been applied to a wide variety of problems. We
could not hope to include all these techniques in this work. For an extensive survey
of recent advances, we refer to the proceedings of the annual domain decomposition
meetings see http://www.ddm.org. Domain decomposition algorithms is divided into
two classes, those that use overlapping domains, which refer to as Schwarz methods,
and those that use non-overlapping domains, which we refer to as substructuring.

Any domain decomposition method is based on the assumption that the given
computational domain Ω is decomposed into subdomains Ωi, i = 1, . . . ,M , which
may or may not overlap. Next, the original problem can be reformulated upon each
subdomain Ωi, yielding a family of subproblems of reduced size that are coupled
one to another through the values of the unknowns solution at subdomain interfaces.
Fruitful references can be found in [17, 15, 18, 19, 20].

Domain decomposition for contact problems has been applied by many authors
(see, for example, surveys [2, 5, 8, 13]. A numerical study of elasticity equations by
domain decomposition method combined with finite element method was treated in
[10, 11, 6, 9, 12]. A symmetric boundary element analysis with domain decomposition
is studied in [7, 16].

The numerical approach based on the overlapping domain decomposition was used
for biharmonic equation in two overlapping disks [1] and for Poisson equation [4].

We have chosen to associate the Dirichlet-Neumann and Schwarz methods with
the direct boundary element method. Indeed, it only requires the discretization of
the boundaries of the subdomains. This technique of coupling reduces the number of
unknowns and the time of computing. It has been used successfully for semiconductors
simulation [14].

This paper has been presented at Congrès MOCASIM, Marrakech, 19-22 November 2014.
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We consider a linear elasticity material which occupies an open bounded domain
Ω ⊂ R2, and assume that Ω is bounded by Γ = ∂Ω. We also assume that the boundary
consists of two parts Γ = Γ1 ∪ Γ2 where Γ1 and Γ2 are not empty and Γ1 ∩ Γ2 = ∅
where Ω is not necessarily circular or rectangular.

Let V = (u, v) the displacement vector and S = (t, s) the traction vector governed
by the following linear elasticity problem

G∆u+
G

1− 2ν

(
∂2u

∂x2
+

∂2v

∂x∂y

)
= 0 in Ω,

G∆v +
G

1− 2ν

(
∂2u

∂x∂y
+
∂2v

∂y2

)
= 0 in Ω

u = ũ, v = ṽ on Γ1

t = t̃, s = s̃ on Γ2

(1)

with G and ν the shear modulus and Poisson ratio, respectively, and where ũ, ṽ, t̃
and s̃ are the prescribed quantities.

The main body of this paper begins a description of Dirichlet-Neumann and Schwarz
methods for elasticity equations (1), in section 2. Integral formulation and boundary
element method are also exposed in subsection 3.1 and 3.2. The technique to obtain
algebraic systems on each subdomain for Dirichlet-Neumann and Schwarz methods
is detailed in section 4. Two algorithm to implement domain decomposition method
combined with boundary element for elasticity equations (1) are presented, and nu-
merical results in the case of 2-D complicated geometries are given in section 5. The
paper ends with conclusion in section 6.

2. Domain decomposition techniques

In order to use domain decomposition to linear elasticity, we describe, in this
section, Dirichlet-Neumann and Schwarz methods.

2.1. Dirichlet-Neumann substructuring method. We decompose Ω into two
non-overlapping subdomains Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2, and denote by
Γ12 = ∂Ω1 ∩ ∂Ω2 the common interface between Ω1 and Ω2. We can write this
method as follows.
• Step 1. Specify an initial Λ0 = (λ0, β0) on interface Γ12 and k = 0.
• Step 2. Solve the mixed well-posed direct problem

G∆uk1 +
G

1− 2ν

(
∂2uk1
∂x2

+
∂2vk1
∂x∂y

)
= 0 in Ω1

G∆vk1 +
G

1− 2ν

(
∂2uk1
∂x∂y

+
∂2vk1
∂y2

)
= 0 in Ω1

uk1 = ũ, vk1 = ṽ on Γ1 ∩ ∂Ω1

tk1 = t̃, sk1 = s̃ on Γ2 ∩ ∂Ω1

uk1 = λk, vk1 = βk on Γ12

(2)

to determine the traction Sk1 = (tk1 , s
k
1) on the interface Γ12.
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• Step 3. Solve the mixed well-posed direct problem

