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Abstract. This paper deals with multi-echelon integrated purchase, production and distribution

planning model in a supply chain system. The manufacturer procures raw material from suppliers
then proceed to convert it as finished product, and finally delivers to the distribution centers in

order to minimize the total cost of the chain, which faces imprecise and ill-known data, called
fuzzy supply, process and demand of customers.

The model has been formulated as a fuzzy linear programming model. Here, the triangular

fuzzy numbers are considered because the triangular form is the simplest type of fuzzy numbers
and gives the most important information about a fuzzy number. The main objective of this paper

is to solve fuzzy linear programming problems more efficiently.

In order to secularize the fuzzy linear programming model, an evaluation method is used
wherein the proposed approach enables the decision maker to obtain alternative decision plans

with different degrees of satisfaction. A noteworthy feature of this approach is that it is able to

find the membership function of the fuzzy objective value and decision variables which is derived
numerically by enumerating different values of α-cuts of the fuzzy triangular number. Finally, a

numerical example is presented to clarify the features of the proposed approach.
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1. Introduction and literature review

A Supply Chain (SC) network comprises a number of facilities (e.g., suppliers, manu-
facturing plants, distribution centers, etc.) that perform a set of operations ranging from
the acquisition of raw materials, transformation of these materials into final products,
and transportation of the final products to distributors as shown in Fig.1. Huang et al.
[12] describe a supply chain as a network of facilities that procure raw materials, trans-
form them into intermediate goods and then final products, and deliver the products to
customers through a distribution system.
Today, many companies operate and compete in a global environment. International
business environment has forced many firms to focus on supply chain management. A
well-structured supply chain is an important strategic competency that enables firms to
be competitive in today’s marketplace. Every product that reaches an end user repre-
sents the cumulative effort of multiple organizations.
Several authors have studied the modeling of purchase- production- distribution planning
with different case studies and supply chain planning processes through mathematical
programming models. In what follows, we review some papers that have dealt with un-
certainty and different approaches toward purchase- production- distribution planning
models.
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1.1. Purchase-production distribution planning within supply chain. Integrated
Purchase, Production and Distribution Planning (PPDP) problem in a SC is a challenging
problem as companies move towards higher collaborative and competitive environments.
In real-world PPDP problems, the decision maker attempts to achieve the following: (1)
set overall production levels for each product category for each source (producer) to meet
fluctuating or uncertain demand for various destinations (distributors) over the planning
horizon, and (2) make right strategies regarding production, subcontracting, back or-
dering, inventory and distribution levels, and thus determining appropriate resources to
be used (see Cohen and Lee [8], Thomas and Griffin [28], Vidal and Goetschalckx [30],
Gheidar-Kheljani et al. [11]).
Based on the characteristics of the problem, the most relevant and recent literature on
PPDP are reviewd. Several authors have studied the modeling of PPDP in supply chains
(see, for instance, Ereng, Simpson and Vakharia [9], Sarmiento and Nagi [26], Bilgen and
Ozkarahan [5], Arshinder et al. [2], Peidro et al. [23], Chandra and Fisher [6], Mula et
al. [19], Bhatnagar and Sohal [4] and Paksoya and Pehlivan [20]).
The articles reviewed include mainly classic operations research methods and consider
one (or more than one) of the following aspects of Supply Chain Management (SCM)
such as plant design, production scheduling, distribution and inventory management.

