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On the existence of infinitely many solutions of a nonlinear
Neumann problem involving the m-Laplace operator

Ionela-Loredana Stăncuţ

Abstract. This paper surveys the existence of infinitely many solutions of a nonlinear Neu-

mann problem of the following type:

−div(|∇u|m−2∇u) + |u|m−2u = f(x, u) in Ω, |∇u|m−2 ∂u

∂ν
= g(x, u) on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, ∂/∂ν denotes the outward

normal derivative, the functions f(x, u) and g(x, u) are continuous on Ω× R and on ∂Ω× R,
respectively, and odd with respect to u, while the constant m satisfies certain alternative

inequalities. More specifically, we demonstrate the existence of a sequence of solutions which

diverge to infinity provided that the nonlinear term is locally superlinear and the existence
of a sequence of solutions which converge to zero provided that the nonlinear term is locally

sublinear.
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1. Introduction

In this paper we will analyze nonlinear elliptic equations with nonlinear Neumann
boundary conditions. We start from the problem{

−div(|∇u|m−2∇u) + |u|m−2u = f(x, u) in Ω,

|∇u|m−2 ∂u
∂ν = g(x, u) on ∂Ω,

(1)

where Ω ⊆ RN is a bounded domain with smooth boundary ∂Ω, ν stands for the
outward unit normal to ∂Ω, ∆m· = div(|∇ · |m−2∇·) denotes the m-Laplace operator,
the functions f(x, u) and g(x, u) are continuous on Ω×R and on ∂Ω×R, respectively,
and odd with respect to u, while the constant m satisfies some inequalities which we
will provide below. Before that, we introduce a representative example, namely{

−div(|∇u|m−2∇u) + |u|m−2u = a(x)|u|p−1u in Ω,

|∇u|m−2 ∂u
∂ν = b(x)|u|q−1u on ∂Ω

(2)

provided that a ∈ C(Ω), b ∈ C(∂Ω), a(x) and b(x) may change their signs, a(x1) > 0
at some x1 ∈ Ω, b(x2) > 0 at some x2 ∈ ∂Ω and p, q fulfill either

0 < q < m− 1 < p <
(m− 1)N +m

N −m
(3)
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or

0 < p < m− 1 < q <
(m− 1)N

N −m
. (4)

Taking N = 1, 2, ...,m, the right hand sides of (3) and (4) are replaced by ∞. There-
fore, we shall prove (see Example 3.1) the fact that problem (2) admits at least two
sequences uk and vk of solutions so as

‖uk‖W 1,m(Ω) → 0, ‖uk‖C(Ω) → 0 as k →∞,

‖vk‖W 1,m(Ω) →∞, ‖vk‖C(Ω) →∞ as k →∞,

where ‖ · ‖W 1,m(Ω) represents the W 1,m(Ω) norm, that is,

‖u‖W 1,m(Ω) :=

(∫
Ω

(|∇u|m + |u|m) dx

) 1
m

,

and ‖ · ‖C(Ω) denotes the maximum norm.

In the first instance, we recall the m-Laplace Emden-Fowler equation

−div(|∇u|m−2∇u) = |u|p−1u in Ω ⊆ RN , (5)

where N ≥ m, 0 < m − 1 < p, approached in [5] where the author analyzed the
isolated singularities and the behavior near infinity of nonradial positive solutions

when p < (m−1)N
N−m , giving a complete classification of local and global radial solutions

of any sign, for any p.
When m = 2, equation (5) becomes the Emden-Fowler equation

−∆u = |u|p−1u in Ω ⊆ RN , (6)

which has been intensively studied. If N ≥ 3, two critical values N
N−2 and N+2

N−2 arise.
It is known that the first studies in the radial case are due to Emden; afterwards, in
papers [14], [15], [16], Fowler has provided us existence results and a full classification
of the global radial solutions in RN or RN \{0}. In the nonradial case we refer to Lions
[26] where the behavior near origin for positive solutions was studied for p < N

N−2 ,

while for the case p = N
N−2 we find similar approach in Aviles [4]; next, Gidas and

Spruck ([19]) pointed out local and global results for p < N+2
N−2 , and then Caffarelli,

Gidas and Spruck [6] obtained similar results when p = N+2
N−2 .

For the general case when m > 1, we refer to Ni and Serrin [28], where was
demonstrated existence of the following critical values:

q1 =
(m− 1)N

N −m
and q2 =

(m− 1)N +m

N −m
,

if N > m. Then, in [20] Guedda and Véron obtained radial positive solutions near
origin when p < q2; also, for the nonradial case when p < q1, the authors provided
some results under conditions of integrability or majorization of u near origin.

Furthermore, in terms of sign changing solutions, the equation (5) (in possibly
unbounded domains or in the whole space RN ) was treated on stability of solutions.
For instance, Damascelli, Farina, Sciunzi and Valdinoci [11] proved Liouville type
theorems for stable solutions or for solutions which are stable outside a compact set.
The results hold true for m > 2 and m − 1 < p < pc(N,m), where pc(N,m) is a
new critical exponent, which is infinity in low dimension and is always larger than the
classical critical one.

Problems like (5) were also studied in the context of the Neumann boundary con-
dition; see, e.g., the very recent paper Gasiński and Papageorgiou [18].
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Returning to the Emden-Fowler equation (6) with the Dirichlet boundary condition
u = 0 on ∂Ω, such that 1 < p < ∞ if N = 1, 2 and 1 < p < N+2

N−2 if N ≥ 3, we

cite Ambrosetti [3] and Rabinowitz [29] where we can see that this problem has a
sequence uk of solutions in H1

0 (Ω) whose H1
0 (Ω) norm diverges to infinity as k →∞.

