Nonresonance conditions for a p-biharmonic operator with weight

KHALIL BEN HADDOUCH, ZAKARIA EL ALLALI, EL MILoud HSSINI, AND NAJIB TSOUli

ABSTRACT. This work is devoted to study two nonlinear problems of fourth order governed by the p-biharmonic operators in nonresonance cases. In the first problem we establish the nonresonance part of the Fredholm’s alternative, the second is a nonresonance problem relative to the first eigensurface for the spectrum of the operator $\Delta^2_p u + 2\beta \nabla ((|\Delta u|^{p-2}\Delta u) + |\beta|^2|\Delta u|^{p-2}\Delta u$, where $\beta \in \mathbb{R}^N$ under Navier boundary conditions.

2010 Mathematics Subject Classification. 35A15, 35J40, 35J60.
Key words and phrases. Third order spectrum, nonresonance conditions, p-biharmonic operator.

1. Introduction

We consider the following problem

$$\begin{cases}
\Delta^2_p u + 2\beta \nabla ((|\Delta u|^{p-2}\Delta u) + |\beta|^2|\Delta u|^{p-2}\Delta u = f(x, u, \Delta u) + h(x) \quad \text{in } \Omega, \\
u = \Delta u = 0 \quad \text{on } \partial \Omega,
\end{cases}$$

where Ω is a bounded smooth domain in \mathbb{R}^N ($N \geq 1$), $\beta \in \mathbb{R}^N$, Δ^2_p denotes the p-biharmonic operator defined by $\Delta^2_p u = \Delta(|\Delta u|^{p-2}\Delta u)$, $h \in L^{p'}(\Omega)$, $\left(p' = \frac{p}{p-1}\right)$, and $m \in M = \{m \in L^\infty(\Omega) : \text{meas}\{x \in \Omega / m(x) > 0\} \neq 0\}$.

The investigation of existence of solutions for problems at nonresonance has drawn the attention of many authors, see for example [1, 8, 10, 13].

Recently, Ben Haddouch et al. [4, 5, 3], showed that the spectrum of problem

$$\begin{cases}
\Delta^2_p u + 2\beta \nabla ((|\Delta u|^{p-2}\Delta u) + |\beta|^2|\Delta u|^{p-2}\Delta u = \Gamma m(x)|u|^{p-2}u \quad \text{in } \Omega, \\
u = \Delta u = 0 \quad \text{on } \partial \Omega,
\end{cases}$$

contains at least one sequence of positive eigensurfaces $(\Gamma_n^{p} (\cdot, m))_n$ defined by

$$\Gamma_n^{p} (\beta, m) = \inf_{K \in B_n} \sup_{u \in K} \int_{\Omega} e^{\beta \cdot x} |\Delta u|^{p} dx,$$

and

$$\Gamma_n^{p} (\beta, m) \rightarrow +\infty \quad \text{as} \quad n \rightarrow +\infty,$$

where

$$B_n = \{K \subset N_\beta : K \text{ is compact, symmetric and } \gamma(K) \geq n\}$$

and

$$N_\beta = \{u \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega) : \int_{\Omega} me^{\beta \cdot x} |u|^{p} dx = 1\}.$$
Since \(m \in C(\Omega) \) and \(m \geq 0 \), the authors proved that the first eigensurface \(\Gamma_{1}^{\beta}(\cdot, m) \) is positive, simple and isolated.

In the present paper, using the topological degree theory applied to compact operators and operators of \((S+)\) type, we show the existence of a nontrivial solution of problem (1).

2. Preliminaries

In our further considerations we will use the standard spaces \(X = W^{2,p}(\Omega) \cap \mathcal{W}^{1,p} \cap L^{\infty}(\Omega) \), with corresponding norms \(\|u\|_{2,p} = (\|\Delta u\|_{p}^{p} + \|u\|_{p}^{p})^{\frac{1}{p}} \), \(\|u\|_{p} = (\int_{\Omega} |u|^{p} dx)^{\frac{1}{p}} \) and \(\|u\|_{\infty} \) respectively.

Recall that for all \(f \in L^{p}(\Omega) \), the Poisson equation associated with the Dirichlet problem

\[
\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

is uniquely solvable in \(X \) (cf. [12]). We denote by \(\Lambda \) the inverse operator of \(-\Delta : X \to L^{p}(\Omega) \).

In the following lemma we give some properties of the operator \(\Lambda \) (cf. [11]).

Lemma 2.1.

(i) (Continuity) There exists a constant \(C_{p} > 0 \) such that: \(\|\Lambda f\|_{2,p} \leq C_{p} \|f\|_{p} \) holds for all \(p \in]1, +\infty[\) and \(f \in L^{p}(\Omega) \).