1.2. Fuzzy applications of supply chain planning problems. Some of the models
stated above assume the parameters that influence the design decisions to be determinis-
tic. However, the complex nature and dynamics of the relationships among the different
actors of supply chains imply an important grade of uncertainty in the planning deci-
sions. These challenges lead to an increased interest in stochastic programming and Fuzzy
Mathematical Programming (FMP). A number of researchers have proposed stochastic
SCM models that are closer to real situations. Most research has modeled the SC uncer-
tainty (e.g., uncertain demand) by probability distribution that is usually predicted from
historical data. However, whenever statistical data is unreliable or even unavailable, sto-
chastic models may not be the best choice. Fuzzy set theory may provide an alternative
approach for dealing with the SC uncertainty (see Lai and Hwang [13]). Fuzzy set theory
was proposed by Zadeh [33, 34] and has been found extensive applications in various
fields such as operations research, management science, control theory and artificial in-
telligence. Fuzzy sets theory has been implemented in mathematical programming since
1970 when Bellman and Zadeh [3] introduced the basic concepts of fuzzy goals, fuzzy
constraints, and fuzzy decisions. A detailed discussion of the FMP procedures can be
found in Lai and Hwang [13], Zimmermann [35]. A few studies have attempted to model
integrated PPDP problem in a fuzzy environment. On the matter of integrated planning,
the work of Chen and Chang [7] simultaneously handle multi-product, multi-echelon and
multi-period SC model with fuzzy parameters and they propose a solution procedure
that is able to calculate the fuzzy objective value of the fuzzy SC model. Aliev et al. [1]
developed a fuzzy integrated multi-period and multi-product production and distribution
model in SC, which was formulated in terms of fuzzy programming and the solution was
provided by genetic algorithm. Torabi and Hassani [29] proposed a multi-objective possi-
blistic mixed integer linear programming model for integrating procurement, production
and distribution planning by considering various conflicting objectives simultaneously
as well as the imprecise nature of some critical parameters such as market demands,
cost/time coefficients and capacity levels. Liang [16] developed a fuzzy multi-objective
linear programming model to simultaneously minimize total costs and total delivery time
in a supply chain, adopting the fuzzy goal programming method. Liang and Cheng [18]
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applied fuzzy sets to multi-objective manufacturing/distribution planning decision prob-
lems with multi-product and multi-time period in supply chains by considering time
value of money for each of the operating categories. Peidro et al. [23] proposed a new
mathematical programming model for supply chain planning under supply, process and
demand uncertainty. The model has been formulated as a fuzzy mixed integer linear
programming model where data are ill-known and modeled by triangular fuzzy numbers.
Xu and Zhai [31] considered a two-stage SC coordination problem under fuzzy demand
constraints. They investigated the optimization of the vertically integrated two-stage SC
under perfect coordination and contrast with the non-coordination in case of the fuzzy
demand. This paper proposes a practical, but tractable, fuzzy mathematical program-
ming model under supply, capacity and demand uncertainty. It has been recognized that
although there are many papers in the published literature on the optimization of the
supply chain networks for different design of the chains, only few of them concern the
solution approach. Most supply chain models in fuzzy environment deal with integer
variables and cannot be solved by classical linear programming approaches. Different
solution approachs are introduced. Approaches which the fuzzy integer model is trans-
formed into an equivalent crisp model and the objective and variables are obtained as
crisp values.
Also, many papers consider heuristic algorithms such as genetic algorithms for solving
problems by integer variables [1, 10, 32]. Intuitively, in a fuzzy environment, a fuzzy
decision should be made to meet the decision criteria and the objective and the variables
must be obtaind fuzzy and based on the decision makers satisfication.
In this paper, a new fuzzy integrated PPDP problem in a SC is proposed which is able to
handle the epistemic uncertainty in parameters in real cases results from unavailability
or incompleteness and imprecise nature of input data. The uncertain input data are
assumed to be triangular fuzzy numbers. This kind of fuzzy number gives the most im-
portant information about a fuzzy number: lower and upper bounds of the number and
its most possible value. Moreover, many other types of fuzzy numbers can be expressed
and estimated with this simple form of fuzzy number.
The resulting optimization problem has been solved using Zadeh,s extension principle
[33] in order to calculate the upper and lower bounds of the objective value at possibility
level α. The solution procedure is able to calculate the fuzzy objective value of the fuzzy
PPDP problem, where at least one of the parameters is fuzzy numbers. In this solution
the model is solved at different α levels to approximate the membership functions and
provides more information for decision makers.
The remainder of this paper is arranged as follows. Section 2 describes the problem
and formulates the original PPDP problems. Then in Section 3, a new Fuzzy Linear
Programming (FLP) model for the PPDP problems under uncertainty is proposed. In
Section 4, appropriate strategies for converting the fuzzy model into a pair of crisp linear
programming models are applied. The proposed model is implemented for an numerical
example and the computational results are reported in Section 5. Finally, the conclusions
are provided in Section 6.
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Figure 1. Two stage supply chain network

2. Problem description

The PPDP problems involves optimizing the transportation plan for allocating raw
materials from a set of suppliers to a set of plants and goods and/or services from a set of
plants to various destinations in a SC. In real-world SC network problems, environmental
coefficients and related parameters, including supply, market demand and unit cost/time
coefficients, available labor levels and machine capacity, are normally fuzzy/imprecise
because of some information being incomplete and/or unobtainable over the interme-
diate planning horizon. It is critical that the satisfying goal value should normally be
fuzzy/imprecise as the unit cost/time coefficients and parameters are vague and such
imprecision always exists in real-world SC network problems in supply chains [21, 22].
The conventional solution methods and algorithms cannot solve all realistic problems in
uncertain environments. This work focuses on developing a solution procedure that is
able to calculate the fuzzy objective value, where at least one of the parameters is a fuzzy
number. Fig.1 shows the integrated PPDP problems in a network form.
The mathematical programming model formulated here is based on the following as-
sumptions:

1. The objective function is fuzzy with imprecise aspiration levels.
2. The objective function and constraints are linear equations.
3. The purchase costs from each source, production costs at each plant and distribution

cost on a given route are directly proportional to the units shipped, manufactured
and transferred capacity per truck, respectively.

4. The pattern of triangular distribution is adopted to represent all of the fuzzy/ im-
precise numbers.

5. Supply, capacities and demands are fuzzy.
Assumption 1 relates to the fuzziness of the objective functions in practical SC optimiza-
tion problems and incorporates the variations in the decision maker judgments regarding
the solutions of fuzzy optimization problems in a framework of imprecise aspiration lev-
els. Assumptions 2 and 3 indicate that the linearity and proportionality properties must
be technically satisfied as a standard linear programming form. Assumption 4 concerns
the simplicity and flexibility of the fuzzy arithmetic operations. Triangular distribution
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is utilized to represent all of the fuzzy numbers and thus enhance the computational
efficiency and facilitate data acquisition. Assumption 5 relates the imprecise data in real
cases. In this section, we developed a mathematical model to quantify the relationship
among all the decision variables involved in multi-echelon supply chain network. The
problem of optimizing the supply chain configuration can be summarized in the follow-
ing mathematical model.
Sets of indices, parameters and decision variables for the FLP model are defined in the
the following:
• Index sets
i Index of plants i = 1, 2, ..., I
n Index for products n = 1, 2, ..., N
j Index for destinations j = 1, 2, ..., J
p Index for suppliers p = 1, 2, ..., P
m Index for raw materials m = 1, ...,M
h Index for periods h = 1, ...,H
• Decision variables
Qinh Amount of product n produced in plant i at period h (units)
INinh Inventory level at plant i of product n at period h (units)
Rinjh Quantity delivered from the plant i to destination j of product n at

period h (units)
Vinh Subcontract of product n in the plant i at period h (units)
Lmpih Quantity of raw material m shipped from supplier p to plant i at

period h (units)
IMmih Inventory of raw material m at plant i at period h (units)
LSnjh The amount of lost sale for product n at destination j at period h (units)
• Parameters
λinh Production cost per unit of product n produced at plant i in period h

