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Stabilization of variable coefficients Euler-Bernoulli beam
equation with a tip mass controlled by combined feedback
forces
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Abstract. In this paper, we consider stability of a vibrating beam system clamped at one

end, controlled by combined forces, with a mass attached at the other end. By adopting

the Riesz basis approach, it is shown that the closed-loop system is a Riesz spectral system.
Consequently, the exponential stability, spectrum-determined growth condition, and optimal

decay rate are obtained. A numerical simulation of the spectrum is also presented.
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1. Introduction

In this paper, we consider stability of a vibrating beam system clamped at one
end, controlled by combined forces, with a tip mass attached at the other end. This
system can be described by the following Euler-Bernoulli beam equation:

ρ(x)ytt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = 0, t > 0,
EI(1)yxx(1, t) = −γyxt(1, t), t > 0,
(mytt − (EI(.)yxx)x)(1, t) = (−αyt + β(EI(.)yxx)xt)(1, t) t > 0,
y(x, 0) = y0(x) , yt(x, 0) = y1(x) 0 < x < 1,

(1)

where y is the amplitude of the vibration, m is the tip mass attached to the free end
of the beam, x, t stand respectively for the position and time, ρ(x) is the mass density
of the beam and EI(x) is its flexural rigidity, α, β, γ are constants feedback gains.
Our problem is to prove that the solutions of the resulting closed-loop system decay
uniformly to zero and the optimal decay rate can be determined by the spectrum of
the closed-loop system.

The constant coefficient version of (1), ρ = EI = 1 has been investigated in [7],
say, where the former shows that all of the generalized eigenfunctions of (1) form
a Riesz basis for the state Hilbert space and the exponential stability is obtained
from the spectrum of the system. Also, when γ = 0, Conrad and Morgül in [2]
show the exponential stability of the system by the energy multiplier method for any
α, β > 0. In the case where m = αβ, their study leads to show that a set of generalized
eigenfunctions of system (1) forms a Riesz basis for the state Hilbert space, and that
the spectrum-determined growth condition holds, both for almost α > 0. B.Z. Guo
[3] improved this result for any m,α, β > 0 using an abstract result about the Riesz
basis property of discrete operators in general Hilbert spaces [4].
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The rest of this paper is organized as follows. In section 2, we convert system
(1) into an evolution equation in an appropriate Hilbert space, and then prove that
the evolutionary system is associated to a C0 semigroup of linear operator whose
generator has compact resolvent. Hence the problem is well posed. Some asymptotic
expressions of eigenvalues and eigenfunctions are also presented. Section 3 is devoted
to prove the Riesz basis property and the exponential stability of the system. Finally,
we use the finite difference scheme with the QZ method to study numerically the
spectrum of the system.

Throughout this paper, we assume that (EI(.), ρ(.)) ∈ [C4(0, 1)]2, p =

∫ 1

0

η(s)ds, η(s) =

(
ρ(s)

EI(s)

)1/4

,

EI, ρ, β, γ,m > 0, α ≥ 0.

(2)

2. Eigenvalue problem

We start our investigation by formulating the problem in the following Hilbert
space: H = V × L2(0, 1) × C,V = {f ∈ H2(0, 1)/f(0) = f ′(0) = 0}, with the inner
product defined as: ∀(F = (f1, g1, ζ1), G = (f2, g2, ζ2)) ∈ H2

(F,G)H =

∫ 1

0

(ρ(x)g1(x)g2(x) + EI(x)f ′′1 (x)f ′′2 (x))dx+Kζ1ζ2. (3)

where K =
β2

m+ αβ
> 0.

Define a linear operator A : D(A) ⊂ H→ H as

D(A) = {(f, g, ζ) ∈ (H4(0, 1) ∩ V)× V× C/EI(1)f ′′(1)

= −γg′(1), ζ = −(EI(1)f ′′)′(1) +mβ−1g(1)} (4)

A(f, g, ζ) = (g,−1/ρ(.)(EI(.)f ′′)′′,−β−1ζ − β−1(α−mβ−1)g(1)), (5)

with the initial condition Y0 = (y0, y1,−(EI(.)y′′0 )′(1) + mβ−1y1(1)), the system (1)
can be written as an evolutionary equation in H{

dY (t)
dt = AY (t),

Y (t) = (y(., t), yt(., t),−(EI(.)yxx)x(1, t) +mβ−1yt(1, t)), Y (0) = Y0.
(6)

