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Abstract. In this paper we will study the existence of solutions for the nonhomogeneous

elliptic equation with variable exponent ∆2
p(x)

u = λ|u|q(x)−2u, in a smooth bounded domain,

under Neumann boundary conditions.
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1. Introduction

We are concerned here with the eigenvalue problem:{
∆2
p(x)u = λ|u|q(x)−2u in Ω,

∂u
∂ν = ∂

∂ν (|∆u|p(x)−2∆u) = 0 on ∂Ω,
(1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1, ∆2
p(x)u =

∆(|∆u|p(x)−2∆u), is the p(x)-biharmonic operator, λ ≥ 0, p, q are continuous func-
tions on Ω.
The aim of this work is to study the existence of solutions for the nonhomogeneous
eigenvalue problem (1), by considering different situations concerning the growth rates
involved in the above quoted problem, we will prove the existence of a continuous fam-
ily of elgenvalues.

In recent years, the study of differential equations and variational problems with
p(x)-growth conditions is an interesting topic, which arises from nonlinear electrorhe-
ological fluids and other phenomena related to image processing, elasticity and the
flow in porous media. In this context we refer to [9], [10], [5], [13], [11], [12].

This work is motivated by recent results in mathematical modeling of non Newto-
nian fluids and elastic mechanics, in particular, the electrorheological fluids (Smart
fluids). This important class of fluids is characterized by change of viscosity, which
is not easy to manipulate and depends on the electric field. These fluids, which are
known under the name ER fluids, have many applications in electric mechanics, fluid
dynamics etc...

In the case where p(x) = q(x), the authors in [13] investigated the eigenvalues of
the p(x)−biharmonic with Navier boudary conditions. And in [15] they considered
the problem {

∆2
p(x)u = λ|u|q(x)−2u in Ω,

u = ∆u = 0 on ∂Ω,
(2)
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where p, q are continuous functions on Ω. Using the mountain pass lemma and Ekeland
variational principle, they prove the existence of a continuous family of eigenvalues.
Motivated by this work, we will study the existence of solutions for the non-homogeneous
elliptic eigenvalue problem{

∆2
p(x)u = λ|u|q(x)−2u in Ω,

∂u
∂ν = ∂

∂ν (|∆u|p(x)−2∆u) = 0 on ∂Ω,
(3)

in the space X = {u ∈W 2,p(x)(Ω) : ∂u
∂ν = 0}.

2. Preliminaries

In order to deal with p(x)−biharmonic operator problems, we need some results on
spaces Lp(x)(Ω) and W k,p(x)(Ω) and some properties of p(x)−biharmonic operator,
which we will use later.
Define the generalized Lebesgue space by:

Lp(x)(Ω) =

{
u : Ω −→ IR, measurable and

∫
Ω

|u(x)|p(x)dx <∞
}
,

where p ∈ C+(Ω) and

C+(Ω) =
{
h ∈ C(Ω) : h(x) > 1, ∀x ∈ Ω

}
.

Denote

p+ = max
x∈Ω

p(x), p− = min
x∈Ω

p(x),

and for all x ∈ Ω and k ≥ 1

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N,

and

p∗k(x) =

{
Np(x)

N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N.

One introduces in Lp(x)(Ω) the following norm

|u|p(x) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
,

and the space (Lp(x)(Ω), |.|p(x)) is a Banach.

Proposition 2.1. [21] The space (Lp(x)(Ω), |.|p(x)) is separable, uniformly convex,

reflexive and its conjugate space is Lq(x)(Ω) where q(x) is the conjugate function of
p(x) i.e

1

p(x)
+

1

q(x)
= 1, ∀x ∈ Ω.

For all u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) the Hölder’s type inequality∣∣∣∣∫
Ω

uvdx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(x)|v|q(x)
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holds true.
The Sobolev space with variable exponent W k,p(x)(Ω) is defined by

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2 ...∂xαNN
,

is the derivation in distribution sense, with α = (α1, α2, ..., αN ) is a multi-index and

|α| =
i=N∑
i=1

αi.

