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A topological duality for M3−lattices
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Abstract. In this article we determine a topological duality for M3−lattices, introduced by

A. V. Figallo in the journal Rev. Colombiana de Matemática, XXI, 1987 ([3]). By means

of this duality we describe the congruences and the subdirectly irreducible M3−lattices and
reach some of Figallo’s results in a different way.
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1. Introduction

In this work, we extend the duality obtained by H. A. Priestley for bounded dis-
tributive lattices (see [8] and [9]), known as Priestley duality, to the case of bounded
M3−lattices, showing that there exists a duality between the category whose objects
are the bounded M3−lattices and whose morphisms are the homomorphisms in the va-
riety of the bounded M3−lattices, and the category of M3−spaces and M3−functions.

By means of this duality we have managed to characterize the congruence lattice of
an M3−lattice in terms of certain closed subsets of its associated M3−space, showing
that there is an isomorphism between the lattice of the congruences and the dual
lattice of certain closed subsets of its associated Priestley space, more precisely the
closed and 4-involutive subsets.

Given that any variety of algebras is determined by its subdirectly irreducible
algebras and what Birkhoff’s Theorem states, that Every non-trivial algebra A is
isomorphic to a subdirect product of subdirectly irreducible algebras, each of which is
a homomorphic image of A, it is important to have their characterization. In this
work we determine the simple and subdirectly irreducible M3−lattices by using the
characterization of the congruence lattice obtained and reach the same results as those
achieved by Figallo in an algebraic way.

This article has been organized as follows. In Section 2 we introduce the definition
and properties of M3−lattices given by Figallo as well as some basic definitions of
Priestley’s duality. In Section 3 we describe a duality for M3−lattices, starting with a
study of the properties of M3−lattice prime spectrum, which later allowed us to define
the category of M3−spaces and M3−morphisms. Section 4 is devoted to the study
of congruences and the determination of the simple and the subdirectly irreducible
algebras, concluding that these algebras coincide, for which reason the variety is semi-
simple.
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2. Preliminaries

The consideration of the class of M3−lattices, closely related to the class of trivalent
Lukasiewicz algebras, was motivated by its possible application to the study of the
behavior of certain trivalent switching electric circuits and was defined by A. V. Figallo
in Los M3−Reticulados [3], Rev. Colombiana de Matemática, XXI, 1987, as follows.

An M3−lattice is an algebra 〈L,∧,∨,∼,4, 0〉 of type (2, 2, 1, 1, 0) such that the
reduct 〈L,∧,∨, 0〉 is a distributive lattice with first element 0 which satisfies the
following identities:

(M1) 4(x∧ ∼ x) = 0,
(M2) ∼∼ x = x,
(M3) x = 4x∨ ∼ ∇x, where ∇x is an abbreviation of x∨ ∼ x,
(M4) 4x = 4x∨ ∼ 4x,
(M5) 4∇x = ∇x,
(M6) 4(x ∨ y) = 4x ∨4y,
(M7) ∇(x ∧ y) = ∇x ∧∇y.

If 〈L,∧,∨,∼,4, 0〉 is an M3−lattice such that the reduct 〈L,∧,∨〉 is a distributive
lattice with last element, we will say that it is a bounded M3−lattice.

We will denote the variety of bounded M3−lattices by M3 and, where no doubt
should arise, we will represent any M3−lattice by its support set.

The following properties of the M3−lattices were proved by A. V. Figallo in [3],
some of which are directly derived from the axioms:
(M8) 4x ≤ x, (M9) ∼ ∇x ≤ x,
(M10) ∼ 4x ≤ 4x,
(M11) x ≤ ∇x,
(M12) ∼ x ≤ ∇x,
(M13) 4(x∧ ∼ x) = 0 is the first element of the lattice 〈L,∧,∨〉,
(M14) ∇ ∼ x = ∇x,
(M15) ∇∇x = ∇x,
(M16) ∇4x = 4x,
(M17) if x ≤ y, then 4x ≤ 4y and ∇x ≤ ∇y,
(M18) 4 ∼ ∇x = 0,
(M19) 4 ∼ 4x = 0,
(M20) 44x = 4x,
(M21) ∇x = 4x ∨4 ∼ x,
(M22) ∼ x = x, if and only if, x = 0,
(M23) 40 = ∇0 =∼ 0 = 0.

In the same work, A. V. Figallo defined the notion of invariant element as follows:
an element a of an M3−lattice L is said to be invariant if it verifies that 4a = a, and
represented the set of all invariant elements of an M3−lattice L by K(L).

He also showed that the set K(L) is closed under the operations ∧, ∨, 4 and ∇,
and proved the following properties:
(M24) ∇(x ∨ y) = ∇x ∨∇y,
(M25) 4(x ∧ y) = 4x ∧4y,
(M26) (Principle of determination) if 4x = 4y and ∇x = ∇y, then x = y,
(M27) if 4x ≤ 4y and ∇x ≤ ∇y, then x ≤ y,
(M28) ∼ (x ∨ y) ≤∼ x∨ ∼ y,
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(M29) ∼ x∧ ∼ y ≤∼ (x ∧ y).
Then, for the purposes of finding a representation theorem for M3−lattices, he

introduced the notion of (prime) n-ideal of an M3−lattice L as a (prime) ideal N of
L which verifies whether x ∈ N , then ∼ x ∈ N , or, similarly, x ∈ N implies ∇x ∈ N ,
and proved that, if I(X) and N(X) represent the ideal and the n-ideal generated by
a subset X of L, respectively, then the following properties are verified:
(M30) N(X) = I(K(X)), where K(X) = {∇x : x ∈ X} = {4x : x ∈ X}.
(M31) If M is an n−ideal of L and a ∈ L, then N(M ∪ {a}) = {z ∈ L : z ≤
∇(u ∨ a) for some u ∈M}.

He also proved that the set E(L) = {M ⊆ L : M is a prime n-ideal}, called the
prime spectrum of L, verifies that

⋂
{M : M ∈ E(L)} = {0}. He gave, in addition, a

characterization of the prime n-ideals as follows:
(M32) M is a prime n-ideal of L, if and only if, there exists a prime ideal I such that
M = I ∩ ∼ I, where ∼ I = {∼ x : x ∈ I}, and proved the following results:
(M33) L is a simple M3−lattice; then, the only prime n ideal of L is {0} and, therefore,
L is isomorphic to 〈T,∧,∨,∼,4, 0〉, where T is the three-element chain {0, 1/2, 1}
with 0 ≤ 1/2 ≤ 1, the operations ∼ and 4 being defined in the following chart:

x ∼ x 4x
0 0 0

1/2 1 0
1 1/2 1

(M34) Representation Theorem: Every non-trivial M3−lattice L is isomorphic to an
M3−sublattice of TE(L), TE(L) being the M3−lattice of all the functions of E(L) in
T, where the operations are defined pointwise and T is the three-element chain given
as in (M33).

