Nonresonance conditions for a p-biharmonic operator with weight

Khalil Ben Haddouch, Zakaria El Allali, El Miloud Hssini, and Najib Tsouli

Abstract

This work is devoted to study two nonlinear problems of fourth order governed by the p-biharmonic operators in nonresonance cases. In the first problem we establish the nonresonance part of the Fredholm's alternative, the second is a nonresonance problem relative to the first eigensurface for the spectrum of the operator $\Delta_{p}^{2} u+2 \beta . \nabla\left(|\Delta u|^{p-2} \Delta u\right)+|\beta|^{2}|\Delta u|^{p-2} \Delta u$, where $\beta \in \mathbb{R}^{N}$ under Navier boundary conditions.

2010 Mathematics Subject Classification. 35A15,35J40, 35J60. Key words and phrases. Third order spectrum, nonresonance conditions, p-biharmonic operator.

1. Introduction

We consider the following problem

$$
\begin{cases}\Delta_{p}^{2} u+2 \beta \cdot \nabla\left(|\Delta u|^{p-2} \Delta u\right)+|\beta|^{2}|\Delta u|^{p-2} \Delta u=f(x, u, \Delta u)+h(x) & \text { in } \Omega, \tag{1}\\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded smooth domain in $\mathbb{R}^{N}(N \geq 1), \beta \in \mathbb{R}^{N}, \Delta_{p}^{2}$ denotes the pbiharmonic operator defined by $\Delta_{p}^{2} u=\Delta\left(|\Delta u|^{p-2} \Delta u\right), h \in L^{p^{\prime}}(\Omega),\left(p^{\prime}=\frac{p}{p-1}\right)$, and $m \in M=\left\{m \in L^{\infty}(\Omega) / \operatorname{meas}\{x \in \Omega / m(x)>0\} \neq 0\right\}$.

The investigation of existence of solutions for problems at nonresonance has drawn the attention of many authors, see for example [1, 8, 10, 13].

Recently, Ben Haddouch et al. $[4,5,3]$, showed that the spectrum of problem

$$
\begin{cases}\text { Find } \quad(\beta, \Gamma, u) \in \mathbb{R}^{N} \times \mathbb{R}_{+}^{*} \times X \backslash\{0\} \quad \text { such that } & \\ \Delta_{p}^{2} u+2 \beta . \nabla\left(|\Delta u|^{p-2} \Delta u\right)+|\beta|^{2}|\Delta u|^{p-2} \Delta u=\Gamma m(x)|u|^{p-2} u & \text { in } \quad \Omega, \\ u=\Delta u=0 & \text { on } \quad \partial \Omega,\end{cases}
$$

contains at least one sequence of positive eigensurfaces $\left(\Gamma_{n}^{p}(., m)\right)_{n}$ defined by

$$
\left(\forall \beta \in \mathbb{R}^{N}\right) \quad \Gamma_{n}^{p}(\beta, m)=\inf _{K \in \mathcal{B}_{n}} \sup _{u \in K} \int_{\Omega} e^{\beta . x}|\Delta u|^{p} d x
$$

and

$$
\Gamma_{n}^{p}(\beta, m) \rightarrow+\infty \quad \text { as } \quad n \longrightarrow+\infty
$$

where

$$
\mathcal{B}_{n}=\left\{K \subset \mathcal{N}_{\beta}: K \text { is compact, symmetric and } \gamma(K) \geq n\right\}
$$

and

$$
\mathcal{N}_{\beta}=\left\{u \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) ; \int_{\Omega} m e^{\beta \cdot x}|u|^{p} d x=1\right\} .
$$

[^0]Since $m \in C(\bar{\Omega})$ and $m \geq 0$, the authors proved that the first eigensurface $\Gamma_{1}^{p}(., m)$ is positive, simple and isolated.

In the present paper, using the topological degree theory applied to compact operators and operators of $(S+)$ type, we show the existence of a nontrivial solution of problem (1).