The space W k,p(x)(Ω), equipped with the norm

‖u‖k,p(x) =
∑
|α|≤k

|Dαu|p(x),

also becomes a Banach, separable and reflexive space. For more details, we refer to
[22], [21],[11], [25].

Remark 2.1. [26] The norm ‖u‖2,p(x) is equivalent to the norm ‖u‖ = |∆u|p(x) and

(W 2,p(x)(Ω); ‖.‖) is a Banach, separable and reflexive space.

Through this paper, we will consider the following space

X = {u ∈W 2,p(x)(Ω) :
∂u

∂ν
= 0}.

which is considered by F.Mouradi and all in [16]. They have proved that X is a
nonempty, well defined and closed subspace of W 2,p(x)(Ω). For this they have showed
the following boundary trace embedding theorem for variable exponent Sobolev spaces.

Theorem 2.2. [16] Let Ω be a bounded domain in IRN with C2 boundary. If 2p(x) ≥
N ≥ 2 for all x ∈ Ω, then for all q ∈ C+(Ω) there is a continuous boundary trace
embedding

W 2,p(x)(Ω) ↪→ Lq(x)(∂Ω), (4)

and

W 2,p(x)(Ω) ↪→W 1,p(x)(∂Ω), (5)

Proof.(2.1) We choose p, q ∈ C+(Ω) such that for all x ∈ Ω, 2p(x) ≥ N .
There exists the following continuous embedding

W 2,p(x)(Ω) ↪→W 2,p−(Ω), (6)

and

Lq
+

(Ω) ↪→ Lq(x)(∂Ω). (7)

By using the classical boundary trace embedding theorem, since 2p− ≥ N and
q+ ≥ 1, there exists the continuous embedding

W 2,p−(Ω) ↪→ Lq
+

(∂Ω). (8)

And by combining (6), (7), (8) we deduce that W 2,p(x)(Ω) is continuously em-
bedded into Lq(x)(∂Ω).
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(2.2) Since 2p− > N and p+ > 1, we have the continuous embedding (see [24])

W 2,p−(Ω) ↪→W 1,p+(∂Ω). (9)

Moreover
W 1,p+(∂Ω) ↪→W 1,p(x)(Ω). (10)

Then from (6), (9) and (10) we deduct the result.
�

Proposition 2.3. [16] If 2p(x) ≥ N for all x ∈ Ω, then the set

X = {u ∈W 2,p(x)(Ω)
∂u

∂ν
|∂Ω = 0}

is a closed subspace of W 2,p(x)(Ω)

Proof. Consider the operator

D : W 2,p(x)(Ω) −→ Lp(x)(∂Ω)

u 7−→ ∂u

∂ν
|∂Ω.

We prove that D is continuous from (W 2,p(x)(Ω), ‖.‖) to (Lp(x)(Ω), |.|Lp(x)(∂Ω)).
For this, we prove the continuity of the operator

∇ : W 2,p(x)(Ω) −→ (Lp(x)(∂Ω))N

u 7−→ (∇u)|∂Ω,

from (W 2,p(x)(Ω), ‖.‖) to ((Lp(x)(∂Ω))N , ‖.‖p(x),N ), with ‖−→n ‖p(x),N =

i=N∑
i=1

|ni|p(x).

Let (un)n ⊂ W 2,p(x)(Ω) be a sequence such that nn −→ u in W 2,p(x)(Ω). Using the
second assertion of theorem (2.2), we have un −→ u in W 1,p(x)(∂Ω), what implies
that ∇un −→ ∇u in (Lp(x)(∂Ω))N , and then ∇ is continuous.

Moreover, D = T ◦ ∇ with T is the linear function defined as

T : (Lp(x)(∂Ω))N −→ Lp(x)(∂Ω)
−→n 7−→ −→n .−→v ,

where −→v (x) = (α1(x), α2(x), ..., αN (x)) is the outer unit normal vector and∑i=N
i=1 |αi(x)|2 = 1 for all x ∈ ∂Ω.