($\unit)
γinh Subcontracting cost per unit of product n at plant i in period h ($/unit)
ϕmih Inventory cost for raw material m at plant i in period h ($/unit)
ηinh Inventory cost per unit of product n at plant i in period h ($/unit)
θinjh Transport cost per unit of product n from plant i to destination j in

period h ($/unit)
µmpih Shipping cost per unit of raw material m from supplier p to plant i in

period h ($/unit)
ψmph Purchasing cost per unit of raw material m provided by supplier p in

period h ($/unit)
πnh Lost sale cost per unit of product n in period h ($/unit)
Nmn Raw material m needed by each product n
HLin Hour of labor per unit of product n produced at plant i

(man− hour/unit)
HMin Hour of machine per unit of product n produced at plant i

(machine− hour/unit)
Wpn Warehouse space required per unit of product n (ft2/unit)
WMm Warehouse space required per unit of raw material m (ft2/unit)
MPih Final product storage capacity at plant i in period h (ft2/unit)
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Sih Raw material storage capacity at plant i in period h (ft2/unit)

D̃njh Demand of product n at destination j in period h (units)

M̃Lih Maximum labor level of work for plant i in period h (man− hour)
˜MM ih Maximum machine capacity available for plant i in period h

(machine− hour)
M̃Smph Maximum capacity of supplier p for raw material m in period h (unit)

In real-world situations, most PPDP problems minimize total costs, delivery time,
and/or maximize profits. Furthermore, in most practical decisions involved in business
PPDP problems the Decision Maker (DM) considers generally related operating costs,
inventory and subcontracting levels, available resources and capacities, market demand,
product life cycle, employment law and other factors, to minimize total costs, deliv-
ery time, and/or maximize profits. In particular, these objective functions are fuzzy
in nature owing to incomplete and/or unavailable information over the planning. The
proposed fuzzy single-objective linear programming model attempts to simultaneously
minimize the total costs such as shipping cost, regular manufacture cost, subcontracting
cost, inventory carrying cost and delivery cost. Accordingly, the achieving objective is
simultaneously considered in formulating the original fuzzy integrated PPDP model, as
follows:

• Minimize total costs:

minZ ∼=
I∑
i=1

N∑
n=1

H∑
h=1

λinhQinh +

I∑
i=1

N∑
n=1

H∑
h=1

γinhVinh +

I∑
i=1

N∑
n=1

H∑
h=1

ηinhINinh (1)

+

M∑
m=1

P∑
p=1

I∑
i=1

H∑
h=1

µmpihLmpih +

M∑
m=1

P∑
p=1

I∑
i=1

H∑
h=1

ψmpihLmpih

+

I∑
i=1

N∑
n=1

J∑
j=1

H∑
h=1

θinjhRinjh +

M∑
m=1

I∑
i=1

H∑
h=1

φmihIMmih +

N∑
n=1

J∑
j=1

H∑
h=1

πnhLSnjh

• Constriants:
(a1) Constraints on carrying inventory levels

INinh = INinh−1 +Qinh + Vinh −
J∑
j=1

Rinjh ∀i, n, h (2)

IMmih = IMmih−1 +

P∑
p=1

Lmpih −
N∑
n=1

NmnQinh ∀i,m, h (3)

(a2) Constraints on demand for each destination j
I∑
i=1

Rinjh + LSnjh = D̃njh ∀n, j, h (4)

(a3) Constraints on available capacity
N∑
n=1

HLinQinh ≤ M̃Lih ∀i, h (5)

N∑
n=1

HMinQinh ≤ ˜MM ih ∀i, h (6)
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N∑
n=1

WPnINinh ≤MPih ∀i, h (7)

M∑
m=1

WMmIMmih ≤ Sih ∀i, h (8)

I∑
i=1

Lmpih ≤ M̃Smph ∀p,m, h (9)

(a4) Non-negativity constraints on decision variables
Qinh, Vinh, INinh, IMmih, Rinjh, Lmpih, LSnjh ≥ 0, ∀i, n, h, j, p,m (10)

The symbol in Eq. 1 is the fuzzified form of and demonstrates the fuzzification of the
aspiration levels. When the parameters in the problem are imprecise, the calculated
objective value and the decision variables should be imprecise as well. It means that
the DM has fuzzy objective. In practical situations, the market demand on right- hand
sides of constraint 4 for each destination can never be determined exactly. Moreover,
the available resources on the right-hand sides of constraints 5, 6 and 9 over the plan-
ning horizon, are often fuzzy/imprecise since they cannot be measured easily and they
mainly imply human perception for their estimation. In practice, constraints 7 and 8,
which respectively represent the limiting capacity of each plant and warehouse space, are
normally certain.
We adopted the triangular fuzzy number to the PPDP network model to represent all of
the fuzzy/imprecise numbers. The main advantages of the triangular fuzzy number are
simplicity and flexibility of the fuzzy arithmetic operations [14, 25, 27, 35]. The distri-

bution of a triangular fuzzy number Ãi = (Api , A
m
i , A

o
i ) is shown in Fig.2. Practically,

the DM can construct the triangular distribution based on the following three prominent
data [15, 17, 24]: The most pessimistic value is Api ; the most likely value is Ami ; the most
optimistic value is Aoi .