In a later work ([5]) A. V. Figallo defined:
(M35) x|y = x ∧ (∼ (x ∧∇y)∨ ∼ (y∨ ∼ x)),
and proved that if 〈L,∧,∨,∼, , 0〉 is an M3−lattice, then 〈L,∧,∨, 0, 1〉 is a Browerian
algebra, which allowed him to characterize the congruences as follows:
(M36) IfN is an n-ideal of anM3−lattice L, then R(N) = {(x, y) ∈ L2 : (x|y)∨(y|x) ∈
N} is an M3−congruence and, conversely, for each M3−congruence R of L, there is
an n-ideal N such that R = R(N).

In this same work he also highlighted the importance of the lattice K(L) when
he proved that, if L is an M3−lattice, then K(L) is a generalized Boolean algebra.
These results allowed him to prove that:
(M37) In the M3−lattices the notions of maximal n−ideal, prime n−ideal, irreducible
n−ideal and completely irreducible n−ideal coincide.

Another important result to point out in [5] is that, if in 〈T,∧,∨,∼, , 0〉, the algebra
indicated in (M33), the operations → and ¬ are defined by the formulas that follow:

(i) x→ y = 4 ∼ (x∨ ∼ 1) ∨ y
(ii) ¬x = 4 ∼ (∇x∨ ∼ 1),
the corresponding charts of which are:

→ 0 1/2 1
0 1 1 1

1/2 1 1 1
1 0 1/2 1

x ¬x
0 1

1/2 0
1 0
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and from which the operations 3 and − are defined by the formulas:
(iii) 3x = ¬¬x,
(iv) −x = (¬¬x→ x) ∧ (x→ ¬x).

The algebra 〈T,∧,∨,−,3, 0, 1〉 is a trivalent Lukasiewicz algebra in the sense of
[7].

From this result, taking into account the representation theorem given in (M34),
we can insure that, if 〈L,∧,∨,∼, , 0〉 is an M3−lattice with last element 1, and 3 and
− are the operations indicated in (iii) and (iv), respectively, then 〈L,∧,∨,−,3, 0, 1〉
is a centered trivalent Lukasiewicz algebra, with center c =∼ 1.

The definitions and results used in this volume with respect to the notion of dis-
tributive lattice and universal algebra may be extended in [1] and [2, 6], respectively.
For the purposes of facilitating the reading of the text and establishing the notions
we will use, we present some general notions. If X is a set, we will indicate the power
set of X by P(X). If (X,≤) is a partially ordered set and C ⊆ X, by (C] ([C)) we
will represent the set of all the elements x ∈ X such that x ≤ y (y ≤ x) for some
y ∈ C, and we will say that C is decreasing (increasing) if C = (C] (C = [C). By
maxX (minX) we will indicate the set of the maximal elements (minimal elements)
of X. Some of the properties of the increasing and decreasing sets we will use in this
article are the following:
(i) C is increasing (decreasing), if and only if, X \ C is decreasing (increasing).

(ii) If {Ci}i∈I is a family of increasing (decreasing) sets, then
⋂
i∈I

Ci and
⋃
i∈I

Ci are

increasing (decreasing) sets.
In general, we will denote the set of all the congruences on an algebra A by Con(A).

If K is a class of algebras and A ∈ K, we will indicate the set of the congruences on A
by ConK(A) or call them K−congruences in order to highlight the class of algebras
we are considering.

Even though the theory of Priestley spaces and its relation with distributive lattices
with first and last element is well known, we will present some results. For more details
about this subject the reader is referred to [8] and [9].

A totally order-disconnected topological space is a triple (X, τ,≤) such that (X,≤)
is an ordered set, (X, τ) is a topological space and, given x, y ∈ X such that x 6≤ y,
there exists an open, closed and increasing set U ⊆ X such that x ∈ U and y 6∈ U .

A Priestley space is a compact topological space and totally order-disconnected.
Let I be any set. If we consider the two-element chain 2 = {0, 1} with the discrete

topology, then by Tychonoff’s theorem, 2I = {f : I −→ 2} is a Priestley space with
the product topology and the natural order of functions (f ≤ g iff f(x) ≤ g(x) for
every x ∈ I).

If L is a bounded distributive lattice, it is not difficult to prove that the set
Hom(L,2) of the bounded homomorphisms of L onto 2 is a closed subset of 2L

and, as a consequence, a Priestley space. From this result, it can be deduced that
Ip(L), the set of the prime ideals of L, ordered by the inclusion relation and en-
dowed with the topology τ , which has as sub-basic set the elements of the set∑

= {σL(a) : a ∈ L} ∪ {Ip(L) \ σL(a) : a ∈ L}, where
(A1) σL(a) = {I ∈ Ip(L) : a 6∈ I}, for each a ∈ L,
is a Priestley space, called the Priestley space of L or dual of L. In addition, the
function σL : L −→ D(Ip(L)) is an isomorphism of bounded lattices.
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If X is a Priestley space and we denote the bounded distributive lattice of the open,
closed and decreasing subsets of X by D(X), the function εX : X −→ Ip(D(X)),
defined by

(A2) εX(x) = {V ∈ D(X) : x 6∈ V }, for each x ∈ X,
is a homeomorphism and an order isomorphism.

This indicates that every bounded distributive lattice can be considered as the
lattice of the open, closed and decreasing sets of a Priestley space and that every
Priestley space can be considered as the set of the prime ideals of a bounded lattice.

If we denote by P the category whose objects are the Priestley spaces or P−spaces
and whose morphisms are the continuous and increasing functions or P−functions,
and by L, the category whose objects are the bounded distributive lattices and whose
morphisms are the lattice bounded homomorphisms, then, in the language of the
category theory, the isomorphisms mentioned above define a dual equivalence between
L and P , which is usually called Priestley duality.

The following results will be frequently used in this work. The proof of (i) may be
consulted in [11].
(i) Let X be a Priestley space and S, a closed subset of X. For each x ∈ S, there

exists z ≥ x (z ≤ x) such that z ∈ maxS (z ∈ minS), in particular, maxS 6= ∅
(minS 6= ∅) if S 6= ∅.

(ii) Let X be a Priestley space and x ∈ X. The sets Uz = {y ∈ X : y 6≤ x} and
Vz = {y ∈ X : y 6≥ x} are open.

3. A topological duality for M3−lattices

In this section we extend Priestley duality for bounded distributive lattices to the
case of bounded M3−lattices.

3.1. Properties of the prime spectrum of an M3−lattice.
Now we will see some properties of the prime spectrum of an M3−lattice used in

the development of the section in order to obtain the duality. In what follows we will
denote the family of the prime n-ideals of an M3− lattice L by NIp(L).

Lemma 3.1. Let L be an M3−lattice and, for each I ∈ Ip(L) let I∇ = I∩ ∼ I and
I4 = 4−1(I). Then, the following properties are verified:
(I1) I∇ ∈ NIp(L),
(I2) I4 ∈ Ip(L),
(I3) I∇ ⊆ I ⊆ I4,
(I4) if I ∈ NIp(L), then I∇ = I ⊂ I4, and, in addition, I4 ∈ Ip(L) \ NIp(L),
(I5) if I ∈ Ip(L) \ NIp(L), then I∇ ⊂ I.