G∆uk2 +
G

1− 2ν

(
∂2uk2
∂x2

+
∂2vk2
∂x∂y

)
= 0 in Ω2

G∆vk2 +
G

1− 2ν

(
∂2uk2
∂x∂y

+
∂2vk2
∂y2

)
= 0 in Ω2

uk2 = ũ, vk2 = ṽ on Γ1 ∩ ∂Ω2

tk2 = t̃, sk2 = s̃ on Γ2 ∩ ∂Ω2

tk2 = −tk1 , sk2 = −sk1 on Γ12

(3)

to determine the displacement Vk2 = (uk2 , v
k
2 ) on the interface Γ12.

• Step 4. Update Λk+1 = (λk+1, βk+1) on the interface Γ12 by{
λk+1 = θuk2 + (1− θ)λk on Γ12

βk+1 = θvk2 + (1− θ)βk on Γ12
(4)

• Step 5. Repeat step 2 from k ≥ 0 until a prescribed stopping criterion is satisfied.
where θ is positive parameter. This algorithm establish the solution of elasticity
equations of Problem 1 in Ω as a limit of sequence (uk1 , v

k
1 , u

k
2 , v

k
2 ).

For this algorithm the following stopping criterion is used

max
(
‖λk+1 − λk‖L2(Γ12), ‖βk+1 − βk‖L2(Γ12)

)
< Tol, (5)

where Tol is a prescribed tolerance.

2.2. Schwarz overlapping method. We decompose Ω into two overlapping sub-
domains Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2, and denote by Γ11 = ∂Ω1 ∩ Ω2 and
Γ22 = ∂Ω2 ∩ Ω1. This method is summarized in the following.
• Step 1. Specify an initial V0

2 = (u0
2, v

0
2) on Γ11 and k = 0.

• Step 2. Solve the mixed well-posed direct problem

G∆uk+1
1 +

G

1− 2ν

(
∂2uk+1

1

∂x2
+
∂2vk+1

1

∂x∂y

)
= 0 in Ω1

G∆vk+1
1 +

G

1− 2ν

(
∂2uk+1

1

∂x∂y
+
∂2vk+1

1

∂y2

)
= 0 in Ω1

uk+1
1 = ũ, vk+1

1 = ṽ on Γ1 ∩ ∂Ω1

tk+1
1 = t̃, sk+1

1 = s̃ on Γ2 ∩ ∂Ω1

uk+1
1 = uk2 , vk+1

1 = vk2 on Γ11

(6)

to determine the displacement Vk+1
1 = (uk+1

1 , vk+1
1 ) and traction Sk+1

1 = (tk+1
1 , sk+1

1 )
on the boundary of Ω1.

• Step 3. Compute the displacement Vk+1
1 = (uk+1

1 , vk+1
1 ) on Γ22 as an internal

displacement of linear elasticity equations in Ω1.
• Step 4. Solve the mixed well-posed direct problem then

G∆uk+1
2 +

G

1− 2ν

(
∂2uk+1

2

∂x2
+
∂2vk+1

2

∂x∂y

)
= 0 in Ω2

G∆vk+1
2 +

G

1− 2ν

(
∂2uk+1

2

∂x∂y
+
∂2vk+1

2

∂y2

)
= 0 in Ω2

uk+1
2 = ũ, vk+1

2 = ṽ on Γ1 ∩ ∂Ω2

tk+1
2 = t̃, sk+1

2 = s̃ on Γ2 ∩ ∂Ω2

uk+1
2 = uk+1

1 , vk+1
2 = vk+1

1 on Γ22

(7)
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to determine the displacement Vk+1
2 = (uk+1

2 , vk+1
2 ) and traction Sk+1

2 = (tk+1
2 , sk+1

2 )
on the boundary of Ω2.