Considering problem (6), Kajikiya and Naimen explained intelligible the aim of paper
[23]; the same approach we take into account for understand the purpose of the present
paper too.

We shall introduce a locally sublinear condition and a locally superlinear condi-
tion. Kajikiya and Naimen proposed the same conditions in [23], while DeFigueiredo,
Gossez and Ubilla put similar conditions in [12] and [13], but anyway their conditions
differ from ours, and besides this, they demonstrated only the existence of positive
solutions. In the present paper we firstly propose to prove the existence of infinitely
many solutions. Thus, we intend to expand the results of Garcia-Azorero, Peral and
Rossi [17], and Naimen [27] to nonlinear terms f(x, u) and g(x, u) or, in another train
of thoughts, to extend the results in [23] by replacing the Laplace operator with m-
Laplace operator. On the other hand, we want to show that the locally sublinear
condition implies the existence of solutions converging to zero, while the locally su-
perlinear condition implies the existence of solutions diverging to infinity. For this
reason, it is possible to consider the case when a(x) and b(x) change their signs in
problem (2). The last goal is to deal the following three cases:
• One of f(x, u) and g(x, u) is locally sublinear and another is locally superlinear.
• f(x, u) is both locally sublinear and locally superlinear.
• g(x, u) is both locally sublinear and locally superlinear.

Therefore, for each of the three cases from above, we shall demonstrate that there
exist at least two sequences of solutions so as one sequence converges to zero and
another diverges to infinity.

2. The main results

We say that u is weak solution of problem (1) if u ∈W 1,m(Ω)∩C(Ω) and satisfies∫
Ω

(
|∇u|m−2∇u∇v + |u|m−2uv

)
dx−

∫
Ω

f(x, u)v dx−
∫
∂Ω

g(x, u)v dσ = 0, (7)

for any v ∈ W 1,m(Ω), where dσ means the surface measure on ∂Ω. Considering

the Sobolev embedding, we infer that each v ∈ W 1,m(Ω) belongs to L
mN
N−m (Ω) and

L
m(N−1)
N−m (∂Ω) when N > m and to Lr(Ω) ∩ Lr(∂Ω) for r < ∞ and N = 1, 2, ...,m.

Consequently, relation (7) is well defined. Next, we consider

F (x, u) :=

∫ u

0

f(x, t) dt and G(x, u) :=

∫ u

0

g(x, t) dt. (8)

The following assumption denotes the locally sublinear condition on f and g:

Assumption 2.1. The functions f(x, s) and g(x, s) are continuous on Ω×R and on
∂Ω× R, respectively, and odd with respect to s. We assume either (f1) or (g1) from
below.

(f1): There are an element x0 ∈ Ω and δ > 0 so as B(x0, δ) ⊂ Ω and

lim
s→0

(
inf

x∈B(x0,δ)

F (x, s)

|s|m

)
=∞, (9)

where B(x0, δ) stands for a ball centered at x0 and of radius δ.
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(g1): There are an element x0 ∈ ∂Ω and δ > 0 so as

lim
s→0

(
inf

{
G(x, s)

|s|m
; x ∈ B(x0, δ) ∩ ∂Ω

})
=∞ (10)

and

lim inf
s→0

(
inf

{
F (x, s)

|s|m
; x ∈ B(x0, δ) ∩ Ω

})
> −∞. (11)

We call (f1) and (g1) a locally sublinear condition.

Theorem 2.2. Under Assumption 2.1, there is a sequence uk of solutions of problem
(1) so as uk ∈ W 1,r(Ω) for any r < ∞, uk 6≡ 0 and ‖uk‖W 1,r(Ω) converges to zero
when k →∞.

We point out some remarks.

Remark 2.1. Using the Sobolev embedding, since uk belongs to W 1,r(Ω) for any
r <∞, then uk ∈ C0,θ(Ω) for every θ ∈ (0, 1).

Remark 2.2. Theorem 2.2 states that if f or g is sublinear in a neighborhood of a
point x0, there is a sequence of solutions which converges to zero (it happens even if
f(x, u) and g(x, u) have any behavior except for a neighborhood of x0).

Remark 2.3. If f(x, s)/(|s|m−2s) diverges to infinity uniformly on B(x0, δ), then for
any L > 0 there is an ε > 0 so as

f(x, s) ≥ L|s|m−2s for x ∈ B(x0, δ), |s| < ε.

Integrating both sides with respect to s we obtain

F (x, s) ≥ (L/m)|s|m for x ∈ B(x0, δ), |s| < ε,

that is, (f1) holds. This means that assumption (f1) is weaker than the condition that
the infimum of f(x, s)/(|s|m−2s) in B(x0, δ) diverges to infinity as s → 0. Similarly,
we can deduce that assumption (10) is weaker than the condition g(x, s)/(|s|m−2s)
diverges to infinity.

Assumption 2.3. There are constants µ, τ, p, q and C so as 0 ≤ τ < m < µ, C > 0,
0 < p < ∞ for N = 1, 2, ...,m and 0 < p < ((m− 1)N +m)/(N −m) for N > m,
0 < q <∞ for N = 1, 2, ...,m and 0 < q < (m− 1)N/(N −m) if N > m and

|f(x, s)| ≤ C(|s|p + 1), (12)

µF (x, s)− sf(x, s) ≤ C(|s|τ + 1), (13)

for s ∈ R and x ∈ Ω, where F is given by (8) and

|g(x, s)| ≤ C(|s|q + 1), (14)

µG(x, s)− sg(x, s) ≤ C(|s|τ + 1), (15)

for s ∈ R and x ∈ ∂Ω, where G is given by (8).

We emphasize that under subcritical conditions (12) and (14), the Lagrangian
functional is well defined in W 1,m(Ω), while assumptions (13) and (15) assure the
Palais-Smale condition.