Proof.
(I1) It immediately results from (M32). On the other hand, it is easy to prove (I2)

taking into account the axioms for M3−lattice.
(I3) From the definition of I∇ it is immediate that I∇ ⊆ I. In addition, if x ∈ I, then

by (M8), 4x ∈ I; therefore, x ∈ I4, from which we conclude that I ⊆ I4.
(I4) If I ∈ NIp(L), then by (M32), I = I∇ , and as I is a proper n-ideal, by (M2),

there exists a ∈ L \ I such that ∼ a 6∈ I; in addition, as I is a prime ideal,
(1) a∧ ∼ a 6∈ I. On the other hand, taking into account (M1), 4(a∧ ∼ a) ∈ I is
verified, then (2) a∧ ∼ a ∈ I4. Therefore, from (I3), (1) and (2), we have that
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I ⊂ I4 , and as by(M37), I is a maximal n-ideal, I4 ∈ Ip(L) \ NIp(L) must
be verified; otherwise, I4 = L should hold, which would contradict the fact that
I4 is a proper ideal.

(I5) If I ∈ Ip(L) \ NIp(L), then there exists x ∈ I such that ∼ x 6∈ I and, therefore,
x 6∈ I∇. Then, I∇ ⊂ I results by (I3).

�

Lemma 3.2. If L is an M3−lattice, then the following properties are verified:
(I6) min Ip(L) = NIp(L),
(I7) max Ip(L) = Ip(L) \ NIp(L),
(I8) I ∈ max Ip(L), if and only if, I = I4.

Proof.
(I6) Let I ∈ min Ip(L), and suppose that I is not an n-ideal, then by (M32),

M = I∩ ∼ I is a prime ideal of L, such that M ⊂ I; this contradicts that
I ∈ min Ip(L), then I ∈ NIp(L).
Conversely, let N ∈ NIp(L), and suppose that N 6∈ min Ip(L), then there exists
I ∈ Ip(L) such that I ⊂ N . Let M = I∩ ∼ I, then by (M32), M ∈ NIp(L),
and as by (M37), M is a maximal n-ideal such that M ⊆ I ⊂ N , then N = L
must be verified, which contradicts the fact that N is proper.

(I7) If I ∈ NIp(L), then by (I4) and (I2), I /∈ max Ip(L), from which max Ip(L) ⊆
Ip(L)\NIp(L) follows. Conversely, let I ∈ Ip(L)\NIp(L), then by (I5), I∇ ⊂ I.
Suppose that I 6∈ max Ip(L), R ∈ Ip(L) such that (1) I ⊂ R. Let N = N(I);
then from (1), there exists (2) t ∈ R \ I, such that (3) t 6∈ N . Indeed, if t ∈ N ,
then by (M30), there exists x ∈ I such that t ≤ 4x, from which, by (M8), t ∈ I,
which contradicts (2). Therefore, from (2) and (3), I ⊂ N results. On the other
hand, from (M37), (I1) and (I5), we have that I∇ is a maximal n-ideal such that
I∇ ⊂ I ⊂ N ; from this it follows that N = L, which contradicts (3).

(I8) If I ∈ max Ip(L), then by (I2) and (I3), I = I4. Conversely, let now I ∈ Ip(L)
such that (1) I = I4. Suppose that I 6∈ max Ip(L), then there exists R ∈ Ip(L)
such that (2) I ⊂ R; as a consequence, we obtain( 3) I∇ ⊆ R∇, and there exists
(4) x ∈ R \ I, from which we conclude that (5) 4x /∈ I, taking into account (1).
On the other hand, by (M1) and (M25), 4x ∧4 ∼ x ∈ I, then from (5) and, as
I is a prime ideal, 4 ∼ x ∈ I is verified, from which ∼ x ∈ I4 results; therefore,
from (1), (2) and (M2), we have (6) x ∈∼ R.
Taking into account (4) and (6), we have that x ∈ R∇ \ I∇; consequently, from
(3), it follows that I∇ ⊂ R∇, which contradicts, by (I1) and (M37), that I∇ is a
maximal n-ideal.

�

Theorem 3.3. Every prime ideal I of an M3−lattice is a member of one, and only
one, chain of two-element prime ideals, which is precisely I∇ ⊂ I4.

Proof. If I ∈ Ip(L), then by (I4), (I7) and (I8), we have that I = I4 or I = I∇, with
I∇ ⊂ I4; in addition, I∇ ∈ min Ip(L), and I4 ∈ max Ip(L). If R ∈ Ip(L) is such
that (1) I ⊂ R, then by (I6), R 6∈ NIp(L), from which, by (I7) and (I8), (2) R = R4
results. On the other hand, from (1), I4 ⊆ R4, and as I4 is maximal on Ip(L),
(3) I4 = R4 is deduced. Therefore, from (2) and (3), R = I4is obtained in this case.
If (4) R ⊂ I, then by (I7), R 6∈ Ip(L) \ NIp(L), from which it follows, by (I4), that
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(5) R = R∇; in addition, (6) R∇ ⊆ I∇. As, by (I1) and (I6), I∇ is minimal element
in Ip(L), then from(5) and (6), I∇ = R. Therefore, I is a member of one, and only
one, two-element chain, which is I∇ ⊂ I4. �

Corollary 3.4. If L is an M3−lattice, then the set Ip(L), ordered by the relation of
inclusion, is the cardinal sum of totally ordered sets, each of which has two elements.

Proof. It is a direct consequence of Theorem 3.3. �

3.2. The category of M3-spaces and M3-morphisms.
With the objective of making clear a topological duality for bounded M3−lattices

and taking into account that described in Section 2 for bounded distributive lattices,
in this section we will introduce the category M3, define its objects and morphisms
and give some of their properties.

Definition 3.1. An M3−space is a triple (X, τ,≤) such that:
(MP1) (X, τ,≤) is a P−space,
(MP2) (X,≤) is the cardinal sum of a family of chains, each of which has exactly two
elements,
and for each U ∈ D(X) the following are satisfied:
(MP3) (MXU ] is open and closed in X,
(MP4) [mXU) \MXU is open and closed in X,
where MXU = maxX ∩ U y mXU = minX ∩ U .

Remark 3.1. If (X, τ,≤) is an M3−space, then from (MP1) and (MP2) we have
that:
(i) min X ∪max X = X,

(ii) min X ∩max X = ∅,
(iii) the order-connected components have two elements.

Definition 3.2. Let (X, τ,≤) and (X ′, τ ′,≤′) be M3−spaces. An M3−function of
(X, τ,≤) in (X ′, τ ′,≤′) is a P−function h : X −→ X ′ such that for every V ∈ D(X ′)
the following is verified:
(i) (MXh

−1(V )] = h−1((MX′V ]),
(ii) [mXh

−1(V )) \MXh
−1(V ) = h−1([mX′V ) \MX′V ).

We will denote the category of M3−spaces and M3−functions by M3, and the
category of bounded M3−lattices and the M3−homomorphisms byM3.