• Step 5. Compute the displacement Vk+1
2 = (uk+1

2 , vk+1
2 ) on Γ11 as an internal

displacement of linear elasticity equations in Ω2.
• Step 6. Repeat step 2 from k ≥ 0 until a prescribed stopping criterion is satisfied.
For this algorithm the following stopping criterion is used

max
(
‖uk+1

1 − uk1‖L2(Γ11), ‖vk+1
1 − vk1‖L2(Γ11), ‖uk+1

2 − uk2‖L2(Γ22), ‖vk+1
2 − vk2‖L2(Γ22)

)
< Tol,

(8)
where Tol is a prescribed tolerance.

The boundary element method utilizes information on the boundaries of interest,
and thus reduces the dimension of the problem by one. The displacements in the
domain is uniquely defined by the displacements and tractions on the boundary. In
the boundary element method, only the boundary is discretized; hence, the mesh
generation is considerably simpler for this method than for space discretization tech-
niques, such as the finite difference method or finite element method. Moreover, the
Boundary element method determines simultaneously the boundary displacements
and tractions, this allows us to solve problem (2), (3) without the need of further
finite difference, as one would employ if using the finite element method or the finite
difference method.

For these reasons we have decided in this study to use the boundary element method
in order to implement the Dirichlet-Neumann and Schwarz methods.

3. Integral equation formulation and boundary element for elasticity equa-
tions

The linear elasticity problem (1) in two-dimensional case can be formulated in
integral form [3] as follows

∫
Γ

Uij(P,Q){S}j(Q) dΓ(Q)−
∫

Γ

Tij(P,Q){V}j(Q) dΓ(Q) =

{
{V}i(P ) if P ∈ Ω
1

2
{V}i(P ) if P ∈ Γ

(9)
for i, j = 1, 2, where Uij and Tij denote the fundamental displacements and tractions
for the two-dimensional isotropic linear elasticity [3]. The boundary integral equations
are solved using boundary element method with constant boundary elements. The
boundary is divided into N constant elements. Denoting by {V}i = {ui, vi}T and
{S}i = {ti, si}T the displacements and tractions at the ith node. Then, the discretized

form of Eq. (9) can be written as
1

2
{V}i +

N∑
j=1

Ĥij{V}j =

N∑
j=1

Gij{S}j where Gij and

Ĥij are 2× 2 matrices such that for l,m = 1, 2

(Gij)lm =

∫
Γj

Ulm(P i, Q) dΓ(Q) and (Ĥij)lm =

∫
Γj

Tlm(P i, Q) dΓ(Q)

Applying this equation to all the boundary nodal points yields 2N equations, which
can be set in matrix form as

H V = GS (10)
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where H = Ĥ +
1

2
I and I is 2N × 2N identity matrix. The displacements in the

interior of Ω can be evaluated using Eq. (9) which after discretization becomes

{V}i =

N∑
j=1

Gij{S}j −
N∑
j=1

Ĥij{V}j . (11)

4. Algebraic systems of Dirichlet Neumann and Schwarz methods

We consider in this work the mixed boundary condition given by Problem (2), (3), (6)
and (7). In this case the rearrangement of the unknowns in Eq. (10) is necessary. In
order to obtain an algebraic system, we denote the matrices Hi and Gi computed in
each subdomain Ωi by the use of Dirichlet Neumann or Schwarz method. Note that
Hi and Gi are geometry dependent matrices and depend on the type of the boundary
conditions, but not on their values. Therefore the matrices Hi and Gi do not change
during the iterate procedure of domain decomposition method. We suppose that the
boundary Γj ∩ ∂Ωi is divided into Nj constant elements for i, j = 1, 2.

4.1. Alternating algebraic system of Dirichlet-Neumann method. Let the
boundary Γ12 divided into N12 constant elements. Due to the boundary condition of
system (2) and (3), the matrices Hi and Gi are decomposed as follows

Hi = (HΓ1∩∂Ωi
HΓ2∩∂Ωi

HΓ12
) and Gi = (GΓ1∩∂Ωi

GΓ2∩∂Ωi
GΓ12

) (12)

The algebraic systems corresponding to subproblems (2) and (3) take the form

(HΓ1∩∂Ω1
HΓ2∩∂Ω1

HΓ12
)

 Vk1 |Γ1∩∂Ω1

Vk1 |Γ2∩∂Ω1

Vk1 |Γ12


= (GΓ1∩∂Ω1

GΓ2∩∂Ω1
GΓ12

)