The next assumption means the locally superlinear condition on f and g:

Assumption 2.4. The functions f(x, s) and g(x, s) are continuous on Ω×R and on
∂Ω×R, respectively, and odd with respect to s. We assume either (f2) or (g2) below.
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(f2): There are an element x0 ∈ Ω and δ > 0 so as B(x0, δ) ⊂ Ω and

lim
|s|→∞

(
inf

x∈B(x0,δ)

F (x, s)

|s|m

)
=∞. (16)

(g2): There are an element x0 ∈ ∂Ω and δ > 0 so as

lim
|s|→∞

(
inf

{
G(x, s)

|s|m
; x ∈ B(x0, δ) ∩ ∂Ω

})
=∞ (17)

and

lim inf
|s|→∞

(
inf

{
F (x, s)

|s|m
; x ∈ B(x0, δ) ∩ Ω

})
> −∞. (18)

We call (f2) and (g2) a locally superlinear condition. Similar arguments as in
Remark 2.3 yield that (f2) is weaker than the condition that f(x, s)/(|s|m−2s) diverges
to infinity as s→∞ uniformly on B(x0, δ).

Theorem 2.5. Under Assumptions 2.3 and 2.4, there is a sequence vk of solutions of
problem (1) so as vk belongs to W 1,r(Ω) for every r <∞, ‖vk‖W 1,m(Ω) and ‖vk‖C(Ω)

diverge to infinity as k → ∞. Therefore, ‖vk‖W 1,r(Ω) also diverges to infinity for
every r that meets m ≤ r <∞.

By combining Theorem 2.2 and Theorem 2.5 we get the following result:

Corollary 2.6. Under Assumptions 2.1, 2.3 and 2.4, there are at least two sequences
uk and vk of solutions of problem (1) so as uk, vk ∈ W 1,r(Ω) for every r < ∞ and
‖uk‖W 1,r(Ω) → 0, ‖vk‖W 1,r(Ω) →∞ as k →∞ for every r that meets m ≤ r <∞.

3. Examples

This section contains several examples of the nonlinear terms f(x, u) and g(x, u).
We apply our theorems to them to prove the existence of at least two sequences of
solutions.

Example 3.1. Let f(x, u) = a(x)|u|p−1u and g(x, u) = b(x)|u|q−1u so as a ∈ C(Ω),
b ∈ C(∂Ω), a(x1) > 0, b(x2) > 0 at some x1 ∈ Ω, x2 ∈ ∂Ω, and p, q fulfill either (3)
or (4). Also, a(x) and b(x) may change their signs. Then there are two sequences uk
and vk of solutions of problem (1) so as uk, vk ∈W 1,r(Ω) for every r <∞ and

lim
k→∞

‖uk‖W 1,r(Ω) = 0, lim
k→∞

‖vk‖W 1,r(Ω) =∞ for m ≤ r <∞.

To prove this assertion, we assume that (3) is satisfied. Since a(x1) > 0, we pick δ > 0
sufficiently small such that a(x) > a(x1)/2 occurs in B(x1, δ). Therefore,

F (x, s)

|s|m
= a(x)

|s|p−m+1

p+ 1
≥ a(x1)|s|p−m+1

2(p+ 1)
,

that is, (f2) holds true because p > m−1. Next, we want to show that (g1) is verified
by replacing x1 by x2. Indeed, since b(x2) > 0, we pick δ > 0 small enough such that
b(x) > b(x2)/2 occurs in B(x2, δ) ∩ ∂Ω. Consequently,

G(x, s)

|s|m
= b(x)

|s|q−m+1

q + 1
≥ b(x2)|s|q−m+1

2(q + 1)
.

Since q < m− 1, we derive that (10) is verified. Further, it is obvious that

F (x, s)

|s|m
≥ −‖a‖L∞(Ω)

|s|p−m+1

p+ 1
,
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which ensures (11) (recall that ‖ · ‖L∞(Ω) denotes the L∞(Ω) norm). We also shall
show that Assumption 2.3 takes place. In truth, we have

|f(x, s)| = |a(x)||s|p ≤ C(|s|p + 1),

|g(x, s)| = |b(x)||s|q ≤ C(|s|q + 1),

that means, relations (12) and (14) hold. Let µ := p+ 1. This implies

µF (x, s)− sf(x, s) = (p+ 1)

∫ s

0

f(x, t) dt− sf(x, s)

= a(x)

∫ s

0

(p+ 1)|t|p−1t dt− a(x)|s|p+1

= a(x)

∫ s

0

(
|t|p+1

)′
dt− a(x)|s|p+1

= 0,

which leads us to relation (13). Finally, G(x, s) can be estimated as

µG(x, s)− sg(x, s) = (p+ 1)

∫ s

0

g(x, t) dt− sg(x, s)

= b(x)
p+ 1

q + 1

∫ s

0

(q + 1)|t|q−1t dt− b(x)|s|q+1

= b(x)
p+ 1

q + 1

∫ s

0

(
|t|q+1

)′
dt− b(x)|s|q+1

= b(x)
p− q
q + 1

|s|q+1

≤ p− q
q + 1

‖b‖L∞(∂Ω)|s|q+1,

which yields relation (15). Hence, all conditions of Assumption 2.3 are fulfilled. We
conclude that there are at least two sequences of solutions.

On the other hand, it can be proved that Assumptions 2.1, 2.3 and 2.4 hold also if
we consider relation (4) instead of (3).