The operator T is continuous, indeed, for −→n ∈ (Lp(x)(∂Ω))N , we have

|−→n .−→v |p(x) = |
i=N∑
i=1

niαi| ≤
i=N∑
i=1

|niαi|p(x).

On the other hand, we have

i=N∑
i=1

|αi(x)|2 = 1, then |αi(x)| ≤ 1 for all x ∈ ∂Ω,

i ∈ {1, 2, ..., N}.
Consequently, we deduct that

|−→n .−→v |Lp(x)(∂Ω) ≤
i=N∑
i=1

|ni|p(x) = ‖−→n ‖p(x),N ,

which assert that T is continuous and then D is also continuous. Finally, since
X = D−1({0}), it result that X is closed in W 2,p(x)(Ω). Hence, the proof of the
proposition is completed. �
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Remark 2.2. (X; ‖.‖) is a Banach, separable and reflexive space.

Proposition 2.4. If we put

I(u) =

∫
Ω

|∆u|p(x)dx,

then for all u ∈ X the following relations hold true
(i) ‖u‖ < 1 (= 1;> 1)⇐⇒ I(u) < 1 (= 1;> 1),

(ii) ‖u‖ ≤ 1 =⇒ ‖u‖p+ ≤ I(u) ≤ ‖u‖p− ,
(iii) ‖u‖ ≥ 1 =⇒ ‖u‖p− ≤ I(u) ≤ ‖u‖p+ ,

for all un ∈ X, we have
(iv) ‖un‖ −→ 0⇐⇒ I(un) −→ 0,
(v) ‖un‖ −→ ∞⇐⇒ I(un) −→∞

A pair (u, λ) ∈ X × IR is a weak solution of (3) provided that∫
Ω

|∆u|p(x)−2∆u∆vdx = λ

∫
Ω

|u|q(x)−2uvdx, ∀v ∈ X.

In the case where u is nontrivial, such a pair (u, λ) is called an eigenpair, λ is an
eigenvalue and u is called an associated eigenfunction.

Proposition 2.5. If u ∈ X is a weak solution of (3) and u ∈ C4(Ω) then u is a
classical solution of (3).

Proof. Let u ∈ C4(Ω) be a weak solution of problem (3) then for every ϕ ∈ X, we
have ∫

Ω

|∆u|p(x)−2∆u∆ϕdx = λ

∫
Ω

|u|q(x)−2uϕdx. (11)

By applying Green formula, we have:∫
Ω

∆(|∆u|p(x)−2∆u)ϕdx = −
∫

Ω

∇(|∆u|p(x)−2∆u).∇ϕdx

+

∫
∂Ω

ϕ
∂

∂ν
(|∆u|p(x)−2∆u)dx, (12)

and ∫
Ω

|∆u|p(x)−2∆u∆ϕdx = −
∫

Ω

∇(|∆u|p(x)−2∆u).∇ϕdx

+

∫
∂Ω

|∆u|p(x)−2∆u
∂

∂ν
(ϕ)dx, (13)

then we have ∫
Ω

∆(|∆u|p(x)−2∆u)∆ϕdx =

∫
Ω

|∆u|p(x)−2∆u∆ϕdx,

the result follows. �

We will use the following lemma proved by Szulkin [20].

Lemma 2.6. Let E be a real Banach space and A, B be symmetric subsets of E \{0}
which are closed in E. Then:
(a) If there exists an odd continuous mapping f : A −→ B, then γ(A) ≤ γ(B).
(b) If A ⊂ B, then γ(A) ≤ γ(B).
(c) γ(A ∪B) ≤ γ(A) + γ(B).
(d) If γ(B) < +∞, γ(A−B) ≥ γ(A)− γ(B).
(e) If A is compact, then γ(A) < +∞ and there exists a neighborhood N of A, N a

symmetric subset of E \ {0}, closed in E such that γ(N) = γ(A)
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(f) If N is a symmetric and bounded neighborhood of the origin in IRk and if A is
homeomorphic to the boundary of N by an odd homeomorphism, then γ(A) = k.