2. Preliminaries

In our further considerations we will use the standard spaces $X=W^{2, p}(\Omega) \cap$ $W_{0}^{1, p}(\Omega), L^{p}(\Omega)$ and $L^{\infty}(\Omega)$, with corresponding norms $\|u\|_{2, p}=\left(\|\Delta u\|_{p}^{p}+\|u\|_{p}^{p}\right)^{\frac{1}{p}}$, $\|u\|_{p}=\left(\int_{\Omega}|u|^{p} d x\right)^{\frac{1}{p}}$ and $\|u\|_{\infty}$ respectively.

Recall that for all $f \in L^{p}(\Omega)$, the Poisson equation associated with the Dirichlet problem

$$
\begin{cases}-\Delta u=f & \text { in } \quad \Omega \tag{2}\\ u=0 & \text { on } \quad \partial \Omega\end{cases}
$$

is uniquely solvable in X (cf. [12]). We denote by Λ the inverse operator of $-\Delta$: $X \longrightarrow L^{p}(\Omega)$.
In the following lemma we give some properties of the operator Λ (cf. [11]).
Lemma 2.1. (i) (Continuity): There exists a constant $C_{p}>0$ such that: $\|\Lambda f\|_{2, p} \leq$ $C_{p}\|f\|_{p}$ holds for all $\left.p \in\right] 1,+\infty\left[\right.$ and $f \in L^{p}(\Omega)$.
(ii) (Continuity) Given $k \in \mathbb{N}^{*}$, for all $\left.p \in\right] 1,+\infty\left[\right.$ there exists a constant $C_{p, k}>0$ such that for all $f \in L^{p}(\Omega),\|\Lambda f\|_{W^{k+2, p}} \leq C_{p, k}\|f\|_{W^{k, p}}$.
(iii) (Symmetry) The following identity: $\int_{\Omega} \Lambda u . v d x=\int_{\Omega} u . \Lambda v d x$ holds for all $u \in$ $L^{p}(\Omega)$ and $v \in L^{p^{\prime}}(\Omega)$ with $\left.p \in\right] 1,+\infty[$.
(iv) (Regularity) Given $f \in L^{\infty}(\Omega)$, we have $\Lambda f \in C^{1, \alpha}(\bar{\Omega})$ for all $\left.\alpha \in\right] 0,1[$. Moreover, there exists $C_{\alpha}>0$ such that $\|\Lambda f\|_{C^{1, \alpha}} \leq C_{\alpha}\|f\|_{\infty}$.
(v) (Regularity and Hopf-type maximum principle) Let $f \in C(\bar{\Omega})$ and $f \geq 0$ then $w=\Lambda f \in C^{1, \alpha}(\bar{\Omega})$, for all $\left.\alpha \in\right] 0,1\left[\right.$ and w satisfies: $w>0$ in $\Omega, \frac{\partial w}{\partial n}<0$ on $\partial \Omega$.
(vi) (Order preserving property) Given $f, g \in L^{p}(\Omega)$, if $f \leq g$ in Ω then $\Lambda f<\Lambda g$ in Ω.

Let N_{p} be the Nemytskii operator defined by:

$$
\begin{cases}N_{p}(v)(x)=|v(x)|^{p-2} v(x) & \text { if } \quad v(x) \neq 0 \tag{3}\\ N_{p}(v)(x)=0 & \text { if } \quad v(x)=0\end{cases}
$$

We have $\left(\forall v \in L^{p}(\Omega)\right) \quad\left(\forall w \in L^{p^{\prime}}(\Omega)\right) \quad N_{p}(v)=w \Longleftrightarrow v=N_{p^{\prime}}(w)$. The operator Λ enables us to transform the problem (1) to the other problem which we will study in the space $L^{p}(\Omega)$.

Lemma 2.2. [4] The problem (1) is equivalent to problem

$$
\left\{\begin{array}{l}
\text { Find } \quad v \in L^{p}(\Omega) \backslash\{0\} \quad \text { such that } \tag{4}\\
e^{\beta \cdot x} N_{p}(v)=\Lambda\left(e^{\beta . x} f(., \Lambda v, v)\right)+\Lambda\left(e^{\beta . x} h\right) \quad \text { in } \quad L^{p^{\prime}}(\Omega)
\end{array}\right.
$$

Definition 2.1. We say that $u \in X$ is a solution of problem (1) if $v \in L^{p}(\Omega)$, where $v=-\Delta u$ is a solution of the problem (4).