Lemma 3.5. Let (X, τ,≤) be an object in M3. If, for each U ⊆ X, we define:
(D) 4∗U = (MXU ],
(N) ¬U = [mXU) \MXU ,
(B) ∇∗U = U ∪ ¬U ,
then, for every U, V ∈ D(X), the following are verified:
(MP5) 4∗U,¬U,∇∗U ∈ D(X),
(MP6) 4∗U ⊆ U ,
(MP7) U ⊆ ∇∗U ,
(MP8) ¬U = mXU ∪ {x ∈ X \ U : there exists t ∈ U and t < x},
(MP9) mX¬U = mXU ,
(MP10) mXU = U ∩ ¬U ,
(MP11) MXU = {y ∈ X \ ¬U : there exists v ∈ ¬U and v < y},
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(MP12) {x ∈ X \ 4∗U : there exists t ∈ 4∗U and t < x} = ∅,
(MP13) {x ∈ X \ ∇∗U : there exists t ∈ ∇∗U and t < x} = ∅,
(MP14) U ∪ ¬U = U ∪ {x ∈ X \ U : there exists t ∈ U and t < x},
(MP15) ¬∇∗U = mXU ,
(MP16) MXU ⊆MX∇∗U ,
(MP17) U ⊆ V ⇒ ∇∗U ⊆ ∇∗V .

Proof. (MP5): If U ∈ D(X), then by (MP3) and (MP4), 4∗U,¬U,∇∗U are open and
closed in X. It only remains to prove that ¬U is decreasing. Let u ∈ ¬U and v ∈ X
such that (1) v < u. Then by (MP2), u /∈ min X, from which u 6∈ mXU follows,
and by (N) there exists (2) t ∈ mXU \MXU such that (3) t < u. From (1), (3) and
(MP2), t = v results, from which we obtain that v ∈ ¬U , taking into account (2) and
(N).
(MP6): If x ∈ 4∗U , then by (D) there exists u ∈ MXU such that x ≤ u. As U is
decreasing, we have that x ∈ U .
(MP7) and (MP8): they are immediate consequences of (B) and (N), respectively.
(MP9): By (MP8) mXU ⊆ ¬U , and as mXU ⊆ minX, then it is immediate that
mXU ⊆ mX¬U . On the other hand, from (MP8) and (MP2), it follows that mX¬U ⊆
mXU .
(MP10): It is a consequence of (MP8).
(MP11): Let m ∈ MXU , then by (MP8) and (MP2), m ∈ U \ ¬U , and there exists
z ∈ minX such that z < m. As U is decreasing, then z ∈ mXU , from which it
follows, by (MP8), that z ∈ ¬U . From this we conclude that m ∈ {y ∈ X \ ¬U :
there exists v ∈ ¬U y v < y}.

The other inclusion is valid too. Let y ∈ {y ∈ X \ ¬U : there exists v ∈ ¬U y v <
y}. Therefore, (1) y ∈ X \ ¬U and there exists (2) v ∈ ¬U , which verifies (3) v < y.
Then, from (2), (3) and (MP2), v ∈ mX¬U , from which it follows, by (MP9), that
(4) v ∈ mXU ⊆ U . Therefore, from (3), (4) and (MP8), if y /∈ X \ U , we would have
that y ∈ ¬U , which would contradict (1); therefore, y ∈MXU .
(MP12): Suppose there exist (1) x ∈ X \ 4∗U and (2) t ∈ 4∗U such that (3) t < x.
By (3) and (MP2), t /∈ maxX; therefore, t /∈ MXU , from which it follows, by (2),
that there exist z ∈MX(U) such that (4) t < z. Then, by(3), (4) and (MP2), z = x.
From this x ∈ 4∗U results, which contradicts (1).
(MP13): Suppose there exist (1) x ∈ X \ ∇∗U and (2) t ∈ ∇∗U , such that (3) t < x.
From (2), if t ∈ U , then from (3) and (MP8), as x 6∈ U we have that x ∈ ¬U ; therefore,
x ∈ ∇∗U , which contradicts (1). If t ∈ ¬U , as by (1), x /∈ ¬U , then from(3) and
(MP11), x ∈ MXU , from which we conclude that x ∈ U ; therefore, x ∈ ∇∗U , which
contradicts (1).
(MP14) is immediate from (MP8); (MP15) is a consequence of (MP8), (MP9) and
(MP13); in addition, (MP16) and (MP17) are immediate consequences of (B).

�

Lemma 3.6. Let X and X ′ be M3−spaces and let h : X −→ X ′ be a function. Then,
the following conditions are equivalent:
(i) h is an isomorphism in M3,

(ii) h is a homeomorphism and an order-isomorphism which satisfies the following
conditions:

(a) 4∗h−1(V ) = h−1(4∗V ), for every V ∈ D(X ′),
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(b) ¬h−1(V ) = h−1(¬V ), for every V ∈ D(X ′).

Proof. (i) ⇒ (ii)
Let h : X −→ X ′ be an isomorphism in M3, then h is a morphism in the category

M3 and there exists g : X ′ −→ X, morphism in M3 , such that h ◦ g = 1X′ and
g ◦ h = 1X . As a result, h and g are continuous and increasing functions which verify
the following additional conditions:
(a1) (MXh

−1(V )] = h−1((MX′V ]), for every V ∈ D(X ′),
(a2) [mXh

−1(V )) \MXh
−1(V ) = h−1([mX′V ) \MX′V ), for every V ∈ D(X ′),

(a3) (MX′g−1(U)] = g−1((MXU ]), for every U ∈ D(X),
(a4) [mX′g−1(U)) \MX′g−1(U) = g−1([mXU) \MXU), for every U ∈ D(X).

Therefore, h is an isomorphism in the category P ; consequently, h is an order
isomorphism and a homeomorphism. On the other hand, from conditions (a1), (a2)
and Lemma 3.5, (a) and (b) are satisfied.

(ii) ⇒ (i)
As h is a homeomorphism and an order-isomorphism, then h is an isomorphism

in the category P ; therefore, there exists a P−function g : X ′ −→ X such that
h ◦ g = 1X′ and g ◦ h = 1X . Besides, h satisfies (a) and (b); as a consequence,
(i) and (ii) in Definition 3.2 are verified, for which h is a morphism in the category
M3. It only remains to prove that g satisfies these conditions too, that is to say:
(c) (MX′g−1(V )] = g−1((MXV ]) and (d) [mX′g−1(V )) \MX′g−1(V ) = g−1([mXV ) \
MXV ) for each V ∈ D(X). Consider that if V ∈ D(X), then g−1(V ) = h(V ).
(c) (MX′h(V )] = h((MXV ]): Let x ∈ h((MXV ]), then there exists z ∈ (MXV ] such

that h(z) = x. Therefore, there exists v ∈ V such that v ∈ maxX ∩ V and
z ≤ v. As h is increasing, x = h(z) ≤ h(v) and h(v) ∈ h(V ); in addition, h
being an order isomorphism, h(v) ∈ maxX ′ is verified; consequently, h(v) ∈
maxX ′ ∩ h(V ) and x ≤ h(v), which implies that x ∈ (MX′h(V )]. Conversely, if
y ∈ (MX′h(V )], there exists t ∈ maxX∗ ∩ h(V ) such that y ≤ t, and as h is an
order isomorphism, t = h(v) with v ∈ V ∩maxX. On the other hand, h being
onto, then y = h(z) for some z ∈ X; consequently, h(z) ≤ h(v), from which z ≤ v
with v ∈ V ∩maxX. Thus, z ∈ (MXV ] and, as a consequence, y ∈ h((MXV ]).

