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On the identification of discontinuous matrix diffusion in
elliptic equation
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Abstract. The aim of this paper is to study the identification a discontinuous matrix diffusion

parameter in the elliptic partial differential equation considered with mixed non-homogenous

boundary conditions on a boundary of bounded open subset domain in two dimensional space.
This parameter is taken as a matrix valued on bounded variation space. The observation can

be partially or globally given in the domain into consideration. We reformulate the associated

inverse problem to an optimization one, we prove the existence of solution and we study the
discrete case by using finite element method and we expose a result of the convergence of the

solution of the discrete problem to continuous one. We describe an optimization algorithm

and the numerical results are discussed in the end.
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1. Introduction

In this paper we are concerned with the mathematical analysis and the numerical
approximation for the identification of diffusion parameter when dealing with linear
elliptic equation defined on a bounded open set Ω ⊂ Rd, d = 1, 2 whose boundary
Γ is assumed to be Lipschitz and partitioned into two parts Γ1 and Γ2 such that
Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅, with different boundary condition on each part. More
precisely, we consider the following problem

Given an observation z of u, find (A, u) such that −∇ · (A∇u) = f in Ω
u = g on Γ1

αu+A∇u · n = h on Γ2

(1)

where n is the outer unit normal, f , g, h and α are the given functions.
The equation (1) is a model problem for many industrial applications particularly

on underground water investigations [15, 16] or medical imaging [17, 18] and many
other applications. The desire to identify parameters have motivated several ap-
proaches in the literature [2, 3, 4, 5, 6, 7, 8, 9]. The augmented Lagrangian method is
frequently [8, 6] applied for parameter identifying problem. In [9] the aforementioned
method is combined with the level-set method. Other methods are used, namely, the
conjugate gradient method [7] and the fast approximate inference method based on
expectation propagation for exploring the posterior probability distribution arising
from the Bayesian formulation of inverse problems in [1]. The regularization [3, 10]
and the theoretical analysis [5] of the inverses problems is the object of many others
works.
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In this work, we will treat a general case of the function A where A is the matrix
diffusion to be identified in an appropriate space. The originality of this paper is to
extend the work of many authors for this type of inverse problem. For this, we are
interesting to identify the discontinuous matrix diffusion A : Ω→ Rd×d in some sub-
space of L1(Ω,Rd×d) described later. In order, to investigate even non-smooth matrix
diffusion parameter we propose to take it in the space of functions of bounded vari-
ation noted BV (Ω) as the space of all functions in L1(Ω,Rd×d) whose distributional
derivative belongs to the space of matrix valued measures:

BV (Ω) =
{
A ∈ L1(Ω,Rd×d) : DA ∈M(Ω,Rd×d)

}
(2)

equipped with the norm ‖A‖BV (Ω) =

∫
Ω

‖A(x)‖Rd×d dx+

∫
Ω

|DA|,

where ‖B‖Rd×d = trace(BtB), for all matrix B ∈ Rd×d and∫
Ω

|DA| = sup

{∫
Ω

A∇gdx; g ∈ [C1
0(Ω)]d×d×d, and |g| ≤ 1 in Ω

}
.

So that, we elaborate the existence of solution to the inverse problem under conside-
ration with weak hypothesis. Concerning the minimizing problem, we consider the
cost functional as much general to cover a large class of observations.

The contributions of this paper are detailed in the sections that follows according
to this plan, in the next section, we elaborate the continuous problem, by formulat-
ing the optimization problem. We also establish the optimality conditions and give
some examples of observations to be considered. In the third section, we derive the
discrete problem by finite element discretization and we prove its convergence to the
continuous one. A description of the algorithm considered based on the nonlinear and
linear conjugate gradient method and we present, in the fourth section, the numerical
results to illustrate the convergence of algorithm.