Figure 2. The distribution of triangular fuzzy number Aoi

3. Treatment of the fuzzy constraints

As explained in the previous section, some parameters in the model are fuzzy in nature.
Therefore, the decision variables and the objective function should be fuzzy as well and
we are interested in deriving the membership functions of the objective function and the
decision variables. In this section, we define an approach to transform the FLP model
into an equivalent auxiliary crisp LP model for SC planning under supply, process and
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demand uncertainties. Recalling constraints 4, 5, 6 and 9 from the original fuzzy PPDP
model formulated above, considers situations in which market demand, Dnjh, labor levels,
MLih, machine capacity, MMih and supplier capacity, MSmph, are triangular fuzzy
numbers with most and least likely values. We suppose that the approximately known
parameters can be represented by the convex fuzzy sets D̃njh, M̃Lih, ˜MM ih and M̃Smph.
Let µD̃njh , µM̃Lih

, µM̃Mih
and µM̃Smph

denote their membership functions, respectively.

We have

D̃njh =
{(
Dnjh, µD̃njh (Dnjh)

)
|Dnjh ∈ S

(
D̃njh

)}
M̃Lih =

{(
MLih, µM̃Lih

(MLih)
)
|MLih ∈ S

(
M̃Lih

)}
˜MM ih =

{(
MMih, µM̃Mih

(MMih)
)
|MMih ∈ S

(
˜MM ih

)}
M̃Smph =

{(
MSmph, µM̃Smph

(MSmph)
)
|MSmph ∈ S

(
M̃Smph

)}
(11)

where S
(
D̃njh

)
, S

(
M̃Lih

)
, S

(
˜MM ih

)
and S

(
M̃Smph

)
are the supports of D̃njh,

M̃Lih, ˜MM ih and M̃Smph which denote the universe sets of the market demand, labor
levels, machine capacity and supplier capacity, respectively. Without loss of generality,
all D̃njh, M̃Lih, ˜MM ih and M̃Smph are assumed to be convex fuzzy numbers, as crisp
values can be represented by degenerated membership functions which only have one
value in their domains. Denote the α−cuts of D̃njh, M̃Lih, ˜MM ih and M̃Smph as

(Dnjh)α =
[
(Dnjh)

L
α , (Dnjh)

U
α

]
= [min

Dnjh
{Dnjh ∈ S

(
D̃njh

)
|µD̃njh (Dnjh) ≥ α},

max
Dnjh
{Dnjh ∈ S

(
D̃njh

)
|µD̃njh (Dnjh) ≥ α}].

(MLih)α =
[
(MLih)

L
α , (MLih)

U
α

]
= [ min

MLih
{MLih ∈ S

(
M̃Lih

)
|µM̃Lih

(MLih) ≥ α},

max
MLih

{MLih ∈ S
(
M̃Lih

)
|µM̃Lih

(MLih) ≥ α}].

(MMih)α =
[
(MMih)

L
α , (MMih)

U
α

]
=

[ min
MMih

{MMih ∈ S
(

˜MM ih

)
|µM̃Mih

(MMih) ≥ α},

max
MMih

{MMih ∈ S
(

˜MM ih

)
|µM̃Mih

(MMih) ≥ α}].

(MSmph)α =
[
(MSmph)

L
α , (MSmph)

U
α

]
=

[ min
MSmph

{MSmph ∈ S
(
M̃Smph

)
|µM̃Smph

(MSmph) ≥ α},

max
MSmph

{MSmph ∈ S
(
M̃Smph

)
|µM̃Smph

(MSmph) ≥ α}]. (12)

These intervals indicate where the approximately known parameters lie at possibility
level α. We are interested in deriving the membership function of the objective value
Z̃. Since Z̃ is a fuzzy number rather than a crisp number, we apply Zadeh’s extension
principle [33] to transform the problem into a family of conventional programs to be
solved. Based on the extension principle, the membership function µZ̃ can be defined as

µZ̃ (z) = sup
a,b,c,d

min{µD̃njh (Dnjh) , µM̃Lih
(MLih) , µM̃Mih

(MMih) ,

µM̃Smph
(MSmph)∀n, h, i, j, p,m|z = Z (a, b, c, d)} (13)
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where Z (a, b, c, d) is the function of the conventional linear program. In Eq.11, sev-
eral membership functions are involved. To derive µZ̃ in closed form is hardly possi-
ble. According to Eq. 13, µZ̃ is the minimum of µD̃njh , µM̃Lih

, µM̃Mih
and µM̃Smph

,

∀n, h, i, j, p,m. It is needed µD̃njh (Dnjh) ≥ α, µM̃Lih
(MLih) ≥ α, µM̃Mih

(MMih) ≥ α

and µM̃Smph
(MSmph) ≥ α and at least one µD̃njh (Dnjh), µM̃Lih

(MLih), µM̃Mih
(MMih)

or µM̃Smph
(MSmph), ∀n, h, i, j, p,m to be equal to α such that z = Z (a, b, c, d) to satisfy

µZ̃ (z) = α. To find the membership function µZ̃ , it suffices to find the right shape
function and left shape function of µZ̃ , which is equivalent to finding the upper bound
of the objective value ZUα and lower bound of the objective ZLα at specific α level. Since
ZUα is the maximum of Z (a, b, c, d) and ZLα is the minimum of Z (a, b, c, d), they can be
expressed as the following:

ZUα = max{Z (a, b, c, d) | (Dnjh)
L
α ≤ Dnjh ≤ (Dnjh)

U
α , (MLih)

L
α ≤MLih ≤ (MLih)

U
α ,

(MMih)
L
α ≤MMih ≤ (MMih)

U
α , (MSmph)

L
α ≤MSmph ≤

(MSmph)
U
α ,∀n, h, i, j, p,m} (14)