(d) h([mXV ) \MXV ) = [mX′h(V )) \MX′h(V ): Let x ∈ h([mXV ) \MXV ), then
there exists t ∈ [mXV ) \MXV such that x = h(t). Therefore, there exists v ∈
minX∩V such that v ≤ t and (1) t 6∈ maxX∩V . As h is an order isomorphism,
h(v) ≤ h(t) = x and h(v) ∈ minX ′∩h(V ) are verified, for which x ∈ [mX′h(V )).
If x ∈ maxX ′ ∩ h(V ), then there exists u ∈ V such that x = h(u), and as h is
injective and h(t) = x, we have that t = u, from which t ∈ maxX ∩ V , which
contradicts (1). Thus, we have that x ∈ [mX′h(V )) \MXh(v). Conversely, let
x ∈ [mX′h(V )) \MX′h(V ); therefore, there exists t ∈ mX′h(V ) such that t ≤ x
and (1) x 6∈ maxX ′ ∩h(V ). Therefore, t ∈ minX ′ ∩h(V ) and t ≤ x, from which
there exists u ∈ V such that t = h(u) ∈ minX ′ with u ∈ V y t = h(u) ≤ x. As
h is onto, x = h(y); therefore, h(u) ≤ h(y), whence u ≤ y with u ∈ V ∩minX,
which implies that y ∈ [mXV ). If y ∈ maxX ∩ V , then h(y) ∈ maxX ′ ∩ h(V ),
which would imply that x ∈ maxX ′ ∩ h(V ), which would contradict (1). As a
consequence,y ∈ mXV ) \MXV , and thus we have that x ∈ h([mXV ) \MXV ).

�
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3.3. Dual M3−lattice of an M3−space.

Proposition 3.7. If X is an M3−space, then 〈D(X),∩,∪,4∗,¬,Ø, X〉 is a bounded
M3−lattice, in which the operations 4∗ and ¬ are those indicated in (D) and (N) in
Lemma 3.5, respectively.

Proof. By (MP5) the operations4∗ and ¬ are well defined. The proofs to M3−lattice
axioms are obtained from properties (MP6) through (MP17) in Lemma 3.5, as follows:

(M1) 4∗(U ∩ ¬U) = ∅: By (MP10), 4∗(U ∩ ¬U) = 4∗(mXU) and, as by (D),
4∗(mXU) = (MX(mXU)] and MX(mXU) = ∅, we conclude that
4∗(U ∩ ¬U) = ∅.

(M2) ¬¬U = U : By (MP8), (MP9) and (MP11), we have that ¬¬U = mXU ∪MXU ,
from which it follows, by (MP2), that ¬¬U = U .

(M3) 4∗U ∪¬∇∗U = U : From (MP6) and (MP15), it follows that 4∗U ∪¬∇∗U ⊆ U .
Conversely, let x ∈ U , then by (MP2), x ∈ mXU or x ∈MXU . If x ∈ mXU , by
(MP15), x ∈ ¬∇∗U , and if x ∈MXU , by (D), we have that x ∈ 4∗U .

(M4) ¬4∗U ∪4∗U = 4∗U : From properties (MP8) and (MP12), ¬4∗U = mX4∗U
results; therefore, ¬4∗U ∪4∗U = 4∗U .

(M5) 4∗∇∗U = ∇∗U : By (MP5) and (MP6), 4∗∇∗U ⊆ ∇∗U .
In order to prove the other inclusion, consider that U ⊆ 4∗∇∗U . Indeed, if
x ∈MXU , from (MP16) and (D), x ∈ 4∗∇∗U . If (1) x ∈ mXU , then by (MP2),
there exists (2) t ∈ maxX such that (3) x < t. If t ∈ U , then by (2), t ∈MXU ;
therefore, from (MP16), t ∈MX∇∗U , from which by (3) and (D), we have that
x ∈ 4∗∇∗U . If t 6∈ U , then t /∈ MXU , from which by (1), (2) and (3), t ∈ ¬U
result; as a consequence, by (2), we have (4) t ∈MX¬U . As MX¬U ⊆MX∇∗U ,
then from (3), (4) and (D), x ∈ 4∗∇∗U .
In an analogous way, ¬U ⊆ 4∗∇∗U is proved, from which we conclude that
4∗∇∗U = ∇∗U .

(M6) 4∗(U ∪V ) = 4∗U ∪4∗V : It is immediate from the definition of 4∗, taking into
account MX(U ∪ V ) = MXU ∪MXV .

(M7) ∇∗(U ∩ V ) = ∇∗U ∩∇∗V : By (MP17), ∇∗(U ∩ V ) ⊆ ∇∗U ∩∇∗V is verified.
For the converse, if x ∈ ∇∗U ∩ ∇∗V , then taking into account the definition of
∇∗, it can happen that x ∈ U∩V , or x ∈ U∩¬V , or x ∈ V ∩¬U or x ∈ ¬U∩¬V .
If x ∈ U ∩ V , x ∈ ∇∗(U ∩ V ) is immediate. If x ∈ U ∩ ¬V , then by (MP8),
(1) x ∈ U ∩mXV or (2) x ∈ U ∩ {x ∈ X \ V : there existst ∈ V and t < x}.
From (1) it follows that x ∈ U ∩ V ; therefore, x ∈ ∇∗(U ∩ V ). From (2), (3)
x ∈ U ∩ (X \ V ) is immediate, and there exists (4) t ∈ V such that (5) t < x.
Therefore, from (3), (4) and (5), taking into account that U is decreasing, there
exists t ∈ U∩V such that t < x, and as x /∈ U∩V , then by (MP8), x ∈ ¬(U∩V ),
from which we conclude that x ∈ ∇∗(U ∩ V ).
If x ∈ V ∩ ¬U , by analogous reasoning we have that x ∈ ∇∗(U ∩ V ). Finally,
if x ∈ ¬U ∩ ¬V , then by (MP8), if x ∈ mXU ∩ mXV , then x ∈ U ∩ V , and,
therefore, x ∈ ∇∗(U ∩ V ); if x ∈ X \ U ∪ V and there exist u ∈ U , v ∈ V , such
that u < x and v < x, then by (MP2), u = v, whence x ∈ ¬(U ∩ V ) results and,
therefore, x ∈ ∇∗(U ∩ V ).

�
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3.4. M3−space associated to a bounded M3−lattice.

Proposition 3.8. If 〈L,∧,∨,4,∼, 0, 1〉 is an M3−lattice, then Ip(L), the Priestley
space of L, is an M3−space and σL : L −→ D(Ip(L)), defined as in (A1), is an
M3−isomorphism.