(g) If E0 is a subspace of E of codimension k and if γ(A) > k, then A ∩ E0 = ∅.

In what follows, we have to need the following proposition which is an extension
of Sobolev embedding theorems to the Sobolev spaces with variable exponent.

Proposition 2.7. Let p ∈ C+(Ω) such that 2p(x) > N for all x ∈ Ω, then
(1) there exists a continuous and compact embedding of W 2,p(x)(Ω) into Lq(x)(Ω),

for all q ∈ C+(Ω).
(2) there exists a continuous embedding of W 2,p(x)(Ω) into C(Ω).

Proof. (1) we can refer to [5].
(2) For each x ∈ Ω, we have 2p(x) > N.

Then, there exists a neighborhood Ux ⊂ Ω such that

2p−(Ux) > N,

where p−(Ux) = inf
y∈Ux

p(y).

Hence, we get a family open covering {Ux}x∈Ω for the compact set Ω. For a
subcovering {Ui}i=1,...,r, one considers mi such that

0 ≤ mi < 2− N

p−i
< mi + 1.

Thanks to the theorem 7.26 [14], there exists a continuous embedding

W 2,p−i (Ui) ↪→ Cmi,αi(Ui), (14)

where αi = 2− N
p−
−mi.

On the othere hand, for all i ∈ {1, 2, ..., r}, it easy to see that

W 2,p(x)(Ui) ⊂W 2,p−i (Ui). (15)

and

Cmi,αi(Ui) ⊂ C(Ui). (16)

From (14), (15) and (16), it follows that

W 2,p(x)(Ui) ⊂ C(Ui),

for all Ui, i = 1, 2, ..., r. This assert that the embedding

W 2,p(x)(Ω) ↪→ C(Ω),

is continuous.
�

The Euler-Lagrange functional associated with (1) is defined as Φλ : X → R,

Φλ(u) =

∫
Ω

1

p(x)
|∆u|p(x) dx− λ

∫
Ω

1

q(x)
|u|q(x)dx.

Standard arguments imply that Φλ ∈ C1(X,R) and

〈Φ′λ(u), v〉 =

∫
Ω

|∆u|p(x)−2∆u∆v dx− λ
∫

Ω

|u|q(x)−2uvdx,

for all u, v ∈ X. Thus the weak solutions of (1) coincide with the critical points of
Φλ. If such a weak solution exists and is nontrivial, then the corresponding λ is an
eigenvalue of problem (1).
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Next, we write Φ′λ as

Φ′λ = A− λB,
where A,B : X → X ′ are defined by

〈A(u), v〉 =

∫
Ω

|∆u|p(x)−2∆u∆v dx,

〈B(u), v〉 =

∫
Ω

|u|q(x)−2uv dx.

We have

Proposition 2.8. [2, Proposition 2.5]
(i) B is completely continuous, namely, un ⇀ u in X implies B′(un) → B′(u) in

X ′.
(ii) A satisfies condition (S+), namely, un ⇀ u, in X and lim sup〈A(un), un−u〉 ≤ 0,

imply un → u in X.

Remark 2.3. Noting that Φ′λ is still of type (S+). Hence, any bounded (PS) sequence
of Φλ in the reflexive Banach space X has a convergent subsequence,

3. Main results and proofs

In what follows, we assume that the functions p, q ∈ C+(Ω).

Theorem 3.1. If

q+ < p−, (17)

then any λ > 0 is an eigenvalue for problem (1). Moreover, for any λ > 0 there exists
a sequence (un) of nontrivial weak solutions for problem (1) such that un → 0 in X.

We want to apply the symmetric mountain pass lemma in [7].