Example 3.2. Set f(x, u) := a(x)|u|p−1u + b(x)|u|q−1u and g ≡ 0. The functions
a, b ∈ C(Ω), a(x1) > 0, b(x2) > 0 at some x1, x2 ∈ Ω, p and q verify

0 < q < m− 1 < p <
(m− 1)N +m

N −m
when N > m, (19)

0 < q < m− 1 < p <∞ when N = 1, 2, ...,m. (20)

In this example x1 and x2 may be equal. We claim that the same conclusion as in
Example 3.1 occurs. Here f(x, u) is superlinear near x1 as u → ±∞, sublinear near
x2 as u → 0, and fulfills relation (13) by taking µ := p + 1. Another example is
also f ≡ 0 and g(x, u) := a(x)|u|p−1u + b(x)|u|q−1u. Here a, b ∈ C(∂Ω), a(x1) > 0,
b(x2) > 0 at some x1, x2 ∈ ∂Ω, p and q fulfill (4).

Example 3.3. Set f(x, u) = a(x)|u|p−1u − b(x)u log |u| and g ≡ 0. The functions
a, b ∈ C(Ω), a(x) may change its sign, while b(x) ≥ 0 in Ω, a(x1) > 0, b(x2) > 0, at
some x1, x2 ∈ Ω, 1 < p < ((m− 1)N +m)/(N −m) for N > m, and 1 < p < ∞ for
N = 1, 2, ...,m. Then f(x, u) is superlinear near x1 as u → ±∞ and sublinear near
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x2 as u→ 0. For µ := p+ 1, we obtain

µF (x, s)− sf(x, s) = (p+ 1)

∫ s

0

f(x, t) dt− sf(x, s)

= a(x)

∫ s

0

(
|t|p+1

)′
dt− (p+ 1)b(x)

∫ s

0

t log |t| dt

− a(x)|s|p+1 + b(x)s2 log |s|

= −(p+ 1)b(x)
s2

2
log |s|+ (p+ 1)b(x)

s2

4
+ b(x)s2 log |s|

= −b(x)

(
p− 1

2
log |s| − p+ 1

4

)
s2

≤ C,

with x ∈ Ω, s ∈ R and C > 0 independent of x and s. In other words f fulfills (13).
Thus, we get the same conclusion as in Example 3.1. Also, the same assertion as
above is valid for f ≡ 0 and g(x, u) := a(x)|u|p−1u− b(x)u log |u|.

4. A priori estimates

In this section we establish that a weak solution in W 1,m(Ω) belongs to W 1,r(Ω)
for any r < ∞ and give W 1,r(Ω) a priori estimates. We consider that f(x, s) and
g(x, s) fulfill inequalities (12) and (14), respectively. This means that the functions f
and g are subcritical. Thus, for u ∈W 1,m(Ω), we have

f(x, u) ∈ L
mN

(m−1)N+m (Ω), g(x, u) ∈ L
m(N−1)
(m−1)N (∂Ω),

if N > m, and

f(x, u) ∈ Lr(Ω), g(x, u) ∈ Lr(∂Ω) for every r <∞,

if N = 1, 2, ...,m. Now we are in position to assert that all integrals in (7) are finite for
every u, v ∈W 1,m(Ω). When the functions f and g satisfy (12) and (14), we say that
u is a W 1,m(Ω) solution if u ∈W 1,m(Ω) and also fulfills (7) for every v ∈W 1,m(Ω).

The following lemma plays a significant role in our analysis, seeing that will be
indirectly used to demonstrate both Theorems 2.2 and 2.5.

Lemma 4.1. Let f(x, s) and g(x, s) fulfill (12) and (14), respectively. Then every
W 1,m(Ω) solution u belongs both L∞(Ω) and L∞(∂Ω) and satisfies

‖u‖L∞(Ω) + ‖u‖L∞(∂Ω) ≤ C
(
‖u‖dW 1,m(Ω) + 1

)
, (21)

where C, d are positive constants independent of u.

Proof. Let λ > 1 a parameter which we will choose later. If we multiply the first
equation in (1) by |u|λ−1u, integrate over Ω and use the second equation in (1), we
acquire

λ

∫
Ω

|∇u|m|u|λ−1 dx+

∫
Ω

|u|λ+m−1 dx =

∫
Ω

f(x, u)|u|λ−1u dx+

∫
∂Ω

g(x, u)|u|λ−1u dσ.

For simplicity, we denote the Lp(Ω) norm of u by ‖u‖p,Ω and the Lq(∂Ω) norm of u
by ‖u‖q,∂Ω. Also, hereafter C > 0 denotes various constants independent of u and λ.
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We now employ (12) and (14) involving that

λ

∫
Ω

|∇u|m|u|λ−1 dx+

∫
Ω

|u|λ+m−1 dx

≤ C
(
‖u‖λ+p

λ+p,Ω + ‖u‖λλ,Ω + ‖u‖λ+q
λ+q,∂Ω + ‖u‖λλ,∂Ω

)
. (22)

By a simple computation we can show that

|∇u|m|u|λ−1 =

(
m

λ+m− 1

)m ∣∣∣∇(|u|(λ+m−1)/m
)∣∣∣m .

We put v = |u|(λ+m−1)/m, and thus |∇v|m =
∣∣∇ (|u|(λ+m−1)/m

)∣∣m, to get

λ

∫
Ω

|∇u|m|u|λ−1 dx+

∫
Ω

|u|λ+m−1 dx =λ

(
m

λ+m− 1

)m ∫
Ω

|∇v|m dx

+

∫
Ω

|v|m dx. (23)

Combining (22) with (23) we get

λ

(
m

λ+m− 1

)m ∫
Ω

|∇v|m dx+

∫
Ω

|v|m dx

≤ C
(
‖u‖λ+p

λ+p,Ω + ‖u‖λλ,Ω + ‖u‖λ+q
λ+q,∂Ω + ‖u‖λλ,∂Ω

)
.