2. The inverse continuous problem

Let K a nonempty closed convex subset of BV (Ω) defined as follows

K =
{
A ∈ BV (Ω) : k1|z|2 ≤ A(x)z · z ≤ k2|z|2 ∀x ∈ Ω,∀z ∈ Rd

}
(3)

It is well known that if we take as a cost functional an integral of the form∫
Ω

L (A(x), u(x)) dx

then, in general, an optimal configuration does not exist. However, the addition of a
regularization term of the form of BV (Ω) semi-norm of the parameter to be estimated,
here A, is enough to imply the existence of classical minimum, see for example [3, 10].
In other words, if we take as a cost the functional

J(A, u) =

∫
Ω

L(A(x), u(x))dx+ β

∫
Ω

|DA| (4)

where β > 0. Hence, the inverse problem (1) can be formulated as follows
min

(A,u)∈K×V
J(A, u)∫

Ω

A(x)∇u(x)∇v(x)dx+

∫
Γ2

αuvdσ −
∫

Ω

f(x)v(x)dx−
∫

Γ2

hvdσ = 0, ∀v ∈ V0.
(5)

Here V0 is a subset of H1(Ω) defined by V0 =
{
v ∈ H1(Ω) : v|Γ1

= 0
}

. The functional
L can take different expressions depending on the type of observation. The observation
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z ∈ Z can be defined on the entire domain Ω or just on some regions of it. In the
case when z is defined on Ω, a typical function L is of the form

L(A, u) =

∫
Ω

A∇(u− z)∇(u− z)dx.

In the case when the observation z is defined only in a part Ωz ⊂ Ω, the functional L
can be formulated in the terms

L(A, u) =

∫
Ωz

(u− z)2
dx

and when the measurements are available only on a portion γ ⊂ Γ of the boundary
of Ω, the functional L can be defined by

L(A, u) =

∫
γ

(u− z)2
dσ.

In the general case, we suppose that our observation is defined in Ωz ⊂ Ω̄ and that
L : K×R→ R is a C1-Caratheodory function satisfying appropriate growth conditions
that will be shown to be as

L(A(x), u(x)) ≥ γ1(x)− ξ1|u(x)|2 for almost x ∈ Ωz (6)

L(A(x), u(x)) ≤ γ2(x) + ξ2|z(x)|2 for almost x ∈ Ωz (7)

for some γ1, γ2 ∈ L1(Ωz) and ξ1, ξ2 ≥ 0.
We introduce an operator E from K × V into V0 defined for all v ∈ V0 by∫

Ω

∇E(A, u)∇vdx =

∫
Ω

A(x)∇u(x)∇v(x)dx+

∫
Γ2

αuvdσ

−
∫

Ω

f(x)v(x)dx−
∫

Γ2

hvdσ.

We start by studying the existence of a solution for the constraint optimization prob-
lem (5).

Theorem 2.1. The problem (5) has at least one solution (Ā, ū) ∈ K × V .

Proof. Let Aad := {(A, u) ∈ K × V : E(A, u) = 0} be the admissible set of the con-
straint optimization problem (5). It is well known, see for example [20, 21], that
the direct problem has at least one solution u ∈ V for all A ∈ K. This implies
that Aad is nonempty. From the assumption (6), there exists a minimizing sequence
{(An, un)}n≥1 ∈ Aad such that

lim
n→∞

J(An, un) = inf
(A,u)∈K×V

J(A, u). (8)

For each n > 0 we have J(An, un) ≤ C, then by definition of J and the fact that
E(An, un) = 0 we have

‖un‖H1(Ω) ≤ C and ‖An‖BV (Ω) ≤ C. (9)

Therefore, taking a subsequence if necessary, we can assume that there exists a pair
(A, u) ∈ BV (Ω) × V such that un converges weakly to u in V , and An converges
strongly to A in L1(Ω,Rd×d). Since (An, un) ∈ Aad, we have∫

Ω

An(x)∇un(x)∇v(x)dx+

∫
Γ2

αuvdσ −
∫

Γ2

hvdσ −
∫

Ω

f(x)v(x)dx = 0, ∀v ∈ V0 (10)
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therefore,∣∣∣∣∫
Ω