Theorem 3.2. (Symmetric mountain pass lemma) Let E be an infinite dimensional
Banach space and I ∈ C1(E,R) satisfy the following two assumptions:

(A1) I(u) is even, bounded from below, I(0) = 0 and I(u) satisfies the Palais-Smale
condition (PS), namely, any sequence un in E such that I(un) is bounded and
I ′(un)→ 0 in E as n→∞ has a convergent subsequence.

(A2) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak I(u) < 0.
Then, I(u) admits a sequence of critical points uk such that

I(uk) < 0, uk 6= 0 and lim
k
uk = 0,

where Γk denote the family of closed symmetric subsets A of E such that 0 /∈ A and
γ(A) ≥ k with γ(A) is the genus of A, i.e.,

γ(K) = inf{k ∈ N : ∃h : K → Rk\{0} such that h is continuous and odd }.

We start with two auxiliary results.

Lemma 3.3. The functional Φλ is even, bounded from below and satisfies the (PS)
condition; Φλ(0) = 0.

Proof. It is clear that Φλ is even and Φλ(0) = 0. Since q+ < p− and X is continuously

embedded both in Lq
±

(Ω), there exist two positive constants d1, d2 > 0 such that∫
Ω

|u|q
+

dx ≤ d1‖u‖q
+

,

∫
Ω

|u|q
−
dx ≤ d2‖u‖q

−
, ∀u ∈ X.
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According to the fact that

|u(x)|q(x) ≤ |u(x)|q
+

+ |u(x)|q
−
, ∀x ∈ Ω, (18)

for all u ∈ X, we have

Φλ(u) ≥ 1

p+

∫
Ω

|∆u|p(x) − λd1

q−
‖u‖q

+

− λd2

q−
‖u‖q

−

≥ 1

p+
α(‖u‖)− λd1

q−
‖u‖q

+

− λd2

q−
‖u‖q

−
,

where α : [0,+∞[→ R is defined by

α(t) =

{
tp

+

, if t ≤ 1,

tp
−
, if t > 1.

(19)

As q+ < p−, Φλ is bounded from below and coercive because, that is, Φλ(u)→∞ as
‖u‖ → ∞.

It remains to show that the functional Φλ satisfies the (PS) condition to complete
the proof. Let (un) ⊂ X be a (PS) sequence of Φλ in X; that is,

Φλ(un) is bounded and Φ′λ(un)→ 0 in X ′. (20)

Then, by the coercivity of Φλ, the sequence (un) is bounded in X. By the reflexivity
of X, for a subsequence still denoted (un), we have

un ⇀ u in X.

Since q+ < p−, it follows from theorem 3.2 that un ⇀ u in Lq(x)(Ω). Using the
properties of Nemytskii operator Nq(x) defined by

Nq(x)(v)(x) =

{
|v(x)|q(x)−2v(x) if v(x) 6= 0,

0 otherwise,

we deduce that

〈B(un), un − u〉 =

∫
Ω

|un(x)|q(x)−2un(x)(un(x)− u) dx→ 0. (21)

In view of (20) and (21), we obtain

Φ′λ(un) + λ〈B(un), un − u〉 = 〈A(un), un − u〉 → 0 as n→∞.
According to the fact that A satisfies condition (S+), we have un → u in X. The
proof is complete. �

Lemma 3.4. For each n ∈ N∗, there exists an Hn ∈ Γn such that

sup
u∈Hn

Φλ(u) < 0.

Proof. Let v1, v2, . . . , vn ∈ C∞0 (Ω) such that supp(vi) ∩ supp(vj) = ∅ if i 6= j and
meas(supp(vj)) > 0 for i, j ∈ {1, 2, . . . , n}. Take Fn = span{v1, v2, . . . , vn}, it is clear
that dimFn = n and ∫

Ω

|v(x)|q(x)dx > 0 for all v ∈ Fn \ {0}.