The fact that λ > 1 provides us λ
(

m
λ+m−1

)m
< 1. Therefore, by the above inequality

we arrive at

‖v‖mW 1,m(Ω) ≤
C

λ

(
λ+m− 1

m

)m (
‖u‖λ+p

λ+p,Ω + ‖u‖λλ,Ω + ‖u‖λ+q
λ+q,∂Ω + ‖u‖λλ,∂Ω

)
. (24)

Further, we consider N > m and intend to show that

p− q =
m

N −m
. (25)

Therefor we take p1 satisfying the relations

p < p1 and p+
m

N −m
< p1 <

(m− 1)N +m

N −m
.

We choose q1 := p1 −m/(N −m) and thus q < q1 < (m− 1)N/(N −m). Thereby,
the functions f(x, s) and g(x, s) fulfill (12) and (14), respectively, by replacing p and
q with p1 and q1, respectively. For the sake of simplicity, we rewrite p1 and q1 as p
and q, respectively. So, indeed, p and q fulfill identity (25). Employing the Sobolev
embedding, we derive that

‖v‖mmN/(N−m),Ω + ‖v‖mm(N−1)/(N−m),∂Ω ≤ C‖v‖
m
W 1,m(Ω). (26)

Using (24) together with (26) and taking v = |u|(λ+m−1)/m, it follows that

‖u‖λ+m−1
(λ+m−1)N
N−m ,Ω

+‖u‖λ+m−1
(λ+m−1)(N−1)

N−m ,∂Ω

≤ C(λ+m− 1)m

λmm

(
‖u‖λ+p

λ+p,Ω + ‖u‖λλ,Ω + ‖u‖λ+q
λ+q,∂Ω + ‖u‖λλ,∂Ω

)
.

By virtue of Hölder’s inequality we have

‖u‖λλ,Ω =

∫
Ω

|u|λ dx ≤ |Ω|
p

λ+p

(∫
Ω

|u|λ+p dx

) λ
λ+p

= |Ω|
p

λ+p ‖u‖λλ+p,Ω,
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where |Ω| represents the volume of Ω. There is a positive constant C so as |Ω|p/(λ+p) ≤
C for any 1 < λ < ∞, and thus ‖u‖λλ,Ω ≤ C‖u‖λλ+p,Ω. Reasoning as above, we can

also show that ‖u‖λλ,∂Ω ≤ C‖u‖λλ+q,∂Ω. Using once again the relation λ > 1, we find

that (λ+m−1)m

λmm < λ. Consequently,

‖u‖λ+m−1
(λ+m−1)N
N−m ,Ω

+‖u‖λ+m−1
(λ+m−1)(N−1)

N−m ,∂Ω

≤ λC
(
‖u‖λ+p

λ+p,Ω + ‖u‖λλ+p,Ω + ‖u‖λ+q
λ+q,∂Ω + ‖u‖λλ+q,∂Ω

)
. (27)

We now define two positive sequences αk and βk as

β1 :=
m(N − 1)

N −m
, βk := (βk−1 − q +m− 1)

N − 1

N −m
, (28)

αk := (βk−1 − q +m− 1)
N

N −m
=

N

N − 1
βk. (29)

As a result, βk is calculated as follows

βk = β1 + (β2 − β1)
rk−1 − 1

r − 1
, r :=

N − 1

N −m
. (30)

On the basis of r > 1, we acquire that βk and αk are strictly increasing and diverge
to infinity. By making the substitution λ = βk− q in (27) and given the identity (25),
we find that

‖u‖βk−q+m−1
αk+1,Ω

+ ‖u‖βk−q+m−1
βk+1,∂Ω

≤ Cβk
(
‖u‖βk+ m

N−m
βk+ m

N−m ,Ω
+ ‖u‖βk−qβk+ m

N−m ,Ω
+ ‖u‖βkβk,∂Ω + ‖u‖βk−qβk,∂Ω

)
. (31)

Taking into account that βk is increasing, we have βk ≥ β1 = m(N − 1)/(N −m).
This together with relation (29) lead us to

βk +
m

N −m
≤ αk for every k ∈ N.

Considering the Hölder’s inequality, bearing in mind the above inequality, and making
the notation

1

λk
:= 1− βk +m/(N −m)

αk
, (32)

it results that

‖u‖βk+ m
N−m

βk+ m
N−m ,Ω

=

∫
Ω

|u|βk+ m
N−m dx

≤ |Ω|
1
λk

(∫
Ω

|u|αk dx
) βk+ m

N−m
αk

≤ |Ω|
1
λk ‖u‖βk+ m

N−m
αk,Ω

. (33)

By relations (29) and (32), taking into consideration that βk → ∞ as k → ∞, we
obtain

1

λk
= 1− βk +m/(N −m)

(N/(N − 1))βk
→ 1

N
.

Consequently, there is a positive constant C independent of k so as |Ω|1/λk ≤ C, and
thus (33) becomes

‖u‖βk+ m
N−m

βk+ m
N−m ,Ω

≤ C‖u‖βk+ m
N−m

αk,Ω
.
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In the same fashion, we show that

‖u‖βk−qβk+ m
N−m ,Ω

≤ C‖u‖βk−qαk,Ω
.

The last two inequalities together with (31) assure us that

‖u‖βk−q+m−1
αk+1,Ω

+‖u‖βk−q+m−1
βk+1,∂Ω

≤ Cβk
(
‖u‖βk+ m

N−m
αk,Ω

+ ‖u‖βk−qαk,Ω
+ ‖u‖βkβk,∂Ω + ‖u‖βk−qβk,∂Ω

)
.

We further define

Ak := max (‖u‖αk,Ω, ‖u‖αk,∂Ω, 1) ,

and, thus, due to the last inequality we infer

Aβk−q+m−1
k+1 ≤ CβkA

βk+ m
N−m

k .