ZLα = min{Z (a, b, c, d) | (Dnjh)
L
α ≤ Dnjh ≤ (Dnjh)

U
α , (MLih)

L
α ≤MLih ≤ (MLih)

U
α ,

(MMih)
L
α ≤MMih ≤ (MMih)

U
α , (MSmph)

L
α ≤MSmph ≤

(MSmph)
U
α ,∀n, h, i, j, p,m} (15)

which can be reformulated as the following pair of two-level mathematical programs:

ZUα = max
(Dnjh)

L

α
≤Dnjh≤(Dnjh)

U

α

(MLih)
L
α

≤MLih≤(MLih)
U
α

(MMih)
L
α

≤MMih≤(MMih)
U
α

(MSmph)
L

α
≤MSmph≤(MSmph)

U

α



min
∑I
i=1

∑N
n=1

∑H
h=1 λinhQinh

+
∑I
i=1

∑N
n=1

∑H
h=1 γinhVinh

+
∑I
i=1

∑N
n=1

∑H
h=1 ηinhINinh

+
∑M
m=1

∑P
p=1

∑I
i=1

∑H
h=1 µmpihLmpih

+
∑M
m=1

∑P
p=1

∑I
i=1

∑H
h=1 ψmpihLmpih

+
∑I
i=1

∑N
n=1

∑J
j=1

∑H
h=1 θinjhRinjh

+
∑M
m=1

∑I
i=1

∑H
h=1 φmihIMmih

+
∑N
n=1

∑J
j=1

∑H
h=1 πnhLSnjh

s.t.

INinh = INinh−1 +Qinh + Vinh −
∑J
j=1Rinjh,

∀i, n, h
IMmih = IMmih−1 +

∑P
p=1 Lmpih

−
∑N
n=1NmnQinh,∀i,m, h∑I

i=1Rinjh + LSnjh = Dnjh ∀n, j, h∑N
n=1HLinQinh ≤MLih ∀i, h∑N
n=1HMinQinh ≤MMih ∀i, h∑N
n=1WPnINinh ≤MPih ∀i, h∑M
m=1WMmIMmih ≤ Sih ∀i, h∑I
i=1 Lmpih ≤MSmph ∀p,m, h

Qinh, Vinh, INinh, IMmih, Rinjh, Lmpih,

LSnjh ≥ 0,

∀i, n, h, j, p,m
(16)
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ZLα = min
(Dnjh)

L

α
≤Dnjh≤(Dnjh)

U

α

(MLih)
L
α

≤MLih≤(MLih)
U
α

(MMih)
L
α

≤MMih≤(MMih)
U
α

(MSmph)
L

α
≤MSmph≤(MSmph)

U

α



min
∑I
i=1

∑N
n=1

∑H
h=1 λinhQinh

+
∑I
i=1

∑N
n=1

∑H
h=1 γinhVinh

+
∑I
i=1

∑N
n=1

∑H
h=1 ηinhINinh

+
∑M
m=1

∑P
p=1

∑I
i=1

∑H
h=1 µmpihLmpih

+
∑M
m=1

∑P
p=1

∑I
i=1

∑H
h=1 ψmpihLmpih

+
∑I
i=1

∑N
n=1

∑J
j=1

∑H
h=1 θinjhRinjh

+
∑M
m=1

∑I
i=1

∑H
h=1 φmihIMmih

+
∑N
n=1

∑J
j=1

∑H
h=1 πnhLSnjh

s.t.

INinh = INinh−1 +Qinh + Vinh −
∑J
j=1Rinjh,

∀i, n, h
IMmih = IMmih−1 +

∑P
p=1 Lmpih

−
∑N
n=1NmnQinh,∀i,m, h∑I

i=1Rinjh + LSnjh = Dnjh ∀n, j, h∑N
n=1HLinQinh ≤MLih ∀i, h∑N
n=1HMinQinh ≤MMih ∀i, h∑N
n=1WPnINinh ≤MPih ∀i, h∑M
m=1WMmIMmih ≤ Sih ∀i, h∑I
i=1 Lmpih ≤MSmph ∀p,m, h

Qinh, Vinh, INinh, IMmih, Rinjh, Lmpih,

LSnjh ≥ 0,

∀i, n, h, j, p,m
(17)

The inner program in Model 16 calculates the objective value for each set of
(Dnjh,MLih,MMih,MSmph) defined by the outer program, while the outer program
determines the set of (Dnjh,MLih,MMih,MSmph) that derives the largest objective
value. Likewise, in Model 17 the inner program calculates the objective value for each
given set of (Dnjh,MLih,MMih,MSmph), while the outer program determines the set
of (Dnjh,MLih,MMih,MSmph) that produces the smallest objective value. In the next
section a solution method to transform Models 16 and 17 into one-level LP programs is
developed.

4. Solution procedure

As explained in the previous section, to find the membership function of the optimal
objective function, the right and the left shape functions of the objective functions mem-
bership function should be found which is equivalent to finding the upper bound and the
lower bound of the objective function at different α levels.