An(x)∇un(x)∇v(x)dx−
∫

Ω

A(x)∇u(x)∇v(x)dx

∣∣∣∣
≤
∣∣∣∣∫

Ω

(An(x)−A(x))∇un(x)∇v(x)dx

∣∣∣∣+

∣∣∣∣∫
Ω

A(x)∇(un(x)− u(x))∇v(x)dx

∣∣∣∣
≤
(∫

Ω

|An(x)−A(x)||∇un(x)|2dx
) 1

2
(∫

Ω

|An(x)−A(x)||∇v(x)|2dx
) 1

2

+

∣∣∣∣∫
Ω

A(x)∇(un(x)− u(x))∇v(x)dx

∣∣∣∣
using the fact that K is bounded in BV (Ω), ‖un‖H1(Ω) ≤ C and the Lebesgue domi-

nant convergence, we obtain∫
Ω

An(x)∇un(x)∇v(x)dx converges to

∫
Ω

A(x)∇u(x)∇v(x)dx for all v in V0.

This convergence implies that E(A, u) = 0. Thus (A, u) is a feasible solution of (5).
Let us prove that it is a solution. Since un converges to u strongly in L2(Ω) we can take
a subsequence in such a way that un(x) converges to u(x) for almost all x ∈ Ω. We set
ln(x) = L(An(x), un(x)) + ξ1|un|2 − γ1(x) and l(x) = L(A(x), u(x)) + ξ1|u|2 − γ1(x).
Then ln(x) converges to l(x) almost everywhere and ln ≥ 0 for n ≥ 1. Therefore, by
applying Fatou’s Lemma and the lower semi-continuity of the BV-norm, we get

J(A, u) =

∫
Ω

l(x)dx−
∫

Ω

(
ξ1|u|2 − γ1(x)

)
dx+ β

∫
Ω

|DA|dx

≤ lim inf
n→∞

(∫
Ω

ln(x)dx−
∫

Ω

(
ξ1|un|2 − γ1(x)

)
dx+ β

∫
Ω

|DAn|dx
)

≤ lim inf
n→∞

(∫
Ω

L(An, un)dx+ β

∫
Ω

|DAn|dx
)

≤ lim inf
n→∞

J(An, un).

Then (A, u) = (Ā, ū) is the solution of the constraint optimization problem (5). �

Next, we derive the optimality condition for the constraint optimization problem
(5). Thus we introduce the augmented Lagrangian functional defined for any given
constant r ≥ 0 by :

Lr : K × V × V → R

(A, u, λ) 7→ J(A, u) +

∫
Ω

∇λ(x)∇E(A(x), u(x))dx

+
r

2
‖∇E(A(x), u(x))‖2L2(Ω)

(11)

The following theorem shows that the constraint optimization problem (5) is equiva-
lent to the saddle-point problem associated with the Lagrangian functional Lr.

Theorem 2.2. If (Ā, ū) ∈ K×V is a solution of the constraint optimization problem
(5), then there exists λ̄ ∈ V0 such that (Ā, ū, λ̄) ∈ K × V × V0 is saddle-point of the
Lagrangian L0(r = 0).

Proof. Let (Ā, ū) ∈ K ×V a solution of the constraint optimization problem (5). We
start this proof by verifying that the functional

E ′(Ā, ū) : K × V → V0

(A, u) 7→ (−∆)−1∇ ·
(
Ā∇u+A∇ū

)
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is surjective. For any A ∈ K and w ∈ V0, there exists u ∈ V satisfying the equation
−∇·

(
Ā∇u

)
= ∆w+∇· (A∇ū) in H−1(Ω) and (−∆)−1

(
∇ ·
(
Ā∇u+A∇ū

))
= w

in V0. Then, E ′(Ā, ū) is surjective. As the functional (u, v) 7→
∫

Ω
∇u∇vdx is

an isomorphism in V × V , the surjectivity of E ′(Ā, ū) implies that the functional

b(A, u, λ) :=

∫
Ω

∇
〈
E ′(Ā, ū), (A, u)

〉
∇λdx is surjective. Moreover, there exists [19],

k > 0 such that

sup
u∈V

b(A, u, λ)

‖u‖H1(Ω)

≥ k ‖λ‖H1(Ω) ∀λ ∈ V0. (12)

In the following, we demonstrate the existence of λ̄ ∈ V0 such that〈
∇J(Ā, ū); (A, u)

〉
+ b(A, u, λ̄) = 0 ∀(A, u) ∈ K × V (13)

We take F (u) =
〈
∇J(Ā, ū), (A, u)

〉
, B(u, λ) = b(A, u, λ) and we define

V = {u ∈ V : B(u, λ) = 0 ∀λ ∈ V0} .