Denote S = {v ∈ X : ‖v‖ = 1} and Hn(t) = t(S ∩ Fn) for 0 < t ≤ 1. Obviously,
γ(Hn(t)) = n, for all t ∈]0, 1].

Now, we show that, for any n ∈ N∗, there exist tn ∈]0, 1] such that

sup
u∈Hn(tn)

Φλ(u) < 0.
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Indeed, for 0 < t ≤ 1, we have

sup
u∈Hn(t)

Φλ(u) ≤ sup
v∈S∩Fn

Φλ(tv)

= sup
v∈S∩Fn

{∫
Ω

tp(x)

p(x)
|∆v(x)|p(x)dx− λ

∫
Ω

tq(x)

q(x)
|v(x)|q(x) dx

}
≤ sup
v∈S∩Fn

{ tp−
p−

∫
Ω

∣∣∆v(x)|p(x)dx− λtq
+

q+

∫
Ω

|v(x)|q(x) dx
}

= sup
v∈S∩Fn

{
tp
−( 1

p−
− λ

q+

1

tp−−q+

∫
Ω

|v(x)|q(x) dx
)}
.

Since m := minv∈S∩Fn
∫

Ω
|v(x)|q(x) dx > 0, we may choose tn ∈]0, 1] which is small

enough such that

1

p−
− λ

q+

1

tp
−−q+
n

m < 0.

This completes the proof. �

Proof of Theorem 3.1. By Lemmas 3.3, 3.4 and Theorem 3.2, Φλ admits a sequence
of nontrivial weak solutions (un)n such that for any n, we have

un 6= 0, Φ′λ(un) = 0, Φλ(un) ≤ 0, lim
n
un = 0. (22)

�

Theorem 3.5. If

q− < p− and q+ < p∗2(x) for all x ∈ Ω, (23)

then there exists λ∗ > 0 such that any λ ∈ (0, λ∗) is an eigenvalue for problem (1).

For applying Ekeland’s variational principle. We start with two auxiliary results.

Lemma 3.6. There exists λ∗ > 0 such that for any λ ∈ (0, λ∗) there exist ρ, a > 0
such that Φλ(u) ≥ a > 0 for any u ∈ X with ‖u‖ = ρ.

Proof. Since q(x) < p∗2(x) for all x ∈ Ω, it follows that X is continuously embedded
in Lq(x)(Ω). So, there exists a positive constant c1 such that

|u|q(x) ≤ c1‖u‖, for all u ∈ X. (24)

Let us fix ρ ∈]0, 1[ such that ρ < 1
c1

. Then relation (24) implies |u|q(x) < 1, for all

u ∈ X with ‖u‖ = ρ. Thus,∫
Ω

|u|q(x)dx ≤ |u|q
−

q(x), for all u ∈ X with ‖u‖ = ρ. (25)

Combining (24) and (25), we obtain∫
Ω

|u|q(x)dx ≤ cq
−

1 ‖u‖q
−
, for all u ∈ X with ‖u‖ = ρ. (26)
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Hence, from (26) we deduce that for any u ∈ X with ‖u‖k = ρ, we have

Φλ(u) ≥ 1

p+

∫
Ω

|∆u|p(x)dx− λ

q−

∫
Ω

|u|q(x)dx

≥ 1

p+
‖u‖p

+

− λ

q−
cq
−

1 ‖u‖q
−

=
1

p+
ρp

+

− λ

q−
cq
−

1 ρq
−

= ρq
−

(
1

p+
ρp

+−q− − λ

q−
cq
−

1 ).

Putting

λ∗ =
ρp

+−q−

2p+

q−

cq
−

1

, (27)

for any u ∈ X with ‖u‖ = ρ, there exist a = ρp
+

/(2p+) such that

Φλ(u) ≥ a > 0.

This completes the proof. �

Lemma 3.7. There exists ψ ∈ X such that ψ ≥ 0, ψ 6= 0 and Φλ(tψ) < 0, for t > 0
small enough.