Let us here recall for the reader's convenience the theorem of Leray-Schauder [9].
Let X a Banach space, $\mathcal{O} \subset X$ a non-empty set of X and $f: \overline{\mathcal{O}} \rightarrow X$ be a compact mapping. Put
$E_{1}=\{(i d-f, \mathcal{O}, y): \mathcal{O} \subset X$ bounded open, $f: \overline{\mathcal{O}} \rightarrow X$ is compact and $y \notin(i d-f)(\partial \mathcal{O})\}$.
Theorem 2.3. There exists a unique function $d: E_{1} \rightarrow \mathbb{Z}$ called the topological degree, satisfying:
(i) $d(i d, \mathcal{O}, y)=1$ for all $y \in \mathcal{O}$.
(ii) (Homotopy invariance): If $h:[0,1] \times \overline{\mathcal{O}} \rightarrow X$ is a compact mapping and y : $[0,1] \rightarrow X$ a compact mapping such that $y(t) \notin(i d-h(t,)).(\partial \mathcal{O})$ for all $t \in[0,1]$, then $d(i d-h(t,),. \mathcal{O}, y(t))$ is independent of $t \in[0,1]$.
(iii) If $d(i d-F, \mathcal{O}, y) \neq 0$, then $(i d-f)^{-1}\{y\} \neq \emptyset$.
(iv) If $f_{/ \partial \mathcal{O}}=g_{/ \partial \mathcal{O}}$, then $d(i d-f, \mathcal{O}, y)=d(i d-g, \mathcal{O}, y)$.
(v) (Borsuk's theorem): If \mathcal{O} is more symmetric with $0 \in \mathcal{O}$ and f is odd on $\overline{\mathcal{O}}$, then $d(i d-f, \mathcal{O}, 0)$ is an odd integer.

3. Fredholm's alternative

We establish the nonresonance part of the Fredholm's alternative for the operator $\Theta_{p, \beta}$ which is defined by $\Theta_{p, \beta} u:=\Delta_{p}^{2} u+2 \beta . \nabla\left(|\Delta u|^{p-2} \Delta u\right)+|\beta|^{2}|\Delta u|^{p-2} \Delta u$ in the case

$$
f(x, u, \Delta u)=\Gamma m(x)|u|^{p-2} u
$$

where Γ is not in the spectrum associated with the operator $\Theta_{p, \beta}$ with weight $m(x)$. Problem (4) remain to

$$
\left\{\begin{array}{l}
\text { Find } \quad v \in L^{p}(\Omega) \backslash\{0\} \quad \text { such that } \tag{5}\\
e^{\beta \cdot x} N_{p}(v)=\Gamma \Lambda\left(e^{\beta \cdot x} m N_{p}(\Lambda v)\right)+\Lambda\left(e^{\beta \cdot x} h\right) \quad \text { in } \quad L^{p^{\prime}}(\Omega)
\end{array}\right.
$$

we have the following result.
Theorem 3.1. For all $h \in L^{p^{\prime}}(\Omega)$, the problem (5) admits at least one nontrivial solution. Moreover, if $h \in L^{\infty}(\Omega)$, then every solution of (5) is in $C(\bar{\Omega})$.

Proof. To prove the existence of nontrivial solution of (5), we use the property of Leray-Schauder's topological degree. Consider the family of operators $\left(T_{t}\right)_{t \in[0,1]}$ defined from $L^{p}(\Omega)$ to $L^{p}(\Omega)$ by

$$
\forall v \in L^{p}(\Omega) \quad \forall t \in[0,1] \quad T_{t}(v)=N_{p^{\prime}}\left(\Gamma e^{-\beta \cdot x} \Lambda\left(m e^{\beta \cdot x} N_{p}(\Lambda v)\right)+e^{-\beta \cdot x} \Lambda\left(t e^{\beta \cdot x} h\right)\right)
$$

Let $\left(v_{n}\right)_{n}$ be a sequence in $L^{p}(\Omega)$ such that $v_{n} \rightharpoonup v$ in $L^{p}(\Omega)$, then under assertion (i) of lemma 2.1 and by Sobolev's injection theorem, we have $\Lambda v_{n} \rightharpoonup \Lambda v$ in X and $\Lambda v_{n} \rightarrow \Lambda v$ in $L^{p}(\Omega)$. We deduce that for every $t \in[0,1], T_{t}$ is a compact operator.