Thus, for every u ∈ V, we have F (u) = 0. Then, the equation (13) is equivalent to
find λ ∈ V0 such that

F (u) = −B(u, λ) ∀u ∈ V⊥ (14)

For λ ∈ V0 fixed, the linear form u 7→ B(u, λ) is continuous in V⊥. From the Riesz
representation, there exists a unique Tλ ∈ V⊥ such that

B(u, λ) = (Tλ, u) ∀u ∈ V⊥

‖Tλ‖V = ‖b(·, ·, λ)‖(V⊥)′ = sup
u∈V⊥

b(A, u, λ)

‖u‖H1(Ω)

(15)

this defines a continuous linear operator T on V .
If Im(T ) := {Tλ; λ ∈ V0} = V⊥, then, we have F ∈ (V⊥)′. From the Riesz repre-
sentation, there exists v ∈ V⊥ such that F (u) = (v, u) ∀u ∈ V⊥. As Im(T ) = V⊥,
there exists λ ∈ V0 such that Tλ = −v and we have

B(u, λ) = (Tλ, u) = −(v, u) = −F (u) ∀u ∈ V⊥.

Remains to show that Im(T ) = V⊥. First, we demonstrate that Im(T ) is closed
in V⊥. Let {λn}n≥1 ∈ V such that Tλn

→ v ∈ V⊥. The sequence {Tλn
}n>0 is a

sequence of Cauchy in V⊥. Using the condition (12), we get that {λn}n is also a
sequence of Cauchy and λn → λ in V0. From the continuity of T , we have Tλ = v.
Thus, Im(T ) is closed in V⊥. Obviously, we have Im(T )⊥ = {0}, then we conclude
that Im(T ) = V⊥. �

It is clear that any saddle-point of L0 is a saddle-point of Lr, r > 0, and that
if (Ā, ū, λ̄) ∈ K × V × V0 is saddle-point of the augmented Lagrangian Lr then
(Ā, ū) ∈ K × V is a solution of the constraint optimization problem (5). Then,
the consequence of the previous theorem is the equivalence between the constraint
optimization problem and the saddle-point problem.

3. The inverse discrete problem

The aim of this section is to formulate the discrete problem by using a finite
element discretization, in the first step. In the second step, the aim is to establish
the estimations of error for the proposed formulation. Let {τh}h>0 be a family of



ON THE IDENTIFICATION OF DISCONTINUOUS MATRIX DIFFUSION 231

regular triangulations of the domain Ω. Denote by Ph the standard piecewise liner
finite element space over the triangulation τh:

Ph =
{
ah ∈ C0(Ω), : ∀T ∈ τh, ah|T ∈ P1(T )

}
and Vh = Ph ∩ V, V 0

h = Ph ∩ V0, Kh = {Ah ∈ K : (Ai,j)1≤i,j≤d ∈ Ph}. For any
(Ah, uh) ∈ Kh × Vh we define Eh(Ah, uh) the discrete version of the operator E(A, u)
as a solution of the discrete variational problem∫

Ω

∇Eh(Ah, uh)∇vhdx =

∫
Ω

Ah(x)∇uh(x)∇vh(x)dx+

∫
Γ2

αuhvhdσ

−
∫

Ω

f(x)vh(x)dx−
∫

Γ2

hvhdσ, ∀vh ∈ V 0
h .