Let us take

ξk := (Cβk)
1/(βk−q+m−1)

and ζk :=
βk +m/(N −m)

βk − q +m− 1
,

and thereby, the above inequality will be written as Ak+1 ≤ ξkAζkk . These lead us to

Ak ≤ ξk−1A
ζk−1

k−1 ≤ ξk−1

(
ξk−2A

ζk−2

k−2

)ζk−1

≤ · · · ≤ ξk−1ξ
ζk−1

k−2 ξ
ζk−1ζk−2

k−3 . . . ξ
ζk−1ζk−2...ζ2
1 A

ζk−1...ζ1
1 . (34)

We propose to argue the relations

0 <

∞∏
k=1

ζk <∞, (35)

0 <

∞∏
k=1

ξk <∞. (36)

In order to do this, we recall (30) which provides us that there is a positive constant
c satisfying the relations

rk ≤ c(βk − q +m− 1) for every k ∈ N. (37)

We point out again relation (25) to deduce the following:

ζk = 1 +
p−m+ 1

βk − q +m− 1
,

∞∑
k=1

p−m+ 1

βk − q +m− 1
<∞,

which imply (35). We now make the notation d :=
∏∞
k=1 ζk, and hence 1 < d < ∞.

With the aid of 1 < ζk, it is obvious that

ζk−1ζk−2 . . . ζi ≤ d for i ≤ k − 1.

Withal, based on 1 < ξk we also deduce

ξk−1ξ
ζk−1

k−2 ξ
ζk−1ζk−2

k−3 . . . ξ
ζk−1ζk−2...ζ2
1 ≤ (ζ1ζ2 . . . ζk−1)d.

We notice that there is a positive constant C so as βk ≤ Crk for all k ∈ N. Combining
this last inequality with (37), we have

log ξk = log
[
(Cβk)

1
(βk−q+m−1)

]
=

log(Cβk)

βk − q +m− 1
≤ C̄k

rk
,
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where C̄ > 0 is independent of k. Consequently, we deduce the following:

log

(
n∏
k=1

ξk

)
=

n∑
k=1

log ξk,

∞∑
k=1

log ξk <∞,

and, therefore, we reach (36). Putting together (34), (35) and (36), we obtain the
existence of a positive constant C so as Ak ≤ CAd1 for all k ∈ N. Considering the
definition of Ak and letting k →∞, we get

‖u‖L∞(Ω) + ‖u‖L∞(∂Ω) ≤ CAd1. (38)

Moreover, by (28), (29) and the Sobolev embedding, we conclude that

A1 = max (‖u‖α1,Ω, ‖u‖β1,∂Ω, 1) = max
(
‖u‖mN/(N−m),Ω, ‖u‖m(N−1)/(N−m),∂Ω, 1

)
≤ C

(
‖u‖W 1,m(Ω) + 1

)
.

This last inequality together with (38) yield (21).
If N = 1, 2, ...,m, then similar arguments as in the case N > m lead us to the same

conclusion. The proof of Lemma 4.1 is complete. 2

Our second lemma is somewhat a m-Laplace version of Proposition 4.1 due to
Garcia-Azorero, Peral and Rossi [17].

Lemma 4.2. Let N ≥ m. Assume that f ∈ Lr(Ω) with r ∈ (m− 1, N), g ∈ Ls(∂Ω)
with s > m − 1, and let φ ∈ W 1,m(Ω) be a weak solution of problem (1). Then
φ ∈W 1,α(Ω) and there exist Cr > 0 and Cs > 0 such that

‖φ‖W 1,α(Ω) ≤ Cr‖f‖Lr(Ω) + Cs‖g‖Ls(∂Ω) (39)

with α ≤ Nr
N−r and α ≤ Ns

N−1 .

Proof. Multiplying (1) by a regular test function ϕ ∈ C1(Ω), integrating both sides
over Ω and using the boundary condition, it is obvious that∫

Ω

|∇φ|m−2∇φ∇ϕdx+

∫
Ω

|φ|m−2φϕdx ≤
∫

Ω

|fϕ| dx+

∫
∂Ω

|gϕ| dσ.

By Hölder’s inequality we have∫
Ω

|fϕ| dx ≤ ‖f‖Lr(Ω)‖ϕ‖Lr′ (Ω),

with 1
r+ 1

r′ = 1, and by Sobolev embedding we can take ϕ ∈W 1,β′(Ω) with β′ = Nr′

N+r′ .

As a consequence, using Proposition 1 in [8], we get

φ ∈W 1,β(Ω) and ‖φ‖W 1,β(Ω) ≤ Cr‖f‖Lr(Ω), where β =
Nr

N − r
. (40)

Also, Hölder’s inequality implies∫
Ω

|gϕ| dx ≤ ‖g‖Ls(∂Ω)‖ϕ‖Ls′ (∂Ω),

with 1
s + 1

s′ = 1. By density we can take ϕ ∈ W 1,γ(Ω) and then, applying the trace
theorem, we obtain

ϕ|∂Ω ∈W 1− 1
γ′ ,γ

′
(∂Ω) ⊂ L

γ′(N−1)

N−γ′ (∂Ω),

where s′ = γ′(N−1)
N−γ′ or, in another train of thoughts, γ = Ns

N−1 . Thus, by Proposition

1 in [8], we deduce that

φ ∈W 1,γ(Ω) and ‖φ‖W 1,γ(Ω) ≤ Cs‖g‖Ls(∂Ω). (41)
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By (40) and (41), we conclude that φ ∈ W 1,α(Ω) and satisfies (39) provided that
α ≤ Nr

N−r , α ≤ Ns
N−1 , f ∈ Lr(Ω) and g ∈ Ls(∂Ω). The above estimate still remains

valid when N = 1, 2, ...,m− 1, with eventual slight modifications. 2

Remark 4.1. In light of Lemma 4.2, we point out that, if f ∈ L∞(Ω) and g ∈
L∞(∂Ω), then (39) becomes

‖u‖W 1,α(Ω) ≤ Cα‖f‖L∞(Ω) + Cα‖g‖L∞(∂Ω) (42)

for every α <∞.