Lemma 2.1. (i) A−1 exists and is compact on H. Hence the spectrum σ(A) of A
consists of isolated eigenvalues only: σ(A) = σp(A), where σp(A) denotes the set of
eigenvalues of A. Moreover, each eigenfunction corresponding to λ ∈ σ(A), λ 6= −β−1
is of the form

−→
Φ = (λ−1Φ,Φ,−β

−1(α−mβ−1)

λ+ β−1
Φ(1)),

where Φ 6= 0 satisfies
λ2ρ(x)Φ(x) + (EI(.)Φ′′)′′(x) = 0, 0 < x < 1,
Φ(0) = Φ′(0) = 0,
EI(1)Φ′′(1) = −γλΦ′(1),
(1 + λβ)(EI(.)Φ′′)′(1) = (αλ+ λ2m)Φ(1)

(7)

(ii) for any λ ∈ σ(A), Re(λ) ≤ 0.
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Proof. (i) A direct calculation shows that

A−1(f, g, ζ) = (f1, g1, ζ1), ∀(f, g, ζ) ∈ H,
where

g1 = f,
ζ1 = −βζ − (α−mβ−1)f(1),

f1(x) =

∫ x

0

∫ y

0

drdy

[
(βζ + αf(1))(r − 1)− γf ′(1)

EI(r)
+

1

EI(r)

∫ r

1

∫ 1

s

ρ(t)g(t)dtds

]
Since |ζ1| ≤ |β| ζ +

∣∣α−mβ−1∣∣ ‖f‖H2 , it follows that∥∥A−1(f, g, ζ)
∥∥
H4×H2×C ≤M ‖(f, g, ζ)‖H

for some constant M > 0. By the Sobolev embedding theorem [1], A−1 is compact on
H.

(ii) For any Y = (f, g, ζ) ∈ D(A),

Re(AY, Y )H = −K
β
|EI(1)f ′′′(1)|2 − Kαm

β2
|g(1)|2 − γ |g′(1)|2

+(β−2K(αβ +m)− 1)Re(EI(1)f ′′′(1)g(1)). (8)

Note that given the particular choice of K, the fourth term in the formula above zero,
which proves that the operator A is dissipative. Other conclusions are obvious, and
the details are omitted. �

Let us now study (7). Rewrite (7) to be the standard form of a linear differential
operator with generalized homogeneous boundary conditions

Φ(4)(x) + ((2EI ′Φ′′′ + EI ′′Φ′′)/EI)(x) + λ2η4(x)Φ(x) = 0, 0 < x < 1,
Φ(0) = Φ′(0) = 0,
EI(1)Φ′′(1) = −γλΦ′(1),
(1 + λβ)(EI(.)Φ′′)′(1) = (αλ+ λ2m)Φ(1)

(9)

Let λ ∈ σ(A), First, the dominant term ”Φ(4)(x)+λ2η4(x)Φ(x)” of (9), is transformed
to become a uniform form by space scaling. In fact, we make the space scaling
transformation

Φ(x) = f(z), z = z(x) =
1

p

∫ x

0

η(s)ds (10)

then f satisfies the following system
f (4)(z) + a(z)f ′′′(z) + b(z)f ′′(z) + c(z)f ′(z) + λ2p4f(z) = 0,
f(0) = f ′(0) = 0,
f ′′(1) = (a0γλ+ b0)f ′(1),
(λ+ β−1)(f (3)(1) + c0f

′′(1) + d0f
′(1)) = e0β

−1λ(α+mλ)f(1)

(11)

where a(z), b(z) and c(z) are the smooth functions defined by a(z) = 2pη−2(3η′ + ηEI ′/EI)(x),
b(z) = p2(η−3(3η−1η′2 + 4η′′ + (6η′EI ′ + ηEI ′′)/EI))(x),
c(z) = p3(η−1 + η−4(2η′′EI ′ + η′EI ′′)/EI)(x),

(12)

and a0, b0, c0, d0 and e0 are constants given by
a0 = −pη−1(1)/EI(1), b0 = −pη′′(1)η−2(1),
c0 = p−1η−1(1)(3η−1(1)η′(1) + EI ′(1)/EI(1)),
d0 = p2η−3(1)(η′′(1) + EI ′(1)η′/EI(1)),
e0 = p3η−3(1)/EI(1).

(13)
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Second, in order to cancel the term f ′′′(z) in (11), as was done in [6], we make the
invertible transformation

f(z) = e−
1
4

∫ z
0
a(s)dsg(z) (14)

then g satisfies the following system g(4)(z) + a1(z)g′′(z) + a2(z)g′(z) + a3(z)g(z) + λ2p4g(z) = 0
g(0) = g′(0) = 0, g′′(1) + c11g

′(1) + c12g(1) + a0λγg
′(1) + c13γλg(1) = 0,

(λ+ β−1)(g(3)(1) + c21g
′′(1) + c22g

′(1) + c23g(1)) = λβ−1e0(α+mλ)g(1),
(15)

where a1(z), a2(z) and a3(z) are the smooth functions defined by
a1(z) = −(3a′(z)/2)− (3a2(z)/8) + b(z),
a2(z) = (a3(z)/8)− a′′(z)− (a(z)b(z)/2) + c(z),
a3(z) = (3a′2(z)/16)− (a′′′(z)/4)− (3a4(z)/256) + (3a2(z)a′(z)/32)

+b(z)((a2(z)/16)− (a′(z)/4))− (a(z)c(z)/4)

(16)

and c11, c12, c13, c21, c22 and c23 are constants defined by

c11 = (a(1)/2) + b0,
c12 = (a′(1)/4)− (a2/16)(1)− (ab0/4)(1),
c13 = −(a/4)(1) + c0,
c21 = −(3a/4)(1) + c0,
c22 = (3a2/16)(1)− (3a′/4)(1)− (ac0/2)(1) + d0,
c23 = −(a′′(1)/4) + (3aa′(1)/16)− (a2(1)/64 + c0(−(a′(1)/4)

+(a2(1)/16))− (a(1)d0/4),

(17)

Now, we proceed as in section 4, chapter 2 of [6] to estimate asymptotically the
solution of (15). Since system (1) is dissipative, all eigenvalues are located on the
left half complex plane. Due to the conjugate property of the eigenvalues, we may

consider only λ =
τ2

p2
with

π

2
≤ arg λ ≤ π, then

π

4
≤ arg τ ≤ π

2
.

Let us choose ωj , j = 1, 2, 3, 4 as follows

ω1 =
−1 + i√

2
, ω2 =

1 + i√
2
, ω3 = −ω2, ω4 = −ω1.

Consequently, we have for τ ∈ S = {τ | π
4
≤ arg τ ≤ π

2
}

Re(τω1) = − | τ | sin(arg τ +
π

4
) ≤ −

√
2

2
| τ |< 0,

Re(τω2) = | τ | cos(arg τ +
π

4
) ≤ 0. (18)

The following lemma comes from Theorem 2.4 in section 4, chapter 2 of Naimark [6].

Lemma 2.2. For | τ | large enough and τ ∈ S, there are four linearly independent
solutions gk , k = 1, 2, 3, 4, to g(4)(z)+a1(z)g′′(z)+a2(z)g′(z)+a3(z)g(z)+τ4g(z) = 0,
such that

gk(z) = eτωkz(1 +O(
1

τ
)), g′k(z) = τωke

τωkz(1 +O(
1

τ
)),

g′′k (z) = (τωk)2eτωkz(1 +O(
1

τ
)), g′′′k (z) = (τωk)

3
eτωkz(1 +O(

1

τ
)).

(19)

Let g be a solution of the system (15), then there exist 4 constants dk, k = 1, 2, 3, 4
such that

g(z) = d1g1(z) + d2g2(z) + d3g3(z) + d4g4(z), (20)
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where gk, k = 1, 2, 3, 4 are defined by Lemma 2.2. By boundary conditions, di, i =
1, 2, 3, 4 are solutions to the following boundary system of linear algebraic equations

d1g1(0) + d2g2(0) + d3g3(0) + d4g4(0) = 0,
d1g
′
1(0) + d2g

′
2(0) + d3g

′
3(0) + d4g

′
4(0) = 0,∑4

k=1 dk[g′′k (1) + c11g
′
k(1) + c12gk(1) + a0γ(τ2/p2)g′k(1) + c13γ(τ2/p2)gk(1)] = 0,∑4

k=1 dk[(τ2/p2) + β−1)[g′′′k (1) + c21g
′′
k (1) + c22g

′
k(1) + c23gk(1)]

−(τ2/p2)β−1e0(α+m(τ2/p2))gk(1)] = 0.
(21)

From (18) and (19), for any k = 1, 2, 3, 4

gk(0) = 1 +O(
1

τ
), g′k(0) = τωk(1 +O(

1

τ
)),

{g′′k (1) + c11g
′
k(1) + c12gk(1) + a0γ(τ2/p2)g′k(1) + c13γ(τ2/p2)gk(1)}

= a0γ(τ3/p2)ωke
τωk(1 +O(

1

τ
)),

{g′′′k (1)− ((τ2/p2) + β−1){g′′′k (1) + c12g
′′
k (1) + c22g

′
k(1) + c23gk(1)}

−(τ2/p2)β−1e0(α+m(τ2/p2))gk(1) = (τ5/p2)ω3
ke
τωk(1 +O(

1

τ
)),

(22)
The system (15) has a nonzero solution if and only if τ satisfies the characteristic
equation

det


[1] [1] [1] [1]
τω1[1] τω2[1] τω3[1] τω4[1]
τ3ω1e

τω1 [1] τ3ω2e
τω2 [1] τ3ω3e

τω3 [1] τ3ω4e
τω4 [1]

τ5ω3
1e
τω1 [1] τ5ω3

2e
τω2 [1] τ5ω3

3e
τω3 [1] τ5ω3

4e
τω4 [1]

 = 0 (23)

where [1] = 1 +O(τ−1).
Since ω4 = −ω1 and ω3 = −ω2 , then the above equation is equivalent to

det


[1] [1] eτω2 [1] eτω1 [1]
ω1[1] ω2[1] −ω2e

τω2 [1] −ω1e
τω1 [1]

ω1e
τω1 [1] ω2e

τω2 [1] −ω2[1] −ω1[1]
ω1e

τω1 [1] ω2e
τω2 [1] −ω3

2 [1] −ω3
1 [1]

 = 0 (24)

Since | eτω2 |= e
|τ | 1√

2
(cos(arg τ)−sin(arg τ)) ≤ 1, eτω1 = O(e

− 1√
2
|τ |

) when | τ |→ ∞, we
may rewrite (24) as

det


1 1 eτω2 0
ω1 ω2 −ω2e

τω2 0
0 ω2e

τω2 −ω2 −ω1

0 ω3
2e
τω2 −ω3

2 −ω3
1

+O(τ−1) = 0 (25)

then

−e2τω2(ω2
1 − ω2

2)(ω1ω
2
2 + ω2

1ω2) + (ω2
1 − ω2

2)(ω1ω
2
2 − ω2

1ω2) +O(τ−1) = 0

which results in

e2τω2 =
ω2 − ω1

ω1 + ω2
+O(τ−1) = −i+O(τ−1) (26)

Since the matrix in (25) has rank 3 for each sufficiently large τn there is only one
linearly solution to (15) for τ = τn. Hence each λn is geometrically simple for n suffi-
ciently large. By solving (26), we obtain the following lemma by the same argument
of those of section 4, chapter 2 of Naimark [6].
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Lemma 2.3. (i) There is a family of eigenvalues (λn, λn) of A which satisfies

λn =
τ2n
p2
, τn =

1√
2

(n− 1

4
)π(i+ 1) +O(n−1) when n→ +∞, (27)

(ii) For n sufficiently large λn is geometrically simple.

Lemma 2.4. Let λn and τn be defined as in Lemma 2.3. Then the unique (up to
a scalar) associated solution gn to (15) has the following asymptotic expansion

gn(z) = −2(1 + i)[sin(n− 1

4
)πz − cos(n− 1

4
)πz + e−(n−

1
4 )πz] +O(

1

n
) (28)

τ−2n g′′n(z) = 2(i− 1)[cos(n− 1

4
)πz − sin(n− 1

4
)πz + e−(n−

1
4 )πz] +O(

1

n
), (29)

Moreover

τ−1n g′n(z) = − 4√
2

[cos(n− 1

4
)πz − sin(n− 1

4
)πz − e−(n− 1

4 )πz] +O(
1

n
). (30)

Proof. From Lemma 2.2. as well as simple facts of linear algebra, the eigenfunction

gn corresponding to the eigenvalue λn =
τ2n
p2

is given by

gn(z) = det


[1] [1] eτnw2 [1] eτnw1 [1]
eτnω1z[1] eτnω2z[1] eτnω2(1−z)[1] eτnω1(1−z)[1]
ω1e

τnω1 [1] ω2e
τnω2 [1] −ω2[1] −ω1[1]