(16)

In implementations, we approximate the regularization functional by
√
|∇Ah|2 + εh2

and we always take ε small to avoid dividing zero numbers. Then, the discrete aug-
mented Lagrangian Lrh is defined by

Lrh : Kh × Vh × V 0
h → R

(Ah, uh, λh) 7→ Jh(Ah, uh) +

∫
Ω

∇λh(x)∇Eh(Ah(x), uh(x))dx

+ r
2 ‖∇Eh(Ah, uh)‖2L2(Ω)

(17)

with, Jh(Ah, uh) =

∫
Ω

L(Ah, uh)dx+ β

∫
Ω

√
|∇Ah|2 + εh2dx.

As in the proof for the continuous saddle-point problem of the previous section, we
can prove the existence of the Lagrangian multiplier λ̄h ∈ Vh satisfying

Lrh(Āh, ūh, λh) ≤ Lrh(Ah, ūh, λ̄h) ≤ Lrh(Ah, uh, λ̄h), ∀(Ah, uh, λh) ∈ Kh × Vh × V 0
h .

In the next theorem, we show that the saddle-point of the discrete problem converges
to that of the continuous one.

Theorem 3.1. If {(Āh, ūh, λ̄h)}h>0 ∈ Kh × Vh × V 0
h is a sequence of the saddle-

point of the discrete augmented Lagrangian Lrh. Then, there exists a subsequence that
converges strongly in L1(Ω,Rd×d)×L2(Ω)×L2(Ω) to some saddle-point {(Ā, ū, λ̄)} ∈
Kh × Vh × V 0

h of the augmented Lagrangian Lr.

Proof. Let (Āh, ūh, λ̄h) ∈ Kh × Vh × V 0
h be the saddle-point of Lrh. Then,

∀(Ah, uh) ∈ Kh × Vh we have

Jh(Āh, ūh) ≤ Jh(Ah, uh) +

∫
Ω

∇λ̄h∇E(Ah, uh)dx+
r

2
‖∇E(Ah, uh)‖2L2(Ω) (18)

By letting Ah = kId, and uh ∈ Vh the unique solution of the equation∫
Ω

∇uh(x)∇vh(x)dx+

∫
Γ2

α

k
uhvhdσ =

∫
Ω

1

k
f(x)vh(x)dx+

∫
Γ2

1

k
hvhdσ ∀vh ∈ V 0

h

We deduce from (18) that ‖Āh‖BV (Ω) + ‖ūh‖H1(Ω) ≤ C. Taking Ah = Āh in (18), we
get ∀uh ∈ Vh
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∫
Ω

γ1(x)dx− ξ1
∫

Ω

ū2
hdx ≤ J(Āh, uh) +

∫
Ω

Āh∇uh(x)∇λ̄h(x)dx

−
∫

Ω

f(x)λ̄h(x)dx+

∫
Γ2

αuhλ̄hdσ −
∫

Γ2

hλ̄hdσ +
r

2

∥∥∇Eh(Āh, uh)
∥∥2

L2(Ω)

≤
∫

Ω

Āh∇uh(x)∇λ̄h(x)dx+ C1

∥∥∇λ̄h∥∥2

L2(Ω)

+
C

C1

(
‖f‖2H−1(Ω) + ‖h‖2L2(Γ2)

)
+ C

(
‖∇uh‖2L2(Ω) + ‖uh‖2L2(Γ2) + ξ2 ‖z‖2Z

)
with C1 > 0. By taking uh = −ελ̄h + g̃ ∈ Vh with g̃ ∈ H1(Ω) is an extension of g in

H1(Ω), for some constant ε > 0 and C1 =
ξ1ε

2
, we write∫

Ω

γ1(x)dx+
ξ1ε

2

∥∥∇λ̄h∥∥2

L2(Ω)
≤ C

(
ε2
∥∥∇λ̄h∥∥2

L2(Ω)
+ ε2 ‖∇g̃‖2L2(Ω) + 1

ε ‖f‖
2
H−1(Ω)

+
1

ε
‖h‖2L2(Γ2) + ‖z‖2Z + ‖ūh‖2L2(Ω)

)
An adequate choice of ε and the boundedness of {ūh}h give

∥∥∇λ̄h∥∥2

L2(Ω)
≤ C. There-

fore, the sequence {(Āh, ūh, λ̄h)}h>0 ∈ Kh× Vh× Vh has a subsequence, still denoted
by {(Āh, ūh, λ̄h)}h>0, such that

ūh ⇀ u in V, Āh → A in L1(Ω) and λ̄h ⇀ λ in V0 (19)

with (A, ū, λ̄) ∈ K × V × V0.
Using same argument as in the proof of Theorem 2.1, we establish that Eh(Āh, ūh)
converges weakly to E(Ā, ū) in V0. Thus, Lr(Ā, ū, λ) ≤ Lr(Ā, ū, λ̄), for all λ in V0.