According to the theorem of Leray-Schauder 2.3, it suffices to prove the following a priori estimate

$$
\begin{equation*}
\exists r>0 \quad \text { such that } \quad v-T_{t}(v) \neq 0 \quad \forall v \in \partial B(0, r), \quad \forall t \in[0,1] . \tag{6}
\end{equation*}
$$

By contradiction, we assume that

$$
\begin{equation*}
\forall n \in \mathbb{N}^{*} \exists v_{n} \in \partial B(0, n) \exists t_{n} \in[0,1] \quad \text { such that } \quad T_{t_{n}}\left(v_{n}\right)=v_{n} \tag{7}
\end{equation*}
$$

We set for all $n \in \mathbb{N}^{*}, w_{n}=\frac{v_{n}}{\left\|v_{n}\right\|_{p}}$. The sequence $\left(w_{n}\right)_{n \geq 1}$ is bounded in $L^{p}(\Omega)$, then there is a subsequence of $\left(w_{n}\right)_{n \geq 1}$, still denoted by $\left(w_{n}\right)_{n \geq 1}$ such that $w_{n} \rightharpoonup w$
in $L^{p}(\Omega)$ and $\Lambda w_{n} \rightarrow \Lambda w$ in $L^{p}(\Omega)$. Dividing (7) by $\left\|v_{n}\right\|_{p}$, we obtain

$$
w_{n}=N_{p^{\prime}}\left(\Gamma e^{-\beta \cdot x} \Lambda\left(m e^{\beta \cdot x} N_{p}\left(\Lambda w_{n}\right)\right)+t_{n} e^{-\beta \cdot x} \frac{\Lambda\left(e^{\beta \cdot x} h\right)}{\left\|v_{n}\right\|_{p}^{p-1}}\right)
$$

The fact that $N_{p}\left(\Lambda w_{n}\right) \rightarrow N_{p}(\Lambda w)$ and $t_{n} \frac{\Lambda\left(e^{\beta . x} h\right)}{\left\|v_{n}\right\|_{p}^{p-1}} \rightarrow 0$ in $L^{p^{\prime}}(\Omega)$, we get

$$
w_{n} \rightarrow N_{p^{\prime}}\left(\Gamma e^{-\beta \cdot x} \Lambda\left(m e^{\beta \cdot x} N_{p}(\Lambda w)\right)\right) \text { in } L^{p}(\Omega)
$$

We deduce that $w_{n} \rightarrow w$ in $L^{p}(\Omega)$ and $w \not \equiv 0$. In conclusion we have

$$
\left\{\begin{array}{l}
w=N_{p^{\prime}}\left(\Gamma e^{-\beta . x} \Lambda\left(m e^{\beta . x} N_{p}(\Lambda w)\right)\right) \\
w \in L^{p}(\Omega) \backslash\{0\}
\end{array}\right.
$$

Which is contradicts with Γ is not in the spectrum of the operator $\Theta_{P, \beta}$. Consequently the estimate (6) holds and one has

$$
d\left(I-T_{1}, B(0, r), 0\right)=d\left(I-T_{0}, B(0, r), 0\right)
$$

where d is the topologic degree function, I is the identity of $L^{p}(\Omega), B(0, r)$ is the ball of center 0 and radius r and $\partial B(0, r)$ is its boundary. The Theorem 2.3, (v) assures that

$$
d\left(I-T_{0}, B(0, r), 0\right) \neq 0
$$

Thus there exists $v \in B(0, r)$ such that $\left(I-T_{1}\right)(v)=0$, which will prove the existence of a solution of problem (5).