 Sk1 |Γ1∩∂Ω1

Sk1 |Γ2∩∂Ω1

Sk1 |Γ12


Vk1 |Γ1∩∂Ω1

= Ṽ1, Sk1 |Γ2∩∂Ω1
= S̃1, Vk1 |Γ12

= Λk

(13)

and 

(HΓ1∩∂Ω2
HΓ2∩∂Ω2

HΓ12
)

 Vk2 |Γ1∩∂Ω2

Vk2 |Γ2∩∂Ω2

Vk2 |Γ12


= (GΓ1∩∂Ω2 GΓ2∩∂Ω2 GΓ12)

 Sk2 |Γ1∩∂Ω2

Sk2 |Γ2∩∂Ω2

Sk2 |Γ12


Vk2 |Γ1∩∂Ω2

= Ṽ2, Sk2 |Γ2∩∂Ω2
= S̃2, Sk2 |Γ12

= −Sk1|Γ12
.

(14)

The actualization of Λk is given by

Λk+1 = θVk2|Γ12
+ (1− θ)Λk. (15)



216 A. ELLABIB AND A. NACHAOUI

Let Xk
1 and Xk

2 be the vectors containing the unknowns values of displacements or
tractions on the boundary of subdomains Ω1 and Ω2 respectively. They are given by

Xk
1 =

 Sk1 |Γ1∩∂Ω1

Vk1 |Γ2∩∂Ω1

Sk1 |Γ12

 and Xk
2 =

 Sk2 |Γ1∩∂Ω2

Vk2 |Γ2∩∂Ω2

Vk2 |Γ12

 . (16)

The matrices A1 and A2 are defined by the following

A1 = (−GΓ1∩∂Ω1 HΓ2∩∂Ω1 −GΓ12) and A2 = (−GΓ1∩∂Ω2 HΓ2∩∂Ω2 HΓ12) . (17)

Then the algebraic system of Dirichlet-Neumann associated to problem (2) and (3) is
written in the following

A1X
k
1 = −HΓ1∩∂Ω1 Ṽ1 +GΓ2∩∂Ω1 S̃1 −HΓ12Λk,

A2X
k
2 = −HΓ1∩∂Ω2

Ṽ2 +GΓ2∩∂Ω2
S̃2 −GΓ12

Xk
1 |Γ12

(18)

and

Λk+1 = θXk
2 |Γ12

+ (1− θ)Λk. (19)

For simplification, let

Bk1 = −HΓ1∩∂Ω1
Ṽ1 +GΓ2∩∂Ω1

S̃1 −HΓ12
Λk (20)

Bk2 = −HΓ1∩∂Ω2
Ṽ2 +GΓ2∩∂Ω2

S̃2 −GΓ12
Xk

1|Γ12
. (21)

The matrices A1 and A2 can be factorized in the following

A1 = L1R1 and A2 = L2R2

where L1, L2 are lower triangular matrices and R1, R2 are upper triangular matri-
ces. Now from (18) Xk

1 and Xk
2 can be obtained by backward followed by forward

substitutions. This gives arise to the following algorithm :
Algorithm 4.1

(1) Set k = 0, choose the initial Λ0 = (λ0, β0) ∈ R2N12 and a tolerance for the
iterative solver

(2) Compute Hi and Gi for subdomains Ωi for i = 1, 2
(3) Compute Ai using Eq. (17) for i = 1, 2
(4) Compute Li and Ri (decomposition of Ai) for i = 1, 2
(5) Repeat

• Compute the vector containing known boundary values Bk1 using Eq. (20)
• Solve system L1R1X

k
1 = Bk1

• Compute the vector containing known boundary values Bk2 using Eq. (21)
• Solve L2R2X

k
2 = Bk2

• Update Λk = (λk, βk) by formula (19)
• k = k + 1

Until convergence.
(6) End.
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4.2. Alternating algebraic system of Schwarz method. Let the boundary Γii
divided into Nii constant elements for i = 1, 2. The matrices Hi and Gi associated
to the system (6) and (7), can be decomposed as follows

Hi = (HΓ1∩∂Ωi HΓ2∩∂Ωi HΓii) and Gi = (GΓ1∩∂Ωi GΓ2∩∂Ωi GΓii) (22)

In order to compute the internal displacements in Ωi by Eq. (11), we introduce the
matrix Ii which take the form

Ii = (−HΩi GΩi). (23)

The algebraic systems obtained from boundary element discretisation of subprob-
lems (6) and (7) take the form

(HΓ1∩∂Ω1
HΓ2∩∂Ω1

HΓ11
)

 V
k+1
1 |Γ1∩∂Ω1

Vk+1
1 |Γ2∩∂Ω1

Vk+1
1 |Γ11


= (GΓ1∩∂Ω1 GΓ2∩∂Ω1 GΓ11)

 S
k+1
1 |Γ1∩∂Ω1

Sk+1
1 |Γ2∩∂Ω1

Sk+1
1 |Γ11


Vk+1

1 |Γ1∩∂Ω1
= Ṽ1, Sk+1

1 |Γ2∩∂Ω1
= S̃1, Vk+1

1 |Γ11
= Vk2 |Γ11

,

(24)

Vk+1
1 |Γ22

= I1

(
Vk+1

1 |∂Ω1

Sk+1
1 |∂Ω1

)
(25)

and 

(HΓ1∩∂Ω2
HΓ2∩∂Ω2

HΓ22
)

 V
k+1
2 |Γ1∩∂Ω2

Vk+1
2 2|Γ2∩∂Ω2

Vk+1
2 2|Γ22


= (GΓ1∩∂Ω2

GΓ2∩∂Ω2
GΓ22

)

 S
k+1
2 |Γ1∩∂Ω2

Sk+1
2 |Γ2∩∂Ω2

Sk+1
2 |Γ22


Vk+1

2 |Γ1∩∂Ω2
= Ṽ2, Sk+1

2 |Γ2∩∂Ω2
= S̃2, Sk+1

2 |Γ22
= Vk+1

1 |Γ22
,

(26)

Vk+1
2 |Γ11

= I2

(
Vk+1

2 |∂Ω2

Sk+1
2 |∂Ω2

)
. (27)

Let Xk+1
i , the vectors containing the unknowns values of displacements or tractions

on the boundary of subdomains Ωi for i = 1, 2, have the following form

Xk+1
i =

 S
k+1
i |Γ1∩∂Ωi

Vk+1
i |Γ2∩∂Ωi

Sk+1
i |Γii

 (28)

The matrices A1 and A2 are defined for i = 1, 2 by the following

Ai = (−GΓ1∩∂Ωi HΓ2∩∂Ωi −GΓii) (29)

Then the algebraic system of Schwarz method associated to problem (6) and (7) is
written in the following

A1X
k+1
1 = Bk1 , A2X

k+1
2 = Bk+1

2 (30)
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where
Bk1 = −HΓ1∩∂Ω1 Ṽ1 +GΓ2∩∂Ω1 S̃1 −HΓ11Vk2 |Γ11

(31)

Bk+1
2 = −HΓ1∩∂Ω2 Ṽ2 +GΓ2∩∂Ω2 S̃2 −HΓ22Vk+1

1 |Γ11
. (32)

The matrices A1 and A2 can be factorized in the following A1 = L1R1 and A2 = L2R2

where L1, L2 are lower triangular matrices and R1, R2 are upper triangular matrices.
Now from (30) Xk+1

1 and Xk+1
2 can be obtained by backward followed by forward

substitutions. This gives arise to the following algorithm :
Algorithm 4.2

(1) Set k = 0, choose the initial V0
2 ∈ R2N11 given and a tolerance for the iterative

solver
(2) Compute Hi and Gi for subdomains Ωi for i = 1, 2
(3) Compute Ai using Eq. (29) for i = 1, 2
(4) Compute Ii using Eq. (23) for i = 1, 2
(5) Compute Li and Ri (decomposition of Ai) for i = 1, 2
(6) Repeat

• Compute the vector containing known boundary values Bk1 using Eq. (31)

• Solve system L1R1X
k+1
1 = Bk1

• Compute internal displacement in subdomain Ω1 using Eq. (25)

• Compute the vector containing known boundary values Bk+1
2 using

Eq. (32)

• Solve L2R2X
k+1
2 = Bk+1

2

• Compute internal displacement in subdomain Ω2 using Eq. (27)
• k = k + 1

Until convergence.
(7) End.