Now we take in (18) (Ah, uh) = (IhÃε, Rhu) ∈ Kh × Vh with,

(
Ãε
)

1≤i,j≤d
=


k1 if (Aε)1≤i,j≤d < k1

(Aε)1≤i,j≤d if k1 ≤ (Aε)1≤i,j≤d ≤ k2

k2 if (Aε)1≤i,j≤d > k2

where, Aε ∈ C∞(Ω̄,Rd×d) is given by the density of C∞(Ω̄,Rd×d) in W 1,1(Ω,Rd×d)
and the approximation property of functions with BV (see, [12, 11]) and satisfies∫

Ω

‖Aε(x)−A(x)‖Rd×ddx < ε ,

∣∣∣∣∫
Ω

‖∇Aε‖Rd×ddx−
∫

Ω

|DA|
∣∣∣∣ < ε

The operators Ih : C(Ω̄)→ Vh and Rh : V → V 0
h are, respectively, the standard nodal

value interpolation and the projection operator.
From the relation (18), we get

Jh(Āh, ūh) ≤ Jh(IhÃε, Rhu) +

∫
Ω

∇λ̄h∇Eh((IhÃε, Rhu)dx

+
r

2

∥∥∥∇Eh((IhÃε, Rhu)
∥∥∥2

L2(Ω)
(20)

then, we can argue as in the proof of the Theorem 2.1, by taking

lh(x) = L(Āh, ūh(x)) + ξ1|ūh|2 − γ1(x) and l(x) = L(Ā(x), ū(x)) + ξ1|ū|2 − γ1(x)

and using the lower semi-continuity of the BV-norm (see, [12, 11]), to obtain

J(Ā, ū) ≤ lim inf
h→0

Jh(Āh, ūh) (21)
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Using the convergences lim
h→0

IhÃε = Ãε in W 1,1(Ω) and lim
h→0

Rhu = u in V we obtain

as in the proof of theorem (2.1), lim
h→0
Eh(IhÃε, Rhu) = E(Ãε, u), in V0. Therefore,

tending h→ 0 in (20) and using (21) we obtain

J(Ā, ū) ≤ J(Ãε, u) +

∫
Ω

∇λ̄∇E(Ãε, u)dx+
r

2

∥∥∥∇E(Ãε, u)
∥∥∥2

L2(Ω)
(22)

From the definition of Ãε ∈ K we have Ãε → A in L1(Ω,Rd×d). This implies that

lim
ε→0
Eh(Ãε, u) = E(A, u) in V0 and

∫
Ω

|∇Ãε|dx ≤
∫

Ω

|DA|dx + ε. We finally get

J(Ā, ū) ≤ Lr(A, u, λ̄) for any (A, u) ∈ K × V , by tending ε → 0 in (22) and using
the fact that L is Caratheodory with respect to the first variable. �

4. Algorithm and numerical results

This section is dedicated to some numerical implementation issues. To find the
saddle-points of the discrete augmented Lagrangian Lrh described in last section, we
use a variant of Uzawa algorithm. The proposed algorithm is summarized in the fol-
lowing.
Algorithm

Choose λ0
h ∈ V 0

h , A0
h ∈ Kh and r, ρ > 0.

For n ≥ 0, assume that λnh and Anh are known, compute λn+1
h ,An+1

h , un+1
h as follows:

(1) Set k = 0, An,0 = An−1.