Proof. According to what was seen in Section 2, we know that σL : L −→ D(Ip(L)),
defined as in (A1), is an isomorphism of bounded lattices. This allows us to state
that if U ∈ D(Ip(L)), then U = σL(a), for some a ∈ L. In order to prove conditions
(MP3) and (MP4) in Definition 3.1, it is sufficient to prove, taking into account
Corollary 3.4, that 4∗σL(a) = σL(4a) and ¬σL(a) = σL(∼ a), which will allow us
to state that σL : L −→ D(Ip(L)), is an M3−isomorphism.
(i) 4∗σL(a) = σL(4a): By (I7), we obtain (1) MIp(L) σL(a) = {I ∈ Ip(L) \
NIp(L) : a 6∈ I}; as a consequence, if R ∈ 4∗σL(a), then there exists J ∈ {I ∈
Ip(L) \ NIp(L) : a 6∈ I} such that (2) R ⊆ J . If 4a ∈ R, then by (2), 4a ∈ J ,
and, consequently, a ∈ J4. Besides, as by (I7) and (I8), we have that J4 = J ;
therefore, a ∈ J , which contradicts the hypothesis. From this it follows that
4∗σL(a) ⊆ σL(4a).
Conversely, let R ∈ σL(4a), then, by (M8), a 6∈ R. If R ∈ Ip(L) \ NIp(L),
then by (1), it is easy to see that R ∈ 4∗σL(a). If R ∈ NIp(L), by (I4),
R4 ∈ Ip(L)\NIp(L), R ⊂ R4 and a 6∈ R4; therefore, R4 ∈MIp(L) σL(a) and,
in this way, R ∈ 4∗σL(a).

(ii) ¬σL(a) = σL(∼ a): From (I6), we have that mIp(L) σL(a) = {I ∈ NIp(L) :
a /∈ I}; therefore, by (MP8), we get (3) ¬σL(a) = {I ∈ NIp(L) : a 6∈ I} ∪ {I ∈
Ip(L)\σL(a) : there exists R ∈ σL(a) y R ⊂ I}. If I ∈ {I ∈ NIp(L) : a 6∈ I}, by
(M2), it is immediate that ∼ a 6∈ I; therefore, I ∈ σL(∼ a). If I ∈ Ip(L) \ σL(a)
and there exists R ∈ σL(a) such that R ⊂ I, then R = I∇ by Theorem 3.3; as
a consequence, a 6∈ I∇, that is to say ∇a 6∈ I, and as a ∈ I, ∼ a 6∈ I is verified;
therefore, I ∈ σL(∼ a), from which it follows that ¬σL(a) ⊆ σL(∼ a).
Conversely, if (4) I ∈ σL(∼ a) is such that I ∈ NIp(L), we have that a 6∈ I
and, therefore, I ∈ ¬σL(a). If I 6∈ NIp(L), a 6∈ I∇; as a consequence, I∇ ∈
σL(a) and, by (I5), I∇ ⊂ I. It remains to prove, taking into account (3), that
I ∈ Ip(L)\σL(a). Suppose that I ∈ σL(a); therefore, a 6∈ I. By (M1) and (M25),
4a ∧4 ∼ a ∈ I, then I being a prime ideal, 4a ∈ I or 4 ∼ a ∈ I; however, as
I 6∈ NIp(L), by (I7) and (I8), I = I4; therefore, 4a 6∈ I, from which 4 ∼ a ∈ I
results; thus ∼ a ∈ I, which contradicts (4). Therefore, I ∈ Ip(L) \ σL(a).

�

3.5. Duality between M3 and M3.
Propositions 3.7 and 3.8 allow us to say that we have established a correspondence

between the objects of the categories M3 and M3. In order to prove that these
categories are naturally equivalent and to define the corresponding functors, we will
show that there exists a correspondence between the morphisms of such categories.

Lemma 3.9. Let h : X −→ X ′ be an M3−function (bijective), then
Ψ(h) : D(X ′) −→ D(X), defined by Ψ(h)(V ) = h−1(V ) for each V ∈ D(X ′), is
an M3−homomorphism (isomorphism).

Proof. It immediately results since h is an M3−function. �
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Proposition 3.10. Let X be an M3−space; then εX : X −→ Ip(D(X)) , defined by
εX(x) = {V ∈ D(X) : x 6∈ V } is an isomorphism in the category M3.

Proof. Given that εX is a homeomorphism and an order isomorphism, it only rests
to prove conditions (a) and (b), item (ii) in Lemma 3.6.
(a) 4∗ε−1

X (V ) = ε−1
X (4∗V ): Let x ∈ 4∗ε−1

X (V ), then there exists y ∈ maxX ∩
ε−1
X (V ) such that x ≤ y; as εX is an order isomorphism, y ∈ maxX, εX(x) ≤
εX(y) and εX(y) ∈ max Ip(D(X)) are verified. Therefore, there exists
εX(y) ∈ max Ip(D(X)) ∩ V such that εX(x) ≤ εX(y); as a consequence,

εX(x) ∈ (max Ip(D(X)) ∩ V ] and, therefore, x ∈ ε−1
X (4∗V ).

Conversely, if x ∈ ε−1
X (4∗V ), then εX(x) ∈ 4∗V and, by (D), there exists t ∈

max Ip(D(X)) ∩ V such that εX(x) ≤ t; therefore, x ≤ ε−1
X (t) and

ε−1
X (t) ∈ maxX ∩ ε−1

X (V ), from which x ∈ 4∗ε−1
X (V ) results.

(b) ¬ε−1
X (V ) = ε−1

X (¬V ): First, let us take into account that, by (MP8) in Lemma

3.5, the following is verified: ¬ε−1
X (V ) = (minX ∩ ε−1

X (V )) ∪ {x ∈ X \ ε−1
X (V ) :

there exists t ∈ ε−1
X (V ) and t < x}. Next, we will prove that ¬ε−1

X (V ) ⊆
ε−1
X (¬V ).

Let x ∈ ¬ε−1
X (V ). If x ∈ minX∩ε−1

X (V ) we have that εX(x) ∈ min Ip(D(X))∩V
and, therefore, x ∈ ε−1

X (¬V ). If y ∈ {x ∈ X \ ε−1
X (V ) : there exists t ∈

ε−1
X (V ) y t < x}, then there exists t ∈ ε−1

X (V ) such that t < y and y 6∈
ε−1
X (V ); therefore, εX(t) ⊂ εX(y), εX(t) ∈ V and εX(y) 6∈ V . Therefore,

εX(y) ∈ {I ∈ Ip(D(X)) \ V : there exists R ∈ V y R ⊂ I} ; thus, y ∈ ε−1
X (¬V ).

Conversely, let x ∈ ε−1
X (¬V ), then εX(x) ∈ ¬V . By (MP8), if

εX(x) ∈ min Ip(D(X)) ∩ V , this is verified: x ∈ minX ∩ ε−1
X (V ) and, there-

fore, x ∈ ¬ε−1
X (V ). On the other hand, if εX(x) /∈ V and there exists R ∈ V such

that R ⊂ εX(x), then ε−1
X (R) ∈ ε−1

X (V ) and ε−1
X (R) < x, from which it follows

that, by (MP8), x ∈ ¬ε−1
X (V ).