We are now in a position to prove the following result.

Proposition 4.3. Let f(x, s) and g(x, s) satisfy (12) and (14), respectively. Then
the following two claims hold true.

(i) Every W 1,m(Ω) solution u belongs to W 1,r(Ω) for any r <∞ and fulfills

‖u‖W 1,r(Ω) ≤ Cr‖u‖dpW 1,m(Ω) + Cr‖u‖dqW 1,m(Ω) + Cr, (43)

where the positive constant Cr depends only on r and not on u, but the positive
constant d is independent of u and r. Here p and q in (43) are the same as in
Assumption 2.3.

(ii) Let uk be a sequence of W 1,m(Ω) solutions converging to zero in W 1,m(Ω) as
k →∞. Then ‖uk‖W 1,r(Ω) → 0 for every r <∞.

Proof. (i) Let u be any W 1,m(Ω) solution. Using Lemma 4.1, we know that u also
belongs to L∞(Ω) and to L∞(∂Ω). Based on (12) and (14), we reach

‖f(x, u)‖L∞(Ω) ≤ C‖u‖pL∞(Ω) + C ≤ C‖u‖dpW 1,m(Ω) + C,

‖g(x, u)‖L∞(∂Ω) ≤ C‖u‖qL∞(∂Ω) + C ≤ C‖u‖dqW 1,m(Ω) + C.

Substituting the above inequalities in (42), we get exactly (43).
(ii) Let uk be a sequence of W 1,m(Ω) solutions converging to zero in W 1,m(Ω). For
α < m, it is obvious that ‖uk‖W 1,α(Ω) → 0. Give α ∈ (m,∞) arbitrarily. Set β > α.

We define θ as 1
α = θ

m + 1−θ
β . By using interpolation inequality we obtain

‖uk‖Lα(Ω) ≤ ‖uk‖θLm(Ω)‖uk‖
1−θ
Lβ(Ω)

, (44)

‖∇uk‖Lα(Ω) ≤ ‖∇uk‖θLm(Ω)‖∇uk‖
1−θ
Lβ(Ω)

. (45)

By (43) we get that ‖uk‖W 1,β(Ω) is bounded as k →∞, and from assumption we have
‖uk‖W 1,m(Ω) → 0 as k → ∞. Consequently, taking into account (44) and (45), we
infer that ‖uk‖W 1,α(Ω) → 0. The proof of Proposition 4.3 is now complete. 2

According to Proposition 4.3, by the Sobolev embedding, we derive that every
W 1,m(Ω) solution belongs to C0,θ(Ω) for any θ ∈ (0, 1). Particularly, a W 1,m(Ω)
solution belongs to C(Ω). We shall show that, for a sequence uk of W 1,m(Ω) solutions,
if ‖uk‖W 1,m(Ω) is divergent, then ‖uk‖C(Ω) is also divergent.

Lemma 4.4. Consider the assumption of Proposition 4.3. Let uk a sequence of
W 1,m(Ω) solutions. If ‖uk‖W 1,m(Ω) →∞, then ‖uk‖C(Ω) →∞ as k →∞.

Proof. It is clear that, multiplying (1) by u and then integrating over Ω, we get∫
Ω

|∇u|m dx+

∫
Ω

|u|m dx =

∫
Ω

f(x, u)u dx+

∫
∂Ω

g(x, u)u dσ

≤ C max
{
|f(x, s)s|+ |g(x, s)s| : |s| ≤ ‖u‖C(Ω)

}
,
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for a positive constant C independent of u. This ensure us that, if u is bounded in
C(Ω), then u is also bounded in W 1,m(Ω). The proof of Lemma 4.4 is complete. 2

5. Proof of the main results

This last section will be devoted to the proof of the main theorems by using the
variational method with the help of the a priori W 1,r(Ω) estimates provided in Section
4. Our method is based on the symmetric mountain pass lemma. With this in mind,
we define the Lagrangian functional I(u) by

I(u) :=
1

m

∫
Ω

(|∇u|m + |u|m) dx−
∫

Ω

F (x, u) dx−
∫

Ω

G(x, u) dσ, (46)

where F and G are defined in (8), and by dσ we refer to the surface measure on ∂Ω.
Standard arguments show that I ∈ C1(W 1,m(Ω),R) with the derivative given by

〈I ′(u), v〉 =

∫
Ω

(
|∇u|m−2∇u∇v + |u|m−2uv

)
dx−

∫
Ω

f(x, u)v dx

−
∫
∂Ω

g(x, u)v dσ, (47)

for any u, v ∈W 1,m(Ω). We introduce the Palais-Smale condition:
(PS) every sequence uk inW 1,m(Ω) so as I(uk) is bounded and I ′(uk)→ 0 inW 1,m(Ω)′

as k →∞ possesses a convergent subsequence.
We denoted by W 1,m(Ω)′, the dual space of W 1,m(Ω). We verify the Palais-Smale
condition by a standard method (see Rabinowitz [29] or Struwe [31], where the Laplace
operator is involved).

Lemma 5.1. Under Assumption 2.3, the functional I fulfills Palais-Smale condition
(PS).