ω3
1e
τnω1 [1] ω3

2e
τnω2 [1] −ω3

2 [1] −ω3
1 [1]

 (31)

It follows from (18) that

gn(z) = det


1 1 eτnω2 0
eτnω1z eτnω2z eτnω2(1−z) eτnω1(1−z)

0 ω2e
τnω2 −ω2 −ω1

0 ω3
2e
τnω2 −ω3

2 −ω3
1

+O(
1

τn
) (32)

After a simple calculation, we find that

gn(z) = ω1ω2(ω2
1 − ω2

2)[eτnω2z + eτnω2eτnω2(1−z) − eτnω1z − eτnω1ze2τnω2 ] +O(
1

τn
)

= −2(1 + i)[sin(n− 1

4
)πz − cos(n− 1

4
)πz + e−(n−

1
4 )πz] +O(

1

n
).

Similarly

g(k)n (z) = (33)

τkn det


[1] [1] eτnω2 [1] eτnω1 [1]
ωk1e

τnω1z[1] ωk2e
τnω2z[1] (−ω2)keτnω2(1−z)[1] (−ω1)keτnω1(1−z)[1]

ω1e
τnω1 [1] ω2e

τnω2 [1] −ω2[1] −ω1[1]
ω3
1e
τnω1 [1] ω3

2e
τnω2 [1] −ω3

2 [1] −ω3
1 [1]


where k = 1, 2. Equations (29) and (30) can be proved similarly. The lemma is
proved. �

Noting that τ−2n f ′n(z) = O(n−1). From the transformations (10) and (14), we
obtain the asymptotic expression of eigenfunctions which are as follows
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Lemma 2.5. Let λn and τn defined by (27). There is a solution of (7) corresponding
to λn which has the following asymptotic property:

e1/4
∫ z
0
a(s)dsΦn(x) = −2(1+i)[sin(n− 1

4
)πz−cos(n− 1

4
)πz+e−(n−

1
4 )πz]+O(

1

n
) (34)

λ−1n Φ′′n(x) = 2Λ(x)(i− 1)[cos(n− 1

4
)πz − sin(n− 1

4
)πz + e−(n−

1
4 )πz] +O(

1

n
) (35)

where Λ(x) = e−
1
4

∫ z
0
a(s)dsη2(x),

3. Riesz basis property and exponential stability

In order to apply B.Z. Guo theorem [3] to the operator A, we need a reference
basis. For system (1), this is accomplished by collecting approximately normalized
eigenfunctions of the following system{

ρ(x)ytt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = (EI(.)yxx)xt(1, t) = yxt(1, t) = 0, t > 0,

(36)

Naturally, we consider the well-posed conservative system as follows: ρ(x)ytt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = (EI(.)yxx)x(1, t) = yxt(1, t) = 0,
y(x, 0) = y0(x) , yt(x, 0) = y1(x), t > 0,

(37)

which has the same eigenvalues as the system (1). In order to get the same space as
the system (1) i.e., H, we complete the conservative system by ordinary differential
equation, so we construct the auxiliary system described by the following equations:

ρ(x)ytt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,

y(0, t) = yx(0, t) = (EI(.)yxx)x(1, t) = yxt(1, t) =
.

ζ(t) = 0 t > 0,
y(x, 0) = y0(x) , yt(x, 0) = y1(x) , 0 < x < 1,

(38)
Alternatively, we can formulate the auxiliary system above as a problem of evolution

in H as follows:
dY (t)

dt
= A0Y (t), where the operator A0 : D(A0) ⊂ H→ H is defined

by{
A0(f, g, ζ) = (g,−1/ρ(.)(EI(.)f ′′)′′, 0)
∀(f, g, ζ) ∈ D(A0), D(A0) = {(f, g, ζ) ∈ X/(EI(.)f ′′)′(1) = 0, g′(1) = 0}. (39)

where X = (H4(0, 1)∩V)×V×C. We easily show that A0 is nothing but the operator
A with α = m = β−1 = γ−1 = 0. A0 is skew-adjoint with compact resolvent.
It is seen that all the analysis in the previous sections for the operator A are still true
for the operator A0. Therefore, the following result is obtained.