5. Numerical results and discussions

In this section, we illustrate the numerical results obtained using the Dirichlet-
Neumann and Schwarz domain decomposition method combined with boundary el-
ement method for linear elasticity problem. The comparison of this two domain
decomposition method is done in L-shaped domain.

The behavior of the method is investigated evaluating the difference between two
consecutive approximations for the displacements solutions and its tractions on the
boundary γ given by

Eik(u) = ‖uk+1
i − uki ‖L2(γ), E

i
k(v) = ‖vk+1

i − vki ‖L2(γ),

Eik(t) = ‖tk+1
i − tki ‖L2(γ), E

i
k(s) = ‖sk+1

i − ski ‖L2(γ).
(33)

Based on absolute errors the following stopping criterion is considered for Algo-
rithm 4.2

max(Eik(u), Eik(v)) < η. (34)

The stopping criterion for Algorithm 4.1 is

max(Ek(λ), Ek(β)) < η (35)

where
Ek(λ) = ‖λk+1 − λk‖L2(γ), Ek(β) = ‖βk+1 − βk‖L2(γ) (36)

where η is a small prescribed positive quantity.
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In order to investigate the convergence of the two algorithm, at every iteration we
evaluate the accuracy errors defined by

Giu(k) = ‖ui − uani ‖L2(γ), G
i
v(k) = ‖vi − vani ‖L2(γ),

Git(k) = ‖ti − tani ‖L2(γ), G
i
s(k) = ‖si − sani ‖L2(γ).

(37)

Note that (34) or (35) express that the sequence (uk, vk) converge in sobolev spaces

H
1
2 (γ)×H 1

2 (γ). For all numerical experiments, we take η = 10−7. Note that we have
γ = Γ12 for Algorithm 4.1 and for Algorithm 4.2 γi = Γii, i = 1, 2.

5.1. Example 1. In order to illustrate the performance of the numerical method
described above, we solve the linear elasticity problem (1), in two-dimensional L-
shaped domain Ω = (0, 1)× (0, 0.5) ∪ (0, 0.5)× (0, 1). We assume that the boundary
is split into two parts Γ1 = [0, 1] × {0} ∪ [ 1

2 , 1] ×
{

1
2

}
∪ [0, 1

2 ] × {1} and Γ2 = {1} ×
[0, 1

2 ]∪
{

1
2

}
× [ 1

2 , 1]∪{0}× [0, 1]. The exact solution of the direct problem is given by

u(x, y) =
1− ν
2G

σ0x, v(x, y) = − ν

2G
σ0y, t(x, y) = σ0n1, s(x, y) = 0 (38)

with σ0 = 1.5× 1010, G = 3.35× 1010 and ν = 0.25.
This example consists in spliting the domain Ω into two rectangular subdomains

Ω1 = (0.5, 1)× (0, 0.5) and Ω2 = (0, 0.5)× (0, 1) with interface γ = {0.5} × [0, 0.5].
The evolution of behavior errors as a function of the iteration number using Algo-

rithm 4.1 is plotted in Fig. 1.

Figure 1. The behavior errors given by (33), (35) as a function of the

number of iterations k on interface γ for Example 1.

Fig. 2(a)-(b) shows that the accurate convergence as a function of the iteration
number using Algorithm 4.1 decreases when the iteration number increases.

In Fig. 3(a)-(b), we have plotted the exact and computed displacements as a func-
tion of y ∈ [0, 0.5] using Algorithm 4.1. The discrepancy is about 5 × 10−5 near to
the corner.

We can observe in Fig. 4(a)-(b) where the exact and computed tractions are plotted
as a function of y ∈ [0, 0.5] using Algorithm 4.1. The discrepancy is about 2.5× 10−2

near to the corner.