�

Proposition 3.11. Let L and L′ be M3−lattices and h : L −→ L′, an
M3−homomorphism; then the application Φ(h) : Ip(L′) −→ Ip(L), defined by
Φ(h)(I ′) = h−1(I ′) for each I ′ ∈ Ip(L′), is an M3−function.

Proof. It results from the fact that Φ(h) is a P−function ([9]) and Proposition 3.8,
because if V ∈ D(Ip(L)), then V = σL(a) for some a ∈ L and Φ(h)−1(σL(a)) =
σL(h(a)). As a consequence, Φ(h)−1(4∗σL(a)) = 4∗Φ(h)−1(σL(a)), Φ(h)−1(¬σL(a)) =
¬Φ(h)−1(σL(a)) and, therefore, conditions (i) and (ii), in Definition 3.2, are ful-
filled. �

From Proposition 3.7 and Lemma 3.9, Ψ is a contravariant-functor of M3 inM3.
On the other hand, from Propositions 3.8 and 3.11, we can easily conclude that Φ is
a contravariant functor of M3 in M3. These results and Proposition 3.10 allow us
to state the following theorem.

Theorem 3.12. Functors Ψ ◦ Φ and Φ ◦ Ψ are naturally equivalent to the identity
functors on M3 and M3, respectively, and these two categories are naturally equiv-
alent.
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4. M3−congruences and subdirectly irreducible algebras

In this section by means of this duality obtained we describe the congruences and
the subdirectly irreducible M3−lattices.

4.1. Characterization of the M3−congruences lattice.
One of the important facts of Priestley Duality is that, if L is a bounded distributive

lattice, there exists a bijective correspondence between the congruences of L and the
closed subsets of Ip(L); more precisely, H. A. Priestley ([8], [9], [10]) proved the
following result.

Theorem 4.1. Let L be a bounded distributive lattice. If Y is a closed subset of
Ip(L), then

(A3) Θ(Y ) = {(a, b) ∈ L× L : σL(a) ∩ Y = σL(b) ∩ Y }
is a congruence on L. Conversely, if θ is a congruence of L and q : L −→ L/θ is the
canonical epimorphism, then

(A4) Y = {q−1(I) : I ∈ Ip(L/θ)}
is a closed subset of Ip(L) such that Θ(Y ) = θ and the correspondence
Y −→ Θ(Y ) establishes an isomorphism between C(Ip(L)), the lattice of the bounded
subsets of L and the dual of the lattice Con(L) of the congruences of L .

Another result which will be useful later and which may be consulted in H. A.
Priestley’s above-mentioned works is the following:

Proposition 4.2. The set Y indicated in (A4) verifies that, if I ∈ Ip(L) \ Y , then
there exist a, b ∈ L, such that (a, b) ∈ θ, a ∈ I y b /∈ I.

Now, we will give a generalization of Theorem 4.1 for M3−lattices, for which we
will obtain a characterization of the lattice of the congruences of an M3−lattice in
terms of certain closed subsets of its associated M3−space. First we will give some
auxiliary results.

Definition 4.1. Let X be an M3−space. We will say that a subset Y of X is
4-involutive if 4∗Y = Y .

Lemma 4.3. Let X be an M3−space. Then every maximal chain in X is
4-involutive.

Proof. If C is a maximal chain in X, then by (MP2), C is a chain which has exactly
two elements. Let x ∈ C. If x ∈ maxX, then it is immediate that x ∈ 4∗C. If
x ∈ minX ∩C, then there exists z ∈ maxX ∩C such that x < z, which implies that
x ∈ 4∗C. Conversely, if x ∈ 4∗C, then there exists (1) t ∈ maxX ∩ C such that
x ≤ t. If x = t, it is immediate that x ∈ C. If x < t, then we have (2) x ∈ Ct, the
chain of two elements which contains t. By (1), (2) and (MP2), we conclude that that
Ct = C and, therefore, x ∈ C. �

Theorem 4.4. Let X be an M3−space and Y , a non-empty subset of X. Then, the
following conditions are equivalent:
(i) Y is 4-involutive,

(ii) Y is increasing and decreasing,
(iii) Y is a cardinal sum of a family of chains, each of which has exactly two elements.
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Proof. (i) ⇒ (ii): From the definition of 4∗Y , it is immediate that, if Y is
4-involutive, then Y is decreasing. On the other hand, if x ∈ Y , y ∈ X are such that
(1) x ≤ y, then, as Y is 4-involutive, there exists (2) t ∈ MXY such that (3) x ≤ t.
Therefore, if x = y, then from (1) it is is immediate that y ∈ Y and, if x < y, then
from (1), (3) and (MP2), t = y results and, therefore, from (2), y ∈ Y , from which
we can conclude that Y is increasing.
(ii) ⇒ (iii): Let x ∈ Y and let Cx be the chain of two elements that contains x. Since
Y is increasing and decreasing, it is immediate that Cx ⊆ Y , from which Y =

⋃
x∈Y

Cx

follows and, as a consequence, by (MP2), Y is the cardinal sum of the chains Cx.
(iii) ⇒ (i): Let Y =

⋃
x∈Y

Cx, with Cx chains of two-element. By Lemma 4.3, for each

x ∈ Y , we have that Cx = 4∗Cx; as a consequence,
⋃

x∈Y
Cx = 4∗

⋃
x∈Y

Cx results and,

therefore, Y is 4-involutive. �

The closed and 4-involutive closed subsets of the M3−space associated to an
M3−lattice are essential for the characterization of the M3−congruences on these
algebras as can be seen below.

Proposition 4.5. Let L ∈M3, Ip(L) be the M3−space associated to L and C4(Ip(L)),
the lattice of the closed and 4-involutive subsets of Ip(L). If Y ∈ C4(Ip(L)), then
ΘC4(Y ) ∈ ConM3(L), where ΘC4(Y ) is defined as in (A3).

Proof. We know, by “By Theorem 4.1, that ΘC4(Y ) is a lattice congruence”; then
it only remains to prove that ΘC4(Y ) is compatible with 4 and ∼. Let (a, b) ∈
ΘC4(Y ), then (1) σL(a) ∩ Y = σL(b) ∩ Y . As Y is 4-involutive and σL is an
M3−isomorphism, for each x ∈ L , σL(4x) ∩ Y = 4∗σL(x) ∩ 4∗Y ; in addition, by
(M25), 4∗σL(x) ∩4∗Y = 4∗(σL(x) ∩ Y ). Then, σL(4x) ∩ Y = 4∗(σL(x) ∩ Y ), for
each x ∈ L, which implies, taking into account (1), that σL(4a) ∩ Y = σL(4b) ∩ Y ;
as a consequence of which ΘC4(Y ) is compatible with the operation 4.

On the other hand, σL(∼ a) ∩ Y = ¬(σL(a) ∩ Y ) is verified. Indeed, if
I ∈ σL(∼ a) ∩ Y , as σL is an M3−isomorphism, I ∈ ¬σL(a) results; therefore, there
exists (1) Q ∈ mIp(L)σL(a) such that (2) Q ⊆ I and (3) I /∈MIp(L)σL(a). By Theo-
rem 4.4, as Y is decreasing, from (1) and (2), we have that Q ∈ mIp(L)(σL(a) ∩ Y );
from this it follows, by (3), that I ∈ [mIp(L)(σL(a) ∩ Y )) \MIp(L)(σL(a) ∩ Y ), which
implies that I ∈ ¬(σL(a) ∩ Y ).

In order to prove the other inclusion, suppose now that I ∈ ¬(σL(a)∩Y ); this im-
plies, taking into account the definition of ¬ en D(Ip(L)), that there exists
(4) R ∈ mIp(L)(σL(a) ∩ Y ) such that (5) R ⊆ I and (6) I /∈ MIp(L)(σL(a) ∩ Y ).
Therefore, from (4) and (5), it is clear that I ∈ [mIp(L)σL(a)) and, as by Theo-
rem 4.4, Y is decreasing, we have (7) I ∈ Y . If I ∈ MIp(L)σL(a), from (7) it
would follow that I ∈ MIp(L)(σL(a) ∩ Y ), which would contradict (6). Therefore,
I ∈ [mIp(L)σL(a)) \MIp(L)σL(a) and, as a consequence, I ∈ ¬σL(a) ∩ Y .

Thus we have proved that ΘC4(Y ) is compatible with operations 4 and ∼; as a
consequence, ΘC4(Y ) ∈ ConM3(L). �

Proposition 4.6. Let L ∈M3, Ip(L) be the M3−space associated to L and C4(Ip(L))
the lattice of closed and 4-involutive subsets of Ip(L). If θ ∈ ConM3(L), then there
exists Y ∈ C4(Ip(L)) such that θ = ΘC4(Y ), where ΘC4(Y ) is defined as in (A3).
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Proof. Let θ ∈ ConM3(L) and q : L −→ L/θ the canonical epimorphism. As
ConM3(L) is a sublattice of Con(L), then by “By Theorem 4.1, Y = {q−1(Q) :
Q ∈ Ip(L/θ)} is a closed set of Ip(L)”and θ = ΘC4(Y ). In order to prove that
Y is 4-involutive, by Theorem 4.4, it is sufficient to prove that Y is increasing and
decreasing.
(a) Y is decreasing: Suppose that Y is not decreasing; then there exist I ∈ Ip(L)

and (1) Q ∈ Y such that (2) I ⊂ Q and (3) I /∈ Y . From (2) and (MP2),
Q ∈ max Ip(L) and, by (I5) and (I7), we have (4) Q∇ = I; besides, by (I6),
(5) I ∈ NIp(L) results. On the other hand, from (3) and Proposition 4.2, we
can state that there exist a, b ∈ L such that (6) (a, b) ∈ θ with (7) a ∈ I and
(8) b /∈ I. Therefore, from (5) and (7), (9) ∼ a ∈ I results and, by (4) and (8),
we have b /∈ Q or b /∈∼ Q. If b /∈ Q, then by (2) and (6), a /∈ I, which contradicts
(7). Similarly, if b /∈∼ Q, then ∼ a /∈ I, which contradicts (9).

(b) Y is increasing. Suppose that there exist I ∈ Ip(L) and (1) Q ∈ Y , such that
(2) Q ⊂ I and (3) I /∈ Y . From (3) and “By Proposition 4.2, there exist
a, b ∈ L such that (4) (a, b) ∈ θ, (5) a ∈ I and (6) b /∈ I”. Therefore, from (2)
and (6), b /∈ Q results and, as θ = ΘC4(Y ), from (1) and (4) it follows that
(7) a /∈ Q. By (2), (MP2) and (6), we have that I ∈ MIp(L)σL(b), and, there-
fore, Q ∈ 4∗σL(b), which implies that 4b /∈ Q, σL being an M3−isomorphism.
As θ is an M3−congruence, from (4), (4a,4b) ∈ θ is verified and, therefore,
(9) 4a /∈ Q. Besides, by (M1) and (M25), we have 0 = 4a ∧ 4 ∼ a ∈ Q
and, as Q is a prime ideal, from (9), 4 ∼ a ∈ Q or, what is equivalent,
(10) ∼ a ∈ 4−1(Q). On the other hand, from (2) and (MP2), I ∈ max Ip(L)
and Q ∈ min Ip(L); therefore, by Lemmas 3.1 and 3.2, we infer (11) I = Q4 and
(12) Q = I∇. Therefore, from (10), (11) and (M2), we conclude that a ∈∼ I.
From this assertion, taking into account (5) and (12), we obtain a ∈ Q, which
contradicts (7).

�

Theorem 4.7. Let L ∈M3 and let Ip(L) be the M3−space associated to L. Then,
the lattice C4(Ip(L)) of the closed and 4-involutive subsets of Ip(L) is isomorphic
to the dual of the lattice ConM3(L) of the M3−congruences, and the isomorphism
is established by the function ΘC4, defined by the same prescription as that given in
(A3).

Proof. It is a consequence of Propositions 4.5 and 4.6, and the fact that the corre-
spondence Y −→ ΘC4(Y ) establishes an isomorphism of the lattice C4(Ip(L)) into
the dual lattice ConM3(L) of the M3−congruences of L. �

4.2. Simple and subdirectly irreducible algebras in M3.
In this section we determine the simple and subdirectly irreducible M3−lattices by

using the characterization of the congruence lattice obtained in Theorem 4.7.

Theorem 4.8. Let X be an M3−space and Ψ(X) its associated dual M3−lattice;
then, the conditions given below are equivalent:
(i) X is totally ordered,
(ii) Ψ(X) is simple,
(iii) Ψ(X) is subdirectly irreducible.
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Proof. (i)⇒ (ii): If X is totally ordered, then by (MP2), we have that X is a maximal
chain of two elements. Then, by Lemma 4.3, X is 4-involutive and, as a consequence,
it is the only non-empty, closed and 4-involutive set of X, which implies, by Theorem
4.7, that Ψ(X) is simple.
(ii)⇒ (iii): It is trivial.
(iii)⇒ (i): If Ψ(X) is subdirectly irreducible, then by Theorem 4.7, the family C4(X)
of the closed, 4-involutive and proper subsets of X, has last element F0. As F0 is
proper, there is (1) x ∈ X \ F0. If Cx is the chain of two elements which contains x,
then by Lemma 4.3, Cx ∈ C4(X), from which by (1), Cx = X results, and, therefore,
X is totally ordered. �

Corollary 4.9. Let L ∈M3 have more than one element. Then, the conditions given
below are equivalent:
(i) L is simple,

(ii) L is subdirectly irreducible,
(iii) L is isomorphic to T, where T is given as in (M33).

Proof. It is the immediate consequence of Theorem 4.8 and Corollary 3.4. �
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