(ii) (Continuity) Given \(k \in \mathbb{N}^{*} \), for all \(p \in]1, +\infty[\) there exists a constant \(C_{p,k} > 0 \) such that for all \(f \in L^{p}(\Omega) \), \(\|\Lambda f\|_{W^{k+2,p}} \leq C_{p,k} \|f\|_{W^{k,p}} \).

(iii) (Symmetry) The following identity: \(\int_{\Omega} \Lambda u.vdx = \int_{\Omega} u.\Lambda vdx \) holds for all \(u \in L^{p}(\Omega) \) and \(v \in L^{p}(\Omega) \) with \(p \in]1, +\infty[\).

(iv) (Regularity) Given \(f \in L^{\infty}(\Omega) \), we have \(\Lambda f \in C^{1,\alpha}(\overline{\Omega}) \) for all \(\alpha \in]0,1[\). Moreover, there exists \(C_{\alpha} > 0 \) such that \(\|\Lambda f\|_{C^{1,\alpha}} \leq C_{\alpha}\|f\|_{\infty} \).

(v) (Regularity and Hopf-type maximum principle) Let \(f \in C(\overline{\Omega}) \) and \(f \geq 0 \) then \(w = \Lambda f \in C^{1,\alpha}(\overline{\Omega}) \), for all \(\alpha \in]0,1[\) and \(w \) satisfies: \(w > 0 \) in \(\Omega \), \(\frac{\partial w}{\partial n} < 0 \) on \(\partial \Omega \).

(vi) (Order preserving property) Given \(f, g \in L^{p}(\Omega) \), if \(f \leq g \) in \(\Omega \) then \(\Lambda f \leq \Lambda g \) in \(\Omega \).

Let \(N_{p} \) be the Nemytskii operator defined by:

\[
\begin{align*}
N_{p}(v)(x) &= |v(x)|^{p-2}v(x) & \text{if } v(x) \neq 0, \\
N_{p}(v)(x) &= 0 & \text{if } v(x) = 0.
\end{align*}
\]

We have \(\forall v \in L^{p}(\Omega) \) \(\forall w \in L^{p}(\Omega) \) \(N_{p}(v) = w \iff v = N_{p}(w) \). The operator \(\Lambda \) enables us to transform the problem (1) to the other problem which we will study in the space \(L^{p}(\Omega) \).

Lemma 2.2. [4] The problem (1) is equivalent to problem

\[
\begin{cases}
\text{Find } v \in L^{p}(\Omega) \setminus \{0\} \text{ such that } \\
e^{\beta \cdot x}N_{p}(v) = \Lambda(e^{\beta \cdot x}f(\cdot, \Lambda v, v)) + \Lambda(e^{\beta \cdot x}h) \text{ in } L^{p}(\Omega),
\end{cases}
\]

Definition 2.1. We say that \(u \in X \) is a solution of problem (1) if \(v \in L^{p}(\Omega) \), where \(v = -\Delta u \) is a solution of the problem (4).
Let us here recall for the reader’s convenience the theorem of Leray-Schauder [9].
Let X a Banach space, $\mathcal{O} \subset X$ a non-empty set of X and $f : \mathcal{O} \to X$ be a compact mapping. Put

$$\mathcal{E}_1 = \{(id-f, \mathcal{O}, y) : \mathcal{O} \subset X \text{ bounded open}, f : \mathcal{O} \to X \text{ is compact and } y \notin (id-f)(\partial \mathcal{O})\}.$$

Theorem 2.3. There exists a unique function $d : \mathcal{E}_1 \to \mathbb{Z}$ called the topological degree, satisfying:

(i) $d(id, \mathcal{O}, y) = 1$ for all $y \in \mathcal{O}$.

(ii) (Homotopy invariance): If $h : [0, 1] \times \mathcal{O} \to X$ is a compact mapping and $y : [0, 1] \to X$ a compact mapping such that $y(t) \notin (id-h(t, \cdot))(\partial \mathcal{O})$ for all $t \in [0, 1]$, then $d(id - h(t, \cdot), \mathcal{O}, y(t))$ is independent of $t \in [0, 1]$.

(iii) If $d(id - F, \mathcal{O}, y) \neq 0$, then $(id - F)^{-1}(y) \neq \emptyset$.

(iv) If $f_{|\mathcal{O}} = g_{|\mathcal{O}}$, then $d(id - f, \mathcal{O}, y) = d(id - g, \mathcal{O}, y)$.

(v) (Borsuk’s theorem): If \mathcal{O} is more symmetric with $0 \in \mathcal{O}$ and f is odd on \mathcal{O}, then $d(id - f, \mathcal{O}, 0)$ is an odd integer.