5.2. Example 2. This example deals with the same exact solution as in Eq. (38).
This example consists in splitting the domain Ω into two overlap rectangular subdo-
mains Ω1 = (0, 1)× (0, 0.5) and Ω2 = (0, 0.5)× (0, 1) with overlap is (0., 0.5)× (0, 0.5).
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(a) (b)

Figure 2. The accuracy errors given by (37) as a function of the number

of iterations k on interface γ for Example 1.

(a) (b)

Figure 3. Computed and analytical u, v on interface γ for Example 1.

(a) (b)

Figure 4. Computed, analytical t, s on interface γ for Example 1.

In Fig. 5, we observe the convergence of calculated solution to exact solution as a
function of the iteration number by the use of Algorithm 4.2.

The conclusions drawn from Fig. 5 are graphically enhanced in Figs. 6-10 which
show the numerical results obtained using Algorithm 4.2 in comparison with the
analytical solutions.

Comparing Algorithm 4.1 and Algorithm 4.2 to solve linear elasticity problem in
L-shaped domain, we can see from Figs. 2 and 6 that Algorithm 4.2 requires much less
iterations than Algorithm 4.1. The computed solutions are accurate and consistent
with respect to increasing the iteration number k.
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Figure 5. the behavior errors given by (33) and (34) as a function of the

number of iterations k on part of boundaries γ2 for Example 2.

(a) (b)

Figure 6. The accuracy errors given by (37) as a function of the number

of iterations k on part of boundaries γ2 for Example 2.

Figure 7. Computed, analytical u on γ1, γ2 for Example 2.

5.3. Example 3. In this example, we consider the union of two circle geometry
domain Ω. This example consists in spliting the domain Ω into two overlap circu-
lar subdomains Ω1 = {(x, y) ∈ R2/(x − 0.5)2 + y2 = 0.25} and Ω2 = {(x, y) ∈
R2/(x− 0.5(1 +

√
2))2 + y2 = 0.25} with overlap is Ω1 ∩Ω2. In order to illustrate the

performance of the numerical method described above, we solve the linear elasticity
problem (1), in two-circular domain Ω. The exact solution of the direct problem is
given by.

u(x, y) =
1− 2ν

2G
σ0x, v(x, y) =

1− 2ν

2G
σ0y, t(x, y) = σ0n1, s(x, y) = σ0n2 (39)
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Figure 8. Computed and analytical v on γ1, γ2 for Example 2.

(a) (b)

Figure 9. Computed and analytical t on γ1, γ2 for Example 2.

(a) (b)

Figure 10. Computed and analytical s on γ1, γ2 for Example 2.

with σ0 = 1.5× 1010, G = 3.35× 1010 and ν = 0.25.
As a function of the iteration k, four behavior errors are illustrated in Fig. 11 using

Algorithm 4.2.
In Fig. 12(a)-(b), we observe the convergence of calculated solution to exact solution

as a function of the iteration number by the use of Algorithm 4.2.
The conclusions drawn from Fig. 11 are graphically enhanced in Figs. 13-16 which

show the numerical results obtained using Algorithm 4.2 in comparison with the
analytical solutions.
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Figure 11. The behavior errors given by(33), (34) as a function of the

number of iterations k on part of boundaries of Ω1 and Ω2 respectively, for

Example 3.

(a) (b)

Figure 12. The accuracy errors given by (37) as a function of the num-

ber of iterations k on part of boundaries of Ω1 and Ω2 respectively, for

Example 3.

(a) (b)

Figure 13. Computed and analytical u in Ω1, Ω2 for Example 3.

6. Conclusion

A domain decomposition coupled with Boundary element method was presented to
solve linear elasticity equations in complicated geometries. Three examples of domain
are given. Stopping and two accuracy criteria given by Eq. (35) for Dirichlet-Neumann
method, Eq. (34) for Schwarz method and accuracy criteria given by Eqs.(37) have
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(a) (b)

Figure 14. Computed and analytical v in Ω1, Ω2 for Example 3.

(a) (b)

Figure 15. Computed and analytical t in Ω1, Ω2 for Example 3.

(a) (b)

Figure 16. Computed and analytical s in Ω1, Ω2 for Example 3.

been used. The numerical results presented in the last section showed that the al-
ternating Algorithm 4.1 and Algorithm 4.2 produces an accurate numerical solution
of problems given by Example 1-3 with respect to increasing the number of itera-
tions. Numerical results for Example 1 show that Algorithm 4.2 is more robust than
Algorithm 4.1.