Lemma 3.1. Each eigenvalue υn0
of A0 with sufficiently large module is geometrically

simple and hence algebraically simple. The eigenfunctions
−−→
Ψn0 = (υ−1n0

Ψn0 ,Ψn0 , 0)
⋃

{their conjugates} of υn0
have the following asymptotic expressions

e1/4
∫ z
0
a(s)dsΨn0

(x) = −2(1+i)[sin(n− 1

4
)πz−cos(n− 1

4
)πz+e−(n−

1
4 )πz]+O(

1

n
) (40)

υ−1n0
Ψ′′n0

(x) = 2Λ(x)(i− 1)[cos(n− 1

4
)πz − sin(n− 1

4
)πz + e−(n−

1
4 )πz] +O(

1

n
) (41)
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Where all (υn0
, υn0

), but possibly a finite number of other eigenvalues, are com-

posed of all the eigenvalues of A0. The eigenfunctions
−−→
Ψn0

= (υ−1n0
Ψn0

,Ψn0
, 0) are

normalized approximately. From a well known result in functional analysis, we know

that the eigenfunctions of A0 form an orthogonal basis for H, particularly, all
−−→
Ψn0

and their conjugates form an (orthogonal) Riesz basis for H.
Then there exists a positive integer large enough N such that,

+∞∑
n=N+1

∥∥∥−→Φn −
−→
Ψn0

∥∥∥2
H

=

+∞∑
n=N+1

O(n−2) < +∞, (42)

The same result is verified for their conjugates.
We can now apply Theorem of B.Z. Guo [3] to obtain the main results of the

present paper.

Theorem 3.2. Let the operator A defined by (4), (5). Then
(i) There is a sequence of generalized eigenfunctions of A which forms a Riesz

basis for the state Hilbert space H.
(ii)The eigenvalues (λn, λn) of A have the asymptotic behavior (27).
(iii) All λ ∈ σ(A) with sufficiently large modulus are algebraically simple. There-

fore, A generates a C0 semi-group. Moreover, for the semigroup eAt generated by A,
the spectrum-determined growth condition holds: ω(A) = S(A), where

ω(A) = lim
t→+∞

1

t
|| eAt || is the growth order of eAt and S(A) = sup{Re(λ)/ λ ∈ σ(A)}

is the spectral bound of A.

Now, we are in a position to show the exponential stability. Since the spectrum
determined growth condition holds: S(A) = ω(A). System (1) is exponentially stable
if and only if there is ω0 > 0 such that Re(λ) < −ω0 ∀λ ∈ σ(A).

Lemma 3.3. Let λn be defined by (27), then there is an ω0 > 0 such that

lim
n→+∞

Re(λn) = −ω0 < 0.

Proof. Let (λn,Φn) in (7) where Φn is defined by (34). Multiplying (7) by Φn and
integrating by parts from 0 to 1 with respect to x, we obtain

λ2n[

∫ 1

0

ρ(x) | Φn(x) |2 dx+
m | Φn(1) |2

| 1 + λnβ |2
]

+ λn[
(| λn |2 mβ + α)

| 1 + λnβ |2
| Φn(1) |2 +γ | Φ′n(1) |2]

+
αβ | λn |2| Φn(1) |2

| 1 + λnβ |2
+

∫ 1

0

EI(x) | Φ′′n(x) |2 dx = 0,

Since Imλn 6= 0 for sufficiently large n, we have from the above equation that

2 Reλn[

∫ 1

0

ρ(x) | Φn(x) |2 dx+
m | Φn(1) |2

| 1 + λnβ |2
]

= −[
(| λn |2 mβ + α)

| 1 + λnβ |2
| Φn(1) |2 +γ | Φ′n(1) |2]

= −[
(| λn |2 mβ + α)

| 1 + λnβ |2
| Φn(1) |2 +

EI(1)2 | λ−1n Φ′′n(1) |2

γ
]

From (34) and (35), we have
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lim
n→+∞

EI(1)2 | λ−1n Φ′′n(1) |2 dx = 16ρ(1)EI(1) e−
1
2

∫ 1
0
a(s) dsdx,

lim
n→+∞

| λnΦn(1) |2

| 1 + λnβ |2
=

16

β2
e−

1
2

∫ 1
0
a(s) dsdx, lim

n→+∞

| Φn(1) |2

| 1 + λnβ |2
= 0

and by Riemann Lebesgue Lemma, we have

lim
n→+∞

∫ 1

0

ρ(x) | Φn(x) |2 dx = 8

∫ 1

0

ρ(x) e−
1
2

∫ z
0
a(s) dsdx,

Hence

lim
n→+∞

Reλn = −
(
m

β
+
ρ(1)EI(1)

γ
)e−

1
2

∫ 1
0
a(s) dsdx∫ 1

0
ρ(x) e−

1
2

∫ z
0
a(s) dsdx

< 0.