3. Fredholm’s alternative

We establish the nonresonance part of the Fredholm’s alternative for the operator $\Theta_{p, \beta}$ which is defined by $\Theta_{p, \beta}u := \Delta p u + 2\beta \nabla (|\Delta u|^{p-2} \Delta u) + |\beta|^2 |\Delta u|^{p-2} \Delta u$ in the case

$$f(x, u, \Delta u) = \Gamma m(x)|u|^{p-2}u$$

where Γ is not in the spectrum associated with the operator $\Theta_{p, \beta}$ with weight $m(x)$. Problem (4) remain to

\[\begin{cases}
\text{Find } v \in L^p(\Omega) \setminus \{0\} \text{ such that } \\
\quad e^{\beta \cdot x} N_p(v) = \Gamma \Lambda(e^{\beta \cdot x} N_p(\Lambda v)) + \Lambda(e^{\beta \cdot x} h) \text{ in } L^p(\Omega).
\end{cases} \]

(5)

we have the following result.

Theorem 3.1. For all $h \in L^p(\Omega)$, the problem (5) admits at least one nontrivial solution. Moreover, if $h \in L^\infty(\Omega)$, then every solution of (5) is in $C(\Omega)$.

Proof. To prove the existence of nontrivial solution of (5), we use the property of Leray-Schauder’s topological degree. Consider the family of operators $(T_t)_{t \in [0, 1]}$ defined from $L^p(\Omega)$ to $L^p(\Omega)$ by

$$\forall v \in L^p(\Omega) \quad \forall t \in [0, 1] \quad T_t(v) = N_p(\Gamma e^{-\beta \cdot x} \Lambda(m e^{\beta \cdot x} N_p(\Lambda v)) + e^{-\beta \cdot x} \Lambda(t e^{\beta \cdot x} h)).$$

Let $(v_n)_n$ be a sequence in $L^p(\Omega)$ such that $v_n \rightharpoonup v$ in $L^p(\Omega)$, then under assertion (i) of lemma 2.1 and by Sobolev’s injection theorem, we have $\Lambda v_n \rightharpoonup \Lambda v$ in X and $\Lambda v_n \to \Lambda v$ in $L^p(\Omega)$. We deduce that for every $t \in [0, 1]$, T_t is a compact operator.

According to the theorem of Leray-Schauder 2.3, it suffices to prove the following a priori estimate

$$\exists \tau > 0 \quad \text{such that } \quad v - T_t(v) \neq 0 \quad \forall v \in \partial B(0, \tau), \quad \forall t \in [0, 1].$$

(6)

By contradiction, we assume that

$$\forall n \in \mathbb{N}^* \exists v_n \in \partial B(0, n) \exists t_n \in [0, 1] \text{ such that } \quad T_{t_n}(v_n) = v_n.$$

(7)

We set for all $n \in \mathbb{N}^*$, $w_n = \frac{v_n}{\|v_n\|_p}$. The sequence $(w_n)_{n \geq 1}$ is bounded in $L^p(\Omega)$, then there is a subsequence of $(w_n)_{n \geq 1}$, still denoted by $(w_n)_{n \geq 1}$ such that $w_n \rightharpoonup w$.
in $L^p(\Omega)$ and $\Lambda w_n \to \Lambda w$ in $L^p(\Omega)$. Dividing (7) by $\|v_n\|_p$, we obtain

$$w_n = N_p'(\Gamma e^{-\beta \cdot x} \Lambda (me^{\beta \cdot x} N_p(\Lambda w_n))) + t_n e^{-\beta \cdot x} \Lambda (e^{\beta \cdot x} h) / \|v_n\|_p^{p-1}.$$

The fact that $N_p(\Lambda w_n) \to N_p(\Lambda w)$ and $t_n \Lambda(e^{\beta \cdot x} h) / \|v_n\|_p^{p-1} \to 0$ in $L^p'(\Omega)$, we get

$$w_n \to N_p'(\Gamma e^{-\beta \cdot x} \Lambda (me^{\beta \cdot x} N_p(\Lambda w)))$$

in $L^p(\Omega)$. We deduce that $w_n \to w$ in $L^p(\Omega)$ and $w \not\equiv 0$. In conclusion we have

$$\begin{cases} w = N_p'(\Gamma e^{-\beta \cdot x} \Lambda (me^{\beta \cdot x} N_p(\Lambda w))), \\ w \in L^p(\Omega) \setminus \{0\}. \end{cases}$$

Which is contradicts with Γ is not in the spectrum of the operator $\Theta_{P,\beta}$. Consequently the estimate (6) holds and one has

$$d(I - T_1, B(0, r), 0) = d(I - T_0, B(0, r), 0),$$

where d is the topologic degree function, I is the identity of $L^p(\Omega)$, $B(0, r)$ is the ball of center 0 and radius r and $\partial B(0, r)$ is its boundary. The Theorem 2.3, (v) assures that

$$d(I - T_0, B(0, r), 0) \neq 0.$$

Thus there exists $v \in B(0, r)$ such that $(I - T_1)(v) = 0$, which will prove the existence of a solution of problem (5). \hfill \square