References

[1] A. Avudainayagam and C. Vani, A domain decomposition method for biharmonic equation,

Computers and Mathematics with Applications 40 (2000), 865–876.
[2] M. Barboteu, P. Alart, and M. Vidrascu, A domain decomposition strategy for non-classical

frictionless multi-contact problems, Comput. Meth. Appl. Mech. Eng. 190 (2001), 4785–4803.



DDM FOR BOUNDARY ELEMENT OF THE ELASTICITY 225

[3] C. A. Brebbia and J. Dominguez, Boundary Elements An Introductory course, Comp. Mech.

Pub. McGraw-Hill Book Company, 1992.

[4] T. Bui and V. Popov, Domain decomposition boundary element method with overlapping sub-
domains, Eng. Anal. Bound. Elem. 33 (2009), no. 4, 456–466.

[5] J. Danbk, I. Hlavadek, and J. Nedoma, Domain decomposition for generalized unilateral semi-

coercive contact problem with given friction in elasticity, Math. Comput. Simulation 68 (2005),
no. 3, 271–300.

[6] Y. H. De Roeck, P. Le Tallec, and M. Vidrascu, A domain-decomposed solver for nonlinear

elasticity, J. Comput. Methods Appl. Mech. Eng. 99 (1992), no. 2/3, 187–207.
[7] W.M. Elleithy and H.J. Al-Gahtani, An overlapping domain decomposition approach for cou-

pling the finite and boundary element methods, Eng. Anal. Bound. Elem. 24 (2000), no. 5,

391–398.
[8] V. Girault, G.V. Pencheva, M.F. Wheeler, and T.M. Wildey, Domain decomposition for linear

elasticity with DG jumps and mortars Comput. Methods Appl. Mech. Engrg. 198 (2009), no.
21-26, 1751–1765.

[9] P. Goldfeld, L.F. Pavarino, and O.B. Widlund, Balancing Neumann-Neumann methods for

mixed approximations of linear elasticity, Lect. Notes Comput. Sci. Eng. 23 (2002), 53–76.
[10] A. Janka, Algebraic domain decomposition solver for linear elasticity Proceedings of the 9th

Seminar, Programs and Algorithms of Numerical Mathematics, Appl. Math. 44 (1999), no. 6,

435–458.
[11] Y. Jun and T. Mai, Numerical analysis of the rectangular domain decomposition method,

Comm. Numer. Methods Engrg. 25 (2009), no. 7, 810–826.

[12] A. Klawonn and O. B. Widlund, A domain decomposition method with Lagrange multipliers
and inexact solvers for linear elasticity, SIAM J. Sci. Comput. 22 (2000), no.4, 1199–1219.

[13] P. Luo and G. Liang, Domain decomposition methods with nonmatching grids for the unilateral

problem, J. Comput. Math. 20 (2002), 193–202.
[14] A. Nachaoui, J. Abouchabaka, and N. Rafalia, Parallel solvers for the depletion region iden-

tification in metal semiconductor field effect transistors, Numer. Algorithms 40 (2005), no. 2,
187–199.

[15] L.F. Pavarino, and A. Toselli, Recent Developments in Domain Decomposition Methods, Lec-

turer Notes in Computer Sci. Eng. 23, Springer Verlag, 2002.
[16] T. Panzeca, M. Salerno, and S. Terravecchia, Domain decomposition in the symmetric boundary

element analysis, Comput. Mech. 28 (2002), no. 3-4, 191–201.

[17] A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations,
Oxford University Press, Oxford, 1999.

[18] P. Le Tallec, Domain decomposition methods in computational mechanics, Comput. Mech. Adv.

1 (1994), 121–220.
[19] A. Toselli and O. Widlund, Domain decomposition methods - algorithms and theory, Springer

Series in Computational Mathematics 34, Berlin Springer, 2005.

[20] P.N. Vabishchevich, Domain decomposition methods with overlapping subdomains for the time-
dependent problems of mathematical physics, Comput. Methods Appl. Math. 8 (2008), no. 4,

393–405.
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