The result follows. �

Theorem 3.4. The semigroup eAt is exponentially stable for any m,β, γ > 0, α ≥ 0.

Proof. By Lemma 3.2. and ω(A) = S(A) we need only to show that Re(λ) < 0, for
any λ ∈ σ(A). First A is dissipative, then Re(λ) ≤ 0, for any λ ∈ σ(A). So Now, if
AY = λY, Y = (Ψ,Φ, ζ) and Re(λ) = 0, then Φ = λΨ, Ψ′′′(1) = Φ(1) = 0, we deduce
from (7) that {

λ2ρ(x)Φ(x) + (EI(.)Φ′′)′′(x) = 0, 0 < x < 1,
Φ(0) = Φ′(0) = Φ(1) = Φ′(1) = Φ′′(1) = Φ′′′(1) = 0

the above equation has a zero solution only [4]. Hence Φ = 0, thus Ψ = ζ = 0.
Therefore, Re(λ) < 0, ∀λ ∈ σ(A). The proof is complete. �

4. Numerical simulation

In this section, we use finite difference method to study numerically the spectrum
of the operator A, then we apply QZ method [5], to approach the calculation of the
spectrum of the eigenvalue problem (7). Finally, we study the influence of parameters
of feedback control on the convergence rate of the energy.

The chosen beam is characterized by the following figures (NKSA units)

ρ(x) = (x+ 1)2 (Kg/m), EI(x) = (x+ 1)4 (Kg ×m3/s2),

Let n ∈ IN∗, h =
1

n
, n = 100 and xi = ih, i = 0, 1, ..., n. We use central finite

difference method [8], then a simple calculation gives
aiΦi−2 + biΦi−1 + (ci + λ2h4)Φi + diΦi+1 + eiΦi+2 = 0, i = 2, ..., n− 2
Φ0 = 0, 4Φ1 − Φ2 = 0,
Φn−2(2EIn + λhγ)− 4Φn−1(EIn + λhγ) + Φn(2EIn + 3λhγ) = 0,
(1 + λβ)(EInΦn−3 + 3(hEI ′n + EIn)Φn−2 − 3(2EI ′nh+ EIn)Φn−1)
+(−3h3mλ2 + λ(−3h3α+ β + 3hβEI ′n) + 3hEI ′n + EIn)Φn = 0

(43)

where ai, bi, ci, di and ei, i = 2...n− 2 are defined by

ai =
EIi−1
ρi

, bi = −2
EIi−1 + EIi

ρi
,

ci =
EIi−1 + 4EIi + EIi+1

ρi
, di = −2

EIi + EIi+1

ρi
, ei =

EIi+1

ρi

(44)

We write the system (43) under the matrix form:
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{
λ2PY + λQY +RY = 0,
Y = (y1, ..., yn)T .

(45)

where P , Q and R are n × n matrices. It is easy to verify that we can rewrite the
system in the following form

AU = λB U ,U = (Z, Y )TA =

(
P 0
0 −R

)
, B =

(
0 P
P Q

)
. (46)

The eigenvalues are calculated easily by Matlab in PC by using QZ algorithm.
1. β = 10, α = 20, γ = 1. We change the value of m. We conclude that spectrum
don’t change as m is increased. Which is reassuring, since in this case the feedback
is independent of the mass.(Figure 1 left.)

Figure 1. Distribution of eigenvalues m = 1, 5(left) and β = 1, 5(right).

2. m = 5, α = 10, γ = 1. We change the value of β. We conclude that spectrum don’t
change as β, is increased. (Figure 1 right.)
3. m = 10, β = 5, γ = 1. We change the value of α. We conclude that spectrum don’t
change as, α is increased. (Figure 2 left.)

Figure 2. Distribution of eigenvalues α = 1, 5 (left) and γ = 1, 5(right).

4. m = 10, β = 5, α = 1. We change the value of γ. We conclude that spectrum seems
to move to the right as γ is increased. (Figure 2 right.)
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