4.1. Obtaining upper bound. In Model 16 the aim is to find a set of
(Dnjh,MLih,MMih,MSmph) that derive the maximal objective value. To obtain the
upper bounds of the optimal objective function, parameters Dnjh, MLih, MMih and
MSmph must be set correctly in their bounds.
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Since the outer and inner program are in different directions, Chen and Chang [7] pro-
posed a solution approach which was able to tackel it and then optain the upper bounds
of the objective function. In their proposed approach the dual of the inner program is
formulated and then the constraints of the outer program are inserted into the inner
program and finally the two-level mathematical program is transfered to an LP program.
Forasmuch as the proposed model is linear and the variables assume the nonnegetavity
conditions, in order to derive the upper bounds of the optimal objective function, param-
eters Dnjh, MLih, MMih and MSmph must be set correctly in their bounds and there
is no need to obtain the dual form of the program. Since the outer program perform
maximization operation, all Dnjh, MLih, MMih and MSmph can be set to their upper

bounds (Dnjh)
U

, (MLih)
U

, (MMih)
U

and (MSmph)
U

, respectively. Consequently, the
two-level mathematical program in 16 can be simplified to the following LP program:

ZUα = min
I∑
i=1

N∑
n=1

H∑
h=1

λinhQinh +

I∑
i=1

N∑
n=1

H∑
h=1

γinhVinh +

I∑
i=1

N∑
n=1

H∑
h=1

ηinhINinh (18)

+

M∑
m=1

P∑
p=1

I∑
i=1

H∑
h=1

µmpihLmpih +

M∑
m=1

P∑
p=1

I∑
i=1

H∑
h=1

ψmpihLmpih +

I∑
i=1

N∑
n=1

J∑
j=1

H∑
h=1

θinjhRinjh

+

M∑
m=1

I∑
i=1

H∑
h=1

φmihIMmih +

N∑
n=1

J∑
j=1

H∑
h=1

πnhLSnjh

s.t.



INinh = INinh−1 +Qinh + Vinh −
∑J
j=1Rinjh ∀i, n, h

IMmih = IMmih−1 +
∑P
p=1 Lmpih −

∑N
n=1NmnQinh ∀i,m, h∑I

i=1Rinjh + LSnjh = (Dnjh)
U
α ∀n, j, h∑N

n=1HLinQinh ≤ (MLih)
U
α ∀i, h∑N

n=1HMinQinh ≤ (MMih)
U
α ∀i, h∑N

n=1WPnINinh ≤MPih ∀i, h∑M
m=1WMmIMmih ≤ Sih ∀i, h∑I
i=1 Lmpih ≤ (MSmph)

U
α ∀p,m, h

Qinh, Vinh, INinh, IMmih, Rinjh, Lmpih, LSnjh ≥ 0, ∀i, n, h, j, p,m

The upper bound of the objective value is then obtained by solving Model 18.

4.2. Obtaining lower bound. Similarly, to derive the lower bound of the objective
value in Model 17, the Dnjh, MLih, MMih and MSmph parameters are set to their
lower bounds in the objective function. Therefore, the values of Dnjh, MLih, MMih and
MSmph should, respectively, set to their lower bounds DL

njh, MLLih, MML
ih and MSLmph.

Hence, Model 17 can be rewritten as the following mathematical program:

ZLα = min

I∑
i=1

N∑
n=1

H∑
h=1

λinhQinh +

I∑
i=1

N∑
n=1

H∑
h=1

γinhVinh +

I∑
i=1

N∑
n=1

H∑
h=1

ηinhINinh (19)

+

M∑
m=1

P∑
p=1

I∑
i=1

H∑
h=1

µmpihLmpih +

M∑
m=1

P∑
p=1

I∑
i=1

H∑
h=1

ψmpihLmpih +

I∑
i=1

N∑
n=1

J∑
j=1

H∑
h=1

θinjhRinjh

+

M∑
m=1

I∑
i=1

H∑
h=1

φmihIMmih +

N∑
n=1

J∑
j=1

H∑
h=1

πnhLSnjh
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s.t.



INinh = INinh−1 +Qinh + Vinh −
∑J
j=1Rinjh ∀i, n, h

IMmih = IMmih−1 +
∑P
p=1 Lmpih −

∑N
n=1NmnQinh ∀i,m, h∑I

i=1Rinjh + LSnjh = (Dnjh)
L
α ∀n, j, h∑N

n=1HLinQinh ≤ (MLih)
L
α ∀i, h∑N

n=1HMinQinh ≤ (MMih)
L
α ∀i, h∑N

n=1WPnINinh ≤MPih ∀i, h∑M
m=1WMmIMmih ≤ Sih ∀i, h∑I
i=1 Lmpih ≤ (MSmph)

L
α ∀p,m, h

Qinh, Vinh, INinh, IMmih, Rinjh, Lmpih, LSnjh ≥ 0, ∀i, n, h, j, p,m

Then this program is solved easily and the lower bound of the objective value ZLα are
obtained. Together with ZUα solved from Model 18,

[
ZLα , Z

U
α

]
constitutes the interval

that the objective value lies. For two possibility levels α1 and α2 such that 0 < α2 < α1,
the feasible regions defined by α1 in Models 18 and 19 are smaller than those defined
by α2. Consequently, the left shape function L (z) is nondecreasing and the right shape

function R (z) is nonincreasing. This property assures the convexity of Z̃. From L (z)
and R (z), the membership function µZ̃ is constructed as:

µZ̃ =


L (z) , ZLα=0 ≤ z ≤ ZLα=1

1, ZLα=1 ≤ z ≤ ZLα=1

R (z) , ZLα=1 ≤ z ≤ ZLα=0

(20)

The numerical solutions for ZLα and ZUα at different possibility level α can be collected
to approximate the shapes of L (z) and R (z).