4. Non-resonance relative to the first eigensurface of $\Theta_{p, \beta}$

In problem (4), we suppose that the nonlinearity f verifies the following hypothesis

$$
\left\{\begin{array}{l}
\exists(a, b) \in \mathbb{R}^{2} \text { such that } \tag{1}\\
\forall(s, t) \in \mathbb{R}^{2}|f(x, s, t)| \leq a|s|^{p-1}+b|t|^{p-1}+c(x) \quad \text { a.e. } \quad x \in \Omega \\
\frac{a}{\Gamma_{1}^{p}(\beta, 1)}+\frac{b}{\Gamma_{1}^{p}(\beta, 1)^{1 / p}}<1
\end{array}\right.
$$

where $c \in L^{p^{\prime}}(\Omega)$ and $\Gamma_{1}^{p}(\beta, 1)$ is the first eigensurface of the operator $\Theta_{p, \beta}$, with $m \equiv 1$. given in [5] by

$$
\begin{equation*}
1 / \Gamma_{1}^{p}(\beta, 1)=\sup _{v \in L^{p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega} e^{\beta \cdot x}|\Lambda v(x)|^{p} d x}{\int_{\Omega} e^{\beta \cdot x}|v|^{p} d x} \tag{8}
\end{equation*}
$$

Theorem 4.1. If the hypothesis $\left(H_{1}\right)$ holds, then the problem (4) has at least one nontrivial solution for all $h \in L^{p^{\prime}}(\Omega)$.

Proof. To show the existence of a nontrivial solution of (4), we use the properties of monotone type operators (cf. [6]).

We consider the operator

$$
\begin{aligned}
T: L^{p}(\Omega) & \rightarrow L^{p^{\prime}}(\Omega) \\
v & \mapsto e^{\beta \cdot x} N_{p}(v)-\Lambda\left(e^{\beta \cdot x} f(x, \Lambda v, v)\right)
\end{aligned}
$$

The operator N_{p} is of $(\mathrm{S}+)$ type i.e: If $\left(v_{n}\right)_{n \in \mathbb{N}}$ is a sequence in $L^{p}(\Omega)$ such that

$$
\left\{\begin{array}{l}
v_{n} \rightharpoonup v \operatorname{in} L^{p}(\Omega) \\
\limsup _{n \rightarrow+\infty}<N_{p}\left(v_{n}\right), v_{n}-v>\leq 0
\end{array}\right.
$$

then $v_{n} \rightarrow v$ strongly in $L^{p}(\Omega)$. Moreover

$$
|f(x, s, t)| \leq a|s|^{p-1}+b|t|^{p-1}+c(x) \quad \text { a.e. } \quad x \in \Omega
$$

implies

$$
\|f(., \Lambda v, v)\|_{p^{\prime}} \leq a\|\Lambda v\|_{p}^{p-1}+b\|v\|_{p}^{p-1}+\|c\|_{p^{\prime}} .
$$

Then the operator $v \rightarrow f(., \Lambda v, v)$ is bounded, hence the operator $v \rightarrow \Lambda f(., \Lambda v, v)$ is compact. Thus we deduce that T is of $(S+)$ type.

Now we show that T is coercive. Using the Hölder inequality and relation (8), we obtain

$$
\begin{aligned}
\frac{\langle T v, v\rangle}{\|v\|_{p}} & =\frac{\int_{\Omega} e^{\beta \cdot x}|v|^{p} d x}{\|v\|_{p}}-\frac{\int_{\Omega} f(x, \Lambda v(x), v(x)) e^{\beta \cdot x} \Lambda v(x) d x}{\|v\|_{p}} \\
& \geq m_{\beta}\|v\|_{p}^{p-1}-\frac{m_{\beta}\|f\|_{p^{\prime}}\|\Lambda v(x)\|_{p}}{\|v\|_{p}} \\
& \geq m_{\beta}\left[\|v\|_{p}^{p-1}-a \frac{\|\Lambda v\|_{p}^{p}}{\|v\|_{p}^{p}}\|v\|_{p}^{p-1}-b \frac{\|\Lambda v\|_{p}}{\|v\|_{p}}\|v\|_{p}^{p-1}-\|c\|_{p^{\prime}} \frac{\|\Lambda v\|_{p}}{\|v\|_{p}}\right] \\
& \geq m_{\beta}\|v\|_{p}^{p-1}\left(1-\frac{a}{\Gamma_{1}^{p}(\beta, 1)}-\frac{b}{\Gamma_{1}^{p}(\beta, 1)^{1 / p}}\right)-\frac{m_{\beta}\|c\|_{p^{\prime}}}{\Gamma_{1}^{p}(\beta, 1)^{1 / p}} .
\end{aligned}
$$

where $m_{\beta}=\sup _{x \in \bar{\Omega}} e^{\beta . x}$. Since $\frac{a}{\Gamma_{1}^{p}(\beta, 1)}+\frac{b}{\Gamma_{1}^{p}(\beta, 1)^{1 / p}}<1$, we have that T is coercive, hence it is surjective, which proves the existence of a solution of problem (4).