4. Non-resonance relative to the first eigensurface of $\Theta_{P,\beta}$

In problem (4), we suppose that the nonlinearity f verifies the following hypothesis

\((H_1)\)

$$\begin{cases} \exists (a, b) \in \mathbb{R}^2 \text{ such that} \\ \forall (s, t) \in \mathbb{R}^2 \quad |f(x, s, t)| \leq a|s|^{p-1} + b|t|^{p-1} + c(x) \quad \text{a.e.} \quad x \in \Omega, \\ \frac{1}{\Gamma_1^p(\beta, 1)} + \frac{1}{\Gamma_1^p(\beta, 1)^{1/p}} < 1, \end{cases}$$

where $c \in L^p(\Omega)$ and $\Gamma_1^p(\beta, 1)$ is the first eigensurface of the operator $\Theta_{P,\beta}$, with $m \equiv 1$. Given in [5] by

$$1/\Gamma_1^p(\beta, 1) = \sup_{v \in L^p(\Omega) \setminus \{0\}} \frac{\int_{\Omega} e^{\beta \cdot x} |\Lambda v(x)|^p dx}{\int_{\Omega} e^{\beta \cdot x} |v|^p dx}$$

(8)

Theorem 4.1. If the hypothesis (H_1) holds, then the problem (4) has at least one nontrivial solution for all $h \in L^p(\Omega)$.

Proof. To show the existence of a nontrivial solution of (4), we use the properties of monotone type operators (cf. [6]).

We consider the operator

$$T : L^p(\Omega) \to L^p'(\Omega), \quad v \mapsto e^{\beta \cdot x} N_p(v) - \Lambda(e^{\beta \cdot x} f(x, \Lambda v, v)).$$
The operator N_p is of (S^+) type i.e: If $(v_n)_{n \in \mathbb{N}}$ is a sequence in $L^p(\Omega)$ such that
\[
\begin{cases}
 v_n \to v \text{ in } L^p(\Omega) \\
 \limsup_{n \to +\infty} N_p(v_n), v_n - v \leq 0,
\end{cases}
\]
then $v_n \to v$ strongly in $L^p(\Omega)$. Moreover
\[
|f(x, s, t)| \leq a|s|^{p-1} + b|t|^{p-1} + c(x) \quad \text{a.e. } x \in \Omega,
\]
implies
\[
||f(., \Lambda v, v)||_{p'} \leq a||\Lambda v||_p^{p-1} + b||v||_p^{p-1} + ||c||_{p'}.
\]
Then the operator $v \to f(., \Lambda v, v)$ is bounded, hence the operator $v \to \Lambda f(., \Lambda v, v)$ is compact. Thus we deduce that T is of (S^+) type.

Now we show that T is coercive. Using the Hölder inequality and relation (8), we obtain
\[
\frac{\langle Tv, v \rangle}{||v||_p^p} = \int_{\Omega} e^{\beta \cdot x} |v|^p dx - \int_{\Omega} f(x, \Lambda v(x), v(x)) e^{\beta \cdot x} \Lambda v(x) dx \\
\geq m_\beta ||v||_p^{p-1} - m_\beta ||f||_{p'} ||\Lambda v||_p ||v||_p \\
\geq m_\beta \left[||v||_p^{p-1} - a \frac{||\Lambda v||_p}{||v||_p} ||v||_p^{p-1} - b \frac{||v||_p^{p-1} - ||c||_{p'}}{||v||_p^{p-1}} ||\Lambda v||_p \right] \\
\geq m_\beta ||v||_p^{p-1} \left(1 - \frac{a}{\Gamma_p(1, 1)} - \frac{b}{\Gamma_p(1, 1)^{1/p_1}} \right) - m_\beta ||c||_{p'} \\
where m_\beta = \sup_{x \in \Omega} e^{\beta \cdot x}. Since \frac{a}{\Gamma_p(1, 1)} + \frac{b}{\Gamma_p(1, 1)^{1/p_1}} < 1, we have that T is coercive, hence it is surjective, which proves the existence of a solution of problem (4). □

References

(Khalil Ben Haddouch, El Miloud Hssini, Najib Tsouli) UNIVERSITY MOHAMMED PREMIER,
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, FACULTY OF SCIENCE, OUJDA, MOROCCO
E-mail address: ayaschi@hotmail.com, hssini1975@yahoo.fr, tsouli@hotmail.com

(Zakaria El Allali) UNIVERSITY MOHAMED PREMIER, LABORATORY OF APPLIED MATHEMATICS AND INFORMATION SYSTEMS, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, FACULTY MULTIDISCIPLINARY OF NADOR, MOROCCO
E-mail address: elallali@hotmail.com