5. Supply chain network example

5.1. Application of the model. In this section we present a numerical hypothetical
example to illustrate the solution approach given in Section 4. The supply chain network
of the company includes suppliers which supply eight raw materials by importing from
three different foreign countries. Five products are ordered to satisfy market demand from
four distribution centers with production based at two plants. The planning horizon is
three months from June to August.
Tables 1-9 summarize the related supplier, manufacture, distribution and demand data,
respectively, for the coming three months. Capacity per truck from each source to various
destinations is fixed to carry 100 tones. Notably, the market demand for each destination
is an imprecise value with a triangular distribution, and has been estimated based on
historical data and the experience and knowledge of DM. The available fuzzy labor levels
in each period are (620, 700, 850) man-hours for the first factory and (750, 850, 970)
man-hours for the second factory and available fuzzy machine capacities in each period
are (750, 800, 950) machine-hours for the first factory and (770, 850, 980) machine-hours
for the second factory. Also the available plant space for final product in first factory
and second factory is 200 and 250 ($/unit), respectivly and the available plant space for
raw material in both factories are equal to 120 ($/unit).
The multi-product problem with fuzzy objective focuses on optimizing the plan in a fuzzy
environment. Its aim is to minimize total costs with reference to plant capacity, inventory
and subcontracting levels, available labor levels and machine capacity at each plant, as
well as market demand and maximum warehouse space available at each destination.

5.2. Solution procedure for the example. The solution procedure of the proposed
model is indicated as follows. First, the original PPDP model is formulated for solving
supply chain network under fuzzy parameters. Second, the fuzzy objective function is



396 S.H. NASSERI, I. MAHDAVI, Z.A. AFROUZY, AND R. NOURIFAR

Table 1. Summarized lost sales data of the example

Product

Period 1 2 3 4 5

1.June 500 550 590 500 580

2.July 510 500 595 505 585
3.August 520 560 600 510 590

Table 2. Summarized data for two plants of the example

Plant Period Product λinh γinh ηinh HLin HMin WPn
1 1.June 1 10 200 0.28 0.5 0.8 6

2 15 185 0.3 0.4 0.3 9
3 13 170 0.31 0.7 0.5 4

4 12 190 0.24 0.6 0.5 12

5 9 193 0.5 0.5 0.7 8
2.July 1 10 153 0.15 0.5 0.8 6

2 14 171 0.25 0.4 0.3 9

3 13 192 0.43 0.7 0.5 4
4 12 181 0.4 0.6 0.5 12
5 10 167 0.3 0.5 0.7 8

3.August 1 11 190 0.11 0.5 0.8 6

2 14 193 0.21 0.4 0.3 9
3 13 195 0.17 0.7 0.5 4
4 12 177 0.5 0.6 0.5 12

5 11 177 0.42 0.5 0.7 8
2 1.June 1 9 101 0.3 0.5 0.8 6

2 15 186 0.32 0.35 0.25 9

3 12 171 0.3 0.65 0.45 4
4 12 192 0.4 0.6 0.5 12
5 10 194 0.5 0.5 0.7 8

2.July 1 10 156 0.15 0.5 0.8 6
2 14 170 0.25 0.35 0.25 9

3 12 191 0.18 0.65 0.45 4

4 15 186 0.42 0.6 0.5 12
5 11 163 0.5 0.5 0.7 8

3.August 1 12 198 0.14 0.5 0.8 6

2 18 191 0.46 0.35 0.25 9
3 19 195 0.15 0.65 0.45 4

4 19 173 0.4 0.6 0.5 12

5 17 176 0.51 0.5 0.7 8

Table 3. Summarized distribution data (transport cost ($/unit)) for
the first period∗

Destination

Plant Product 1 2 3 4

1 1 2.8 2.5 2.3 2.7
2 2.8 2.5 2.3 2.7
3 2.8 2.5 2.3 2.7
4 2.8 2.5 2.3 2.7

5 2.8 2.5 2.3 2.7
2 1 2.5 2.7 2.9 2.0

2 2.5 2.7 2.9 2.0
3 2.5 2.7 2.9 2.0
4 2.5 2.7 2.9 2.0
5 2.5 2.7 2.9 2.0

*For periods 2 and 3 the estimations are multiplied by 1.1 and 1.2, respectively.
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Table 4. Summarized market demand data for the destinations of the
example (units)

Product

Destination Period 1 2 3 4 5

1 1.June (71,80,92) (68,70,85) (64,75,89) (41,45,53) (0,0,0)
2.July (50,60,70) (42,50,87) (40,43,52) (79,85,94) (65,80,98)

3.August (55,90,102) (70,75,87) (55,60,69) (55,70,84) (62,75,89)

2 1.June (47,65,76) (60,75,84) (53,60,72) (45,60,68) (35,45,53)
2.July (42,50,67) (43,55,60) (60,79,85) (0,0,0) (40,50,75)

3.August (40,60,74) (82,90,100) (70,75,95) (35,50,65) (27,30,53)

3 1.June (0,0,0) (84,90,105) (42,50,72) (0,0,0) (72,90,103)
2.July (45,50,84) (45,50,61) (19,25,29) (70,90,116) (19,24,33)

3.August (100,115,120) (42,58,67) (85,89,98) (0,0,0) (80,96,108)
4 1.June (42,50,67) (71,80,95) (80,98,120) (23,28,33) (84,90,110)

2.July (67,80,95) (37,40,67) (42,55,67) (69,85,87) (82,90,100)

3.August (60,70,80) (38,50,62) (40,43,51) (43,45,64) (48,60,73)

Table 5. Bill of material matrix

Raw material

Product 1 2 3 4 5 6 7 8

1 1 0 1 0 1 0 2 0

2 0 1 0 2 0 1 0 1
3 2 0 1 0 1 0 1 0
4 0 2 0 1 0 2 0 1

5 1 0 1 0 2 0 1 0

Table 6. Summarized shipping data of the example ($/unit)∗

Raw material

Supplier Plant 1 2 3 4 5 6 7 8

1 1 2.0 2.1 2.3 2.3 1.8 2.6 2.1 2.0
2 1.6 1.6 1.7 1.9 1.6 2.9 1.9 1.9

2 1 2.5 2.4 1.9 2.7 2.4 2.3 2.4 2.3

2 2.3 2.0 2.5 2.6 2.3 2.5 2.5 1.8
3 1 2.6 2.5 2.0 2.8 1.7 2.6 2.7 2.1

2 2.8 2.8 2.8 2.6 1.9 2.8 2.5 1.6

*For periods 2 and 3 the estimations are multiplied by 1.1 and 1.2, respectively.