References

[1] A. Anane, O. Chakrone and A. Zerouali, Nonresonance conditions for a semilinear Beam Equation, Advances in Dynamical Systems and Applications 3 (2008), no. 2, 195-207.
[2] Z.B. Bai and H.Y. Wang, On the positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl. 270 (2002), 357-368.
[3] K. Ben Haddouch, Z. El Allali, E.B. Mermri and N. Tsouli, Strict Monotonicity and Unique Continuation for the Third-Order Spectrum of Biharmonic Operator, Abstract and Applied Analysis 2012 (2012), Article ID 571951, 9 pages.
[4] K. Ben Haddouch, Z. El Allali and N. Tsouli, The third order spectrum of p-biharmonic operator with weight, Applicationes Mathematicae (Warsaw) 41 (2014), no. 2-3, 247-255.
[5] K. Ben Haddouch, Z. El Allali, N. Tsouli and El.M. Hssini, On the first eigensurface for the third order spectrum of p-biharmonic operator with weight, Applied Mathematical Sciences 8 (2014), no. 89, $4413-4424$.
[6] J. Berkovits and V. Mustonen, Nonlinear mappings of monotone type (classification and degree theory), Math. Univer. Oulu, Linnanmaa, Oulu, Finland, 1988.
[7] Y. Cui and Y. Zou, Existence and Uniqueness of solutions for Fourth-Order Boundary Value Problems in Banach spaces, Electronic Journal of Differential Equations 2009 (2009), 1-8.
[8] C. De Coster, C. Fabry and F. Munyamarere, Nonresonance conditions for fourth-order nonlinear boundary value problems, Internat. J. Math. Sci. 17 (1994), 725-740.
[9] K. Deimling, Nonlinear Functional Analysis, Springer, New York, 1980.
[10] M.A. Del Pino and R.F. Manasevich, Existence for a fourth-order boundary value problem under a two parameter nonresonance condition, Proc. Amer. Math. Soc. 112 (1991), 81-86.
[11] P. Dràbek, M. Ôtani, Global Bifurcation Result for the p-Biharmonic Operator, Electronic Journal Differential Equations 2001 (2001), 48, 1-19.
[12] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second ed., Springer, New York Tokyo, 1983.
[13] El. M. Hssini, M. Talbi and N. Tsouli, Some Nonlinear Fourth-Order Boundary Value Problems at Nonresonance, Advances in Dynamical Systems and Applications 8 (2013), no. 1, 25-35.
[14] Y.X. Li, Positive solutions of fourth-order boundary value problems with two parameters, J. Math. Anal. Appl. 281 (2003), 477-484.
[15] J. Lindenstrauss and L. Tzafriri, Classical Banach Space I, Springer, Berlin, 1977.
[16] P. H. Rabinovitz, Minimax Methods in critical Point Theory with Applications to Differential Equations, C.B.M.S. 65, Amer. Math. Soc., Providence, R.I., 1986.
[17] D. Xiang Ma and W. Gao Ge, Multiple symmetric positive solutions of Fourth-Order two point Boundary Value Problem, J. Appl. Math 22 (2006), no. 1-2, 295-306.
(Khalil Ben Haddouch, El Miloud Hssini, Najib Tsouli) University Mohammed Premier, Department of Mathematics and Computer Science, Faculty of Science, Oujda, Morocco E-mail address: ayasch1@hotmail.com, hssini1975@yahoo.fr, tsouli@hotmail.com
(Zakaria El Allali) University Mohamed Premier, Laboratory of Applied Mathematics and Information Systems, Department of Mathematics and Computer Science, Faculty Multidisciplinary of Nador, Morocco
E-mail address: elallali@hotmail.com

[^0]: This paper has been presented at Congrès MOCASIM, Marrakech, 19-22 November 2014.