Proof. Since q− < p−, there exist ε0 > 0 such that

q− + ε0 < p−.

Since q ∈ C(Ω), there exist an open set Ω0 ⊂ Ω such that

|q(x)− q−| < ε0, for all x ∈ Ω0.

Thus, we deduce

q(x) ≤ q− + ε0 < p−, for all x ∈ Ω0. (28)

Take ψ ∈ C∞0 (Ω) such that Ω0 ⊂ suppψ, ψ(x) = 1 for x ∈ Ω0 and 0 ≤ ψ ≤ 1 in Ω.
Without loss of generality, we may assume ‖ψ‖ = 1, that is∫

Ω

|∆ψ|p(x) dx = 1. (29)

By using (28), (29) and the fact∫
Ω0

|ψ|q(x)dx = meas(Ω0)

for all t ∈]0, 1[, we obtain

Φλ(tψ) =

∫
Ω

tp(x)

p(x)
|∆ψ|p(x) dx− λ

∫
Ω

tq(x)

q(x)
|ψ|q(x)dx

≤ tp
−

p−

∫
Ω

|∆ψ|p(x) dx− λ

q+

∫
Ω

tq(x)|ψ|q(x)dx

≤ tp
−

p−
− λ

q+

∫
Ω0

tq(x)|ψ|q(x)dx

≤ tp
−

p−
− λtq

−+ε0

q+
meas(Ω0).
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Then, for any t < δ
1

p−−q−−ε0 , with 0 < δ < min{1, λp−meas(Ω0)/q+}, we conclude
that

Φλ(tψ) < 0.

The proof is complete. �

Proof of Theorem 3.5. By Lemma 3.6, we have

inf
∂Bρ(0)

Φλ > 0. (30)

On the other hand, from Lemma 3.7, there exists ψ ∈ X such that Φλ(tψ) < 0 for
t > 0 small enough. Using (26), it follows that

Φλ(u) ≥ 1

p+
‖u‖p

+

− λ

q−
cq
−

1 ‖u‖q
−

for u ∈ Bρ(0).

Thus,

−∞ < cλ := inf
Bρ(o)

Φλ < 0,

Let

0 < ε < inf
∂Bρ(0)

Φλ − inf
Bρ(0)

Φλ.

Then, by applying Ekeland’s variational principle to the functional

Φλ : Bρ(0)→ R,

there exist uε ∈ Bρ(0) such that

Φλ(uε) ≤ inf
Bρ(0)

Φλ + ε,

Φλ(uε) < Φλ(u) + ε‖u− uε‖ for u 6= uε.

Since Φλ(uε) < inf
Bρ(0)

Φλ + ε < inf∂Bρ(0) Φλ, we deduce uε ∈ Bρ(0).

Now, define Iλ : Bρ(0)→ R by

Iλ(u) = Φλ(u) + ε‖u− uε‖.

It is clear that uε is an minimum of Iλ. Therefore, for t > 0 and v ∈ B1(0), we have

Iλ(uε + tv)− Iλ(uε)

t
≥ 0

for t > 0 small enough and v ∈ B1(0); that is,

Φλ(uε + tv)− Φλ(uε)

t
+ ε‖v‖ ≥ 0

for t positive and small enough, and v ∈ B1(0). As t→ 0, we obtain

〈Φ′λ(uε), v〉+ ε‖v‖ ≥ 0 for all v ∈ B1(0).

Hence, ‖Φ′λ(uε)‖X′ ≤ ε. We deduce that there exists a sequence (un)n ⊂ Bρ(0) such
that

Φλ(un)→ cλ and Φ′λ(un)→ 0. (31)

It is clear that (un) is bounded in X. By a standard arguments and the fact A is
type of (S+), for a subsequence we obtain un → u in X as n → +∞. Thus, by (31)
we have

Φλ(u) = cλ < 0 and Φ′λ(u) = 0 as n→∞. (32)

The proof is complete. �
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Theorem 3.8. If

p+ < q− ≤ q+ < p∗2(x) for all x ∈ Ω, (33)

then for any λ > 0, problem (1) possesses a nontrivial weak solution.

We want to construct a mountain geometry, and first need two lemmas.

Lemma 3.9. There exist η, b > 0 such that Φλ(u) ≥ b, for u ∈ X with ‖u‖ = η.

Proof. Since q+ < p∗2, in view the Theorem 3.2, there exist d1, d2 > 0 such that

|u|q+ ≤ d1‖u‖ and |u|q+ ≤ d2‖u‖.

Thus, from (18) we obtain

Φλ(u) ≥ 1

p+

∫
Ω

|∆u(x)|p(x)dx− λ

q−
[
(d1‖u‖)q

+

+ (d2‖u‖)q
−]

≥ 1

p+
α(‖u‖)− λdq

+

1

q−
‖u‖q

+

− λdq
−

2

q−
‖u‖q

−

=

( 1
p+ −

dq
+

1

q− ‖u‖
q+−p+ − λdq

−
2

q− ‖u‖
q−−p+)‖u‖p+ if ‖u‖ ≤ 1,

( 1
p+ −

dq
+

1

q− ‖u‖
q+−p− − λdq

−
2

q− ‖u‖
q−−p−)‖u‖p− if ‖u‖ > 1.

Since p+ < q− ≤ q+, the functional g : [0, 1]→ R defined by

g(s) =
1

p+
− dq

+

1

q−
sq

+−p+ − λdq
−

2

q−
sq
−−p+

is positive on neighborhood of the origin. So, the result of Lemma 3.9 follows. �

Lemma 3.10. There exists e ∈ X with ‖e‖ ≥ η such that Φλ(e) < 0, where η is
given in Lemma 3.9.

Proof. Choose ϕ ∈ C∞0 (Ω), ϕ ≥ 0 and ϕ 6= 0. For t > 1, we have

Φλ(tϕ) ≤ tp
+

p−

∫
Ω

∣∣∆ϕ(x)|p(x)dx− λtq
−

q+

∫
Ω

|ϕ(x)|q(x)dx.

Then, since p+ < q−, we deduce that

lim
t→∞

Φλ(tϕ) = −∞.

Therefore, for t > 1 large enough, there is e = tϕ such that ‖e‖ ≥ η and Φλ(e) < 0.
This completes the proof. �

Lemma 3.11. The functional Φλ satisfies the condition (PS).

Proof. Let (un) ⊂ X be a sequence such that d := supn Φλ(un) < ∞ and Φ′λ(un) →
0 in X ′. By contradiction suppose that

‖un‖ → +∞ as n→∞ and ‖un‖ > 1 for any n.
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Thus,

d+ 1 + ‖un‖ ≥ Φλ(un)− 1

q−
〈Φ′λ(un), un〉

=

∫
Ω

1

p(x)

∣∣∆un|p(x)dx− λ

q−

∫
Ω

|∆un|p(x)dx+ λ

∫
Ω

(
1

q−
− 1

q(x)
)|un|q(x) dx

≥ (
1

p+
− 1

q−
)

∫
Ω

|∆un|p(x)dx

≥ (
1

p+
− 1

q−
)‖un‖p

−
.

This contradicts the fact that p− > 1. So, the sequence (un) is bounded in X and
similar arguments as those used in the proof of Lemma 3.4 completes the proof. �

Proof of theorem 3.8. From Lemmas 3.9 and 3.10, we deduce

max(Φλ(0),Φλ(e)) = Φλ(0) < inf
‖u‖=η

Φλ(u) =: β.

By Lemma 3.11 and the mountain pass theorem, we deduce the existence of critical
points u of Φλ associated of the critical value given by

c := inf
γ∈Γ

sup
t∈[0,1]

Φλ(γ(t)) ≥ β, (34)

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0 and γ(1) = e}. This completes the proof. �
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