Table 7. Summarized data for purchasing cost

Raw material

Supplier Period 1 2 3 4 5 6 7 8

1 1.June 4 7 9 8 5 10 11 4

2.July 4.5 7 10 11 7 9 8 7

3.August 3 8 8 9 6 8 7 6
2 1.June 6 8 4 3 3 7 6 7

2.July 7 9 5 6 11 9 6 9

3.August 6 8 4 5 14 11 3 5
3 1.June 3 10 5 6 6 6 4 6

2.July 6 8 10 9 7 9 9 11
3.August 5 7 9 10 10 12 10 8

Ware house space for
raw material ft2/unit 2 2.4 1.8 2.3 1.7 2 3 2.4
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Table 8. Summarized data for inventory cost of raw materials

Raw material

Plant Period 1 2 3 4 5 6 7 8

1 1.June 0.26 0.19 0.21 0.15 0.24 0.17 0.12 0.22

2.July 0.26 0.19 0.21 0.15 0.24 0.17 0.12 0.22
3.August 0.26 0.19 0.21 0.15 0.24 0.17 0.12 0.22

2 1.June 0.12 0.15 0.17 0.16 0.21 0.19 0.13 0.20

2.July 0.12 0.15 0.17 0.16 0.21 0.19 0.13 0.20
3.August 0.12 0.15 0.17 0.16 0.21 0.19 0.13 0.20

derived by finding the upper bound and the lower bound of the objective function at
different α levels according to 4.1 and 4.2. The original PPDP problem for solving is
formulated according to Models 18 and 19 and is determined by the value of possibility
level α. Table 10 lists the α−cuts of the objective value and decision variables at 11
distinct α values: 0, 0.1, 0.2, . . . , 1.0.
Note that the upper and lower bound of some decision variables are shown in Table 10
which others can be derived. At α−level= 0, the value of ZUα is 242275.3 and the value
of ZLα is 168132. At α− level= 1, the value of ZUα is 200923.9. The α value indicates
the level of possibility and the degree of uncertainty of the obtained information which
is assumped by the DM. The greater the α value, the greater the level of possibility and
the lower the degree of uncertainty is.
Since the fuzzy objective value lies in a range, different α−cuts shows the different
intervals and the uncertainty level of the objective value. Specifically, α = 0 has the
widest interval indicating that the objective value will definitely fall into this range. At
the other extreme end, the possibility level α = 1 is the most possible value of the
objective value. In this example, the objective value is impossible to exceed 242275.3 or
fall below 168132 and its most possible value is 200923.9. When the uncertain parameters
are represented by crisp values, the objective value is believed to be a single value of
200923.9, rather than an interval estimation in the range of 168132 and 242275.3.

5.3. Computational analysis. Several consequential content for the practical appli-
cation of the proposed model to solve integrated supply chain network problems in a
fuzzy environment include the following.
First, the deterministic models are not appropriate methods of obtaining an efficient solu-
tion, due to the ambiguous and imprecise information relating to the decision parameters
in real-world integrated PPDP problems. Traditional mathematical programming tech-
niques, obviously, cannot solve all fuzzy programming problems. Because of this, various
models and solution approaches are developed. Most of the developed approachs trans-
form the model to an equivalent crisp model and obtain certain values but the proposed
solution approach calculates the objective in a fuzzy manner and a satisfactory solution
is obtained due to the DM’s preferance by different α−cuts. Second, the proposed ap-
proach yields an effective solution for fuzzy supply chain models which deal with integer
variables. As mentioned in the literature, models with integer variables cannot be solved
by classical approaches so different solution approaches are introduced [16, 35, 37,38].
The proposed approach derives an interval for each variable and the objective, so it is no
need to be considered integer.
Beyond these implications, the most important advantage of the proposed model is that
the model can be solved in a level that the DM is satisfied.
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6. Conclusions

Supply chain environments imply the production planning decisions have to be made
under conditions of uncertainty in parameters as important as demand. This study pro-
poses a fuzzy mathematical programming model in a multi-echelon supply chain network
with multiple suppliers, multiple plants, and multiple destinations. In real world ap-
plications, the parameters in the PPDP may not be known precisely due to insufficient
information. When some parameters are only approximately known, the averages or the
most likely values are used to find a point solution. Since only one point value is obtained,
much valuable information is lost. Despite the past research works, this paper develops
a method that is able to find the fuzzy objective value when the market demand and
available resources are fuzzy numbers. The idea is based on Zadehs extension principle to
transform the fuzzy problem to a pair of two-level mathematical programs. Solving the
programs produces the upper bound and lower bound of the objective value at specific α
level. The membership function is approximated via different α−levels of the objective
values. This could help end up the solution procedure more rapidly by solving less prob-
lems. The proposed PPDP problem is solved using Lingo 9.0. The illustrated example
shows that the technique proposed in this paper is effective and easy to apply. With the
additional ability of calculating fuzzy objective value developed in this paper, it might
help lead to wider applications in the future.
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