Proof. Let (uk) ⊂W 1,m(Ω) be a sequence such that |I(uk)| < M for any k ≥ 1, where
M > 0 is a constant, and I ′(uk) → 0 as k → ∞. We claim that (uk) is bounded.
Arguing by contradiction, we assume that, passing eventually to a subsequence still
denoted by (uk), ‖uk‖W 1,m(Ω) → ∞ as k → ∞. Then, taking into consideration
Assumption 2.3, we obtain

1 +M + ‖uk‖W 1,m(Ω) ≥ I(uk)− 1

µ
〈I ′(uk), uk〉

=
µ−m
mµ

∫
Ω

(|∇uk|m + |uk|m) dx

−
∫

Ω

(
F (x, uk)− 1

µ
f(x, uk)uk

)
dx

−
∫
∂Ω

(
G(x, uk)− 1

µ
g(x, uk)uk

)
dσ

≥ µ−m
mµ

‖uk‖mW 1,m(Ω) −
C

µ
‖uk‖τW 1,m(Ω) −

C

µ
|Ω|.

Dividing the above relation by ‖uk‖mW 1,m(Ω) and passing to the limit as k → ∞ we

obtain a contradiction.
Thus, (uk) is bounded in W 1,m(Ω), and, since W 1,m(Ω) is reflexive, there exists

an u0 ∈ W 1,m(Ω) such that, up to a subsequence, (uk) converges weakly to u0 in
W 1,m(Ω). Next, we show that (uk) converges strongly to u0 in W 1,m(Ω). Bearing in
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mind Assumption 2.3, we find that the embedding W 1,m(Ω) ↪→ Lp+1(Ω) is compact,

for p ∈
(

1, Nm
N−m

)
. Hence,

(uk) converges strongly to u0 in Lp+1(Ω).

Given this, by (12) and Hölder’s inequality we have∣∣∣∣∫
Ω

f(x, uk)(uk − u0)dx

∣∣∣∣ ≤ C ∫
Ω

|uk|p|uk − u0| dx+ C

∫
Ω

|uk − u0|dx

≤ C‖uk‖ p+1
p ,Ω · ‖uk − u0‖p+1,Ω + C‖uk − u0‖1,Ω ,

which means that

lim
k→∞

∫
Ω

f(x, uk)(uk − u0)dx = 0. (48)

On the other hand, keeping in mind Assumption 2.3 and boundary trace embedding
theorem (see, e.g. Adams and Fournier [1] or Ladyzenskaja and Ural’tzeva [25]),
we deduce that W 1,m(Ω) ↪→ Lq+1(∂Ω) is a compact embedding, where q + 1 ∈(

1, (N−1)m
N−m

)
. Therefore,

(uk) converges strongly to u0 in Lq+1(∂Ω).

On account of this fact, by (14) and Hölder’s inequality we have∣∣∣∣∫
∂Ω

g(x, uk)(uk − u0)dσ

∣∣∣∣ ≤ C ∫
∂Ω

|uk|q|uk − u0| dσ + C

∫
∂Ω

|uk − u0|dσ

≤ C‖uk‖ q+1
q ,∂Ω · ‖uk − u0‖q+1,∂Ω + C‖uk − u0‖1,∂Ω ,

involving that

lim
k→∞

∫
∂Ω

g(x, uk)(uk − u0)dσ = 0. (49)

Bearing in mind relations (48), (49) and relying on the fact that, by I ′(uk) → 0 as
k →∞,

lim
k→∞

〈I ′(uk), uk − u0〉 = 0,

we arrive at

lim
k→∞

∫
Ω

(
|∇uk|m−2∇uk∇(uk − u0) + |uk|m−2uk(uk − u0)

)
dx = 0. (50)

In addition, on the strength of the fact that (uk) converges weakly to u0 in W 1,m(Ω)
we infer that

lim
k→∞

∫
Ω

(
|∇u0|m−2∇u0∇(uk − u0) + |u0|m−2u0(uk − u0)

)
dx = 0. (51)

On the basis of (50) and (51), it happens∫
Ω

[(
|∇uk|m−2∇uk − |∇u0|m−2∇u0

)
∇(uk − u0)

+
(
|uk|m−2uk − |u0|m−2u0

)
(uk − u0)

]
dx −→

k→∞
0.

We apply now the well known inequality (2.2) in Simon [30], namely(
|ξ|m−2ξ − |η|m−2η

)
(ξ − η) ≥ C|ξ − η|m, ξ, η ∈ RN ,
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valid for every m ≥ 2, where C is a positive constant. This together with the above
limit imply

lim
k→∞

‖uk − u0‖W 1,m(Ω) = 0.

This means that uk → u0 in W 1,m(Ω). Thus, we have shown that I satisfies the
Palais-Smale condition, that is exactly what we had to show. 2

Further, in order to deal with symmetric mountain pass lemma, we recall Kras-
noselskii’s genus.

Definition 5.1. Let E be an infinite dimensional Banach space. A subset A of E is
said to be symmetric if x ∈ A implies −x ∈ A. For a closed symmetric set A which
does not contain the origin, we define a genus γ(A) of A by the smallest integer k so
as there is an odd continuous mapping from A to Rk \ {0}. If there does not exist
such a k we set γ(A) =∞. Furthermore, by definition, γ(∅) = 0.

In the sequel we will establish the properties of the genus that will be used through
this work. More information on this subject may be found in many works, such as
[2], [7], [9], [10], [24], [29] or [31].

Lemma 5.2. Let A, B be closed symmetric subsets of E which do not contain the
origin.

(i) If A ⊂ B, then γ(A) ≤ γ(B) .
(ii) If there is an odd continuous mapping f ∈ C(A,B), then γ(A) ≤ γ(B).
(iii) If U is a symmetric bounded open neighborhood of the origin in RN , then γ(∂U) =

N .
(iv) Let W be a closed linear subspace of E whose codimension is finite. If γ(A) is

greater than the codimension of W , then A ∩W 6= ