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Nonresonance conditions for a p-biharmonic operator with
weight
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Abstract. This work is devoted to study two nonlinear problems of fourth order governed by
the p-biharmonic operators in nonresonance cases. In the first problem we establish the nonres-

onance part of the Fredholm’s alternative, the second is a nonresonance problem relative to the

first eigensurface for the spectrum of the operator ∆2
pu+2β.∇(|∆u|p−2∆u)+ |β|2|∆u|p−2∆u,

where β ∈ RN under Navier boundary conditions.
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1. Introduction

We consider the following problem{
∆2
pu+ 2β.∇(|∆u|p−2∆u) + |β|2|∆u|p−2∆u = f(x, u,∆u) + h(x) in Ω,

u = ∆u = 0 on ∂Ω,
(1)

where Ω is a bounded smooth domain in RN (N ≥ 1), β ∈ RN , ∆2
p denotes the p-

biharmonic operator defined by ∆2
pu = ∆(|∆u|p−2∆u), h ∈ Lp′(Ω),

(
p′ = p

p−1

)
, and

m ∈M = {m ∈ L∞(Ω)/meas{x ∈ Ω/m(x) > 0} 6= 0}.
The investigation of existence of solutions for problems at nonresonance has drawn

the attention of many authors, see for example [1, 8, 10, 13].
Recently, Ben Haddouch et al. [4, 5, 3], showed that the spectrum of problem

Find (β,Γ, u) ∈ RN × R∗+ ×X \ {0} such that
∆2
pu+ 2β.∇(|∆u|p−2∆u) + |β|2|∆u|p−2∆u = Γm(x)|u|p−2u in Ω,

u = ∆u = 0 on ∂Ω,

contains at least one sequence of positive eigensurfaces (Γpn(.,m))n defined by

(∀β ∈ RN ) Γpn(β,m) = inf
K∈Bn

sup
u∈K

∫
Ω

eβ.x|∆u|pdx,

and
Γpn(β,m)→ +∞ as n −→ +∞,

where
Bn = {K ⊂ Nβ : K is compact, symmetric and γ(K) ≥ n}

and

Nβ = {u ∈W 2,p(Ω) ∩W 1,p
0 (Ω);

∫
Ω

meβ.x|u|pdx = 1}.
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Since m ∈ C(Ω) and m ≥ 0, the authors proved that the first eigensurface Γp1(.,m)
is positive, simple and isolated.

In the present paper, using the topological degree theory applied to compact op-
erators and operators of (S+) type, we show the existence of a nontrivial solution of
problem (1).

2. Preliminaries

In our further considerations we will use the standard spaces X = W 2,p(Ω) ∩
W 1,p

0 (Ω), Lp(Ω) and L∞(Ω), with corresponding norms ‖u‖2,p = (‖∆u‖pp + ‖u‖pp)
1
p ,

‖u‖p = (

∫
Ω

|u|pdx)
1
p and ‖u‖∞ respectively.

Recall that for all f ∈ Lp(Ω), the Poisson equation associated with the Dirichlet
problem {

−∆u = f in Ω,
u = 0 on ∂Ω,

(2)

is uniquely solvable in X (cf. [12]). We denote by Λ the inverse operator of −∆ :
X −→ Lp(Ω).
In the following lemma we give some properties of the operator Λ (cf. [11]).

Lemma 2.1. (i) (Continuity): There exists a constant Cp > 0 such that: ‖Λf‖2,p ≤
Cp‖f‖p holds for all p ∈]1,+∞[ and f ∈ Lp(Ω).

(ii) (Continuity) Given k ∈ N∗, for all p ∈]1,+∞[ there exists a constant Cp,k > 0
such that for all f ∈ Lp(Ω), ‖Λf‖Wk+2,p ≤ Cp,k‖f‖Wk,p .

(iii) (Symmetry) The following identity:

∫
Ω

Λu.vdx =

∫
Ω

u.Λvdx holds for all u ∈

Lp(Ω) and v ∈ Lp
′
(Ω) with p ∈]1,+∞[.

(iv) (Regularity) Given f ∈ L∞(Ω), we have Λf ∈ C1,α(Ω) for all α ∈]0, 1[. More-
over, there exists Cα > 0 such that ‖Λf‖C1,α ≤ Cα‖f‖∞.

(v) (Regularity and Hopf-type maximum principle) Let f ∈ C(Ω) and f ≥ 0 then

w = Λf ∈ C1,α(Ω), for all α ∈]0, 1[ and w satisfies: w > 0 in Ω,
∂w

∂n
< 0 on ∂Ω.

(vi) (Order preserving property) Given f, g ∈ Lp(Ω), if f ≤ g in Ω then Λf < Λg in
Ω.

Let Np be the Nemytskii operator defined by:{
Np(v)(x) = |v(x)|p−2v(x) if v(x) 6= 0,
Np(v)(x) = 0 if v(x) = 0.

(3)

We have (∀v ∈ Lp(Ω)) (∀w ∈ Lp
′
(Ω)) Np(v) = w ⇐⇒ v = Np′(w). The operator Λ

enables us to transform the problem (1) to the other problem which we will study in
the space Lp(Ω).

Lemma 2.2. [4] The problem (1) is equivalent to problem{
Find v ∈ Lp(Ω) \ {0} such that

eβ.xNp(v) = Λ(eβ.xf(.,Λv, v)) + Λ(eβ.xh) in Lp
′
(Ω).

(4)

Definition 2.1. We say that u ∈ X is a solution of problem (1) if v ∈ Lp(Ω), where
v = −∆u is a solution of the problem (4).
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Let us here recall for the reader’s convenience the theorem of Leray-Schauder [9].
Let X a Banach space, O ⊂ X a non-empty set of X and f : O → X be a compact

mapping. Put

E1 = {(id−f,O, y) : O ⊂ X bounded open, f : O → X is compact and y 6∈ (id−f)(∂O)}.

Theorem 2.3. There exists a unique function d : E1 → Z called the topological
degree, satisfying:
(i) d(id,O, y) = 1 for all y ∈ O.
(ii) (Homotopy invariance): If h : [0, 1] × O → X is a compact mapping and y :

[0, 1]→ X a compact mapping such that y(t) 6∈ (id−h(t, .))(∂O) for all t ∈ [0, 1],
then d(id− h(t, .),O, y(t)) is independent of t ∈ [0, 1].

(iii) If d(id− F,O, y) 6= 0, then (id− f)−1{y} 6= ∅.
(iv) If f/∂O = g/∂O, then d(id− f,O, y) = d(id− g,O, y).

(v) (Borsuk’s theorem): If O is more symmetric with 0 ∈ O and f is odd on O, then
d(id− f,O, 0) is an odd integer.

3. Fredholm’s alternative

We establish the nonresonance part of the Fredholm’s alternative for the operator
Θp,β which is defined by Θp,βu := ∆2

pu + 2β.∇(|∆u|p−2∆u) + |β|2|∆u|p−2∆u in the
case

f(x, u,∆u) = Γm(x)|u|p−2u

where Γ is not in the spectrum associated with the operator Θp,β with weight m(x).
Problem (4) remain to{

Find v ∈ Lp(Ω) \ {0} such that

eβ.xNp(v) = ΓΛ(eβ.xmNp(Λv)) + Λ(eβ.xh) in Lp
′
(Ω).

(5)

we have the following result.

Theorem 3.1. For all h ∈ Lp
′
(Ω), the problem (5) admits at least one nontrivial

solution. Moreover, if h ∈ L∞(Ω), then every solution of (5) is in C(Ω).

Proof. To prove the existence of nontrivial solution of (5), we use the property of
Leray-Schauder’s topological degree. Consider the family of operators (Tt)t∈[0,1] de-
fined from Lp(Ω) to Lp(Ω) by

∀v ∈ Lp(Ω) ∀t ∈ [0, 1] Tt(v) = Np′(Γe
−β.xΛ(meβ.xNp(Λv)) + e−β.xΛ(teβ.xh)).

Let (vn)n be a sequence in Lp(Ω) such that vn ⇀ v in Lp(Ω), then under assertion
(i) of lemma 2.1 and by Sobolev’s injection theorem, we have Λvn ⇀ Λv in X and
Λvn → Λv in Lp(Ω). We deduce that for every t ∈ [0, 1], Tt is a compact operator.

According to the theorem of Leray-Schauder 2.3, it suffices to prove the following
a priori estimate

∃r > 0 such that v − Tt(v) 6= 0 ∀v ∈ ∂B(0, r), ∀t ∈ [0, 1]. (6)

By contradiction, we assume that

∀n ∈ N∗ ∃vn ∈ ∂B(0, n) ∃tn ∈ [0, 1] such that Ttn(vn) = vn. (7)

We set for all n ∈ N∗, wn =
vn
||vn||p

. The sequence (wn)n≥1 is bounded in Lp(Ω),

then there is a subsequence of (wn)n≥1, still denoted by (wn)n≥1 such that wn ⇀ w
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in Lp(Ω) and Λwn → Λw in Lp(Ω). Dividing (7) by ||vn||p, we obtain

wn = Np′(Γe
−β.xΛ(meβ.xNp(Λwn)) + tne

−β.xΛ(eβ.xh)

||vn||p−1
p

).