(2) For k ≥ 0 assuming that λnh and An,kh are known, compute un,k+1
h and An,k+1

h as
follows:

(a) Find un,k+1
h ∈ Vh such that un,k+1

h = arg min
vh∈Vh

Lrh(An,kh , vh, λ
n).

(b) Find An,k+1
h ∈ Kh such that An,k+1

h = arg min
Bh∈Kh

Lrh(Bh, un,kh , λn).

(c) If ‖An,k+1
h − An,kh ‖2 ≤ tol, take un+1

h = un,k+1
h and An+1

h = An,k+1
h ; else

do k + 1→ k and return to (a).
(3) Update the multiplier as λn+1

h = λnh + ρrEh(An+1
h , un+1

h ).
Do n+ 1→ n and return to 1.

For fixed Ah and λh, the Lagrangian Lrh is linear with respect to uh then to solve
the problem described in step (a) of proposed algorithm, we use, at each iteration,
linear gradient conjugate method. However, the regularization term is nonlinear with
respect to Ah, and we treat numerically the step (b) by the use nonlinear conjugate
gradient algorithm combined with Wolfe algorithm for the search of line direction.

In order to illustrate the performance of the proposed numerical method, we solve
our inverse problem when the analytical solution can be given by

u(x, y) = sin(πx) sin(πy)

in two dimensional domain Ω =]0, 1[×]0, 1[. The cost functional is given by

J(A, u) = J0(A, u) + β

∫
Ω

|DA| with J0(A, u) =

∫
Ω

A∇(u− z)∇(u− z)dx.
The source term f , g, h are constructed from the given analytical solution u and the
coefficient A to be identified.
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Figure 1. The exact solution (right) and the numerically identified so-
lution (left).

Figure 2. The exact solution (right) and the numerically identified so-
lution (left) of A11.

Example 4.1. In this example we consider the case when the discontinuous param-
eter coefficient is

A(x, y) =

{
2 if 0 ≤ x, y ≤ 0.5
1 if 0.5 < x, y ≤ 1

In Figure 1 we have plotted the analytical and the calculated discontinuous parameter.
From this figure it can be seen that the final parameter coincides with the exact
parameter.

Example 4.2. In the second example, we discuss the case when the discontinuous
matrix is a diagonal matrix coefficient. The components are given by

A11(x, y) =

{
2 if y ≤ 0.5
1 if y > 0.5

; A22(x, y) =

{
3 if y ≤ 0.5
2 if y > 0.5

We have plotted in Figures 2, 3 the analytical and the calculated discontinuous di-
agonal matrix. We observe that the discrepancy between the calculated and exact
discontinuous diagonal matrix is about 1.4% at convergence.
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Figure 3. The exact solution (right) and the numerically identified so-
lution (left) of A22.

Figure 4. small The exact solution (right) and the numerically iden-
tified solution (left) of A11.

Example 4.3. We end the examples by the identification of a discontinuous sym-
metric matrix coefficient. For this, we take

A11(x, y) =

{
2 + 0.5 sin(πx) if |x− 0.5| ≤ 0.2 and |y − 0.5| ≤ 0.2
2 otherwise

;

A22(x, y) =

{
3 + 0.3 sin(πy) if |x− 0.5| ≤ 0.2 and |y − 0.5| ≤ 0.2
3 otherwise

;

A12(x, y) =

{
1.25 if (x− 0.5)2 + (y − 0.5)2 ≤ 0.32

1 otherwise

Figures 4 - 5 show the approximate and the exact solution. We observe that the dis-
crepancy between the calculated and exact discontinuous symmetric matrix is about
6.3% at final iteration.

5. Conclusion

The discontinuous diffusion matrix is considered as an element of bounded varia-
tion space, The mathematical analysis is presented taking into account different cases
of obtained observations. Additional regularization term is introduced to ensure ex-
istence of an optimal diffusion parameter. We have proposed an algorithm based
on uzawa method. Several examples have been implemented and have underlined
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Figure 5. The exact solution (right) and the numerically identified so-
lution (left) of A12.

Figure 6. The exact solution (right) and the numerically identified so-
lution (left) of A22.

the good approximation of the discontinuous exact diffusion matrix with some given
observation.
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