The fact that Np(Λwn)→ Np(Λw) and tn
Λ(eβ.xh)

||vn||p−1
p

→ 0 in Lp
′
(Ω), we get

wn → Np′(Γe
−β.xΛ(meβ.xNp(Λw))) in Lp(Ω).

We deduce that wn → w in Lp(Ω) and w 6≡ 0. In conclusion we have{
w = Np′(Γe

−β.xΛ(meβ.xNp(Λw))),
w ∈ Lp(Ω) \ {0}.

Which is contradicts with Γ is not in the spectrum of the operator ΘP,β . Consequently
the estimate (6) holds and one has

d(I − T1, B(0, r), 0) = d(I − T0, B(0, r), 0),

where d is the topologic degree function, I is the identity of Lp(Ω), B(0, r) is the ball
of center 0 and radius r and ∂B(0, r) is its boundary. The Theorem 2.3, (v) assures
that

d(I − T0, B(0, r), 0) 6= 0.

Thus there exists v ∈ B(0, r) such that (I−T1)(v) = 0, which will prove the existence
of a solution of problem (5). �

4. Non-resonance relative to the first eigensurface of Θp,β

In problem (4), we suppose that the nonlinearity f verifies the following hypothesis

(H1)


∃(a, b) ∈ R2 such that
∀(s, t) ∈ R2 |f(x, s, t)| ≤ a|s|p−1 + b|t|p−1 + c(x) a.e. x ∈ Ω,

a

Γp1(β, 1)
+

b

Γp1(β, 1)1/p
< 1,

where c ∈ Lp
′
(Ω) and Γp1(β, 1) is the first eigensurface of the operator Θp,β , with

m ≡ 1. given in [5] by

1/Γp1(β, 1) = sup
v∈Lp(Ω)\{0}

∫
Ω

eβ.x|Λv(x)|pdx∫
Ω

eβ.x|v|pdx
(8)

.

Theorem 4.1. If the hypothesis (H1) holds, then the problem (4) has at least one

nontrivial solution for all h ∈ Lp′(Ω).

Proof. To show the existence of a nontrivial solution of (4), we use the properties of
monotone type operators (cf. [6]).

We consider the operator

T : Lp(Ω) → Lp
′
(Ω)

v 7→ eβ.xNp(v)− Λ(eβ.xf(x,Λv, v)).
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The operator Np is of (S+) type i.e: If (vn)n∈N is a sequence in Lp(Ω) such that{
vn ⇀ v in Lp(Ω)
lim sup
n→+∞

< Np(vn), vn − v >≤ 0,

then vn → v strongly in Lp(Ω). Moreover

|f(x, s, t)| ≤ a|s|p−1 + b|t|p−1 + c(x) a.e. x ∈ Ω,

implies
||f(.,Λv, v)||p′ ≤ a||Λv||p−1

p + b||v||p−1
p + ||c||p′ .

Then the operator v → f(.,Λv, v) is bounded, hence the operator v → Λf(.,Λv, v) is
compact. Thus we deduce that T is of (S+) type.

Now we show that T is coercive. Using the Hölder inequality and relation (8), we
obtain

〈Tv, v〉
||v||p

=

∫
Ω

eβ.x|v|pdx

||v||p
−

∫
Ω

f(x,Λv(x), v(x))eβ.xΛv(x)dx

‖v‖p
≥ mβ ||v||p−1

p − mβ‖f‖p′‖Λv(x)‖p
‖v‖p

≥ mβ

[
||v||p−1

p − a
||Λv||pp
||v||pp

||v||p−1
p − b ||Λv||p

||v||p
||v||p−1

p − ||c||p′
||Λv||p
||v||p

]
≥ mβ ||v||p−1

p (1− a

Γp1(β, 1)
− b

Γp1(β, 1)1/p
)− mβ ||c||p′

Γp1(β, 1)1/p
.

where mβ = supx∈Ω e
β.x. Since

a

Γp1(β, 1)
+

b

Γp1(β, 1)1/p
< 1, we have that T is coercive,

hence it is surjective, which proves the existence of a solution of problem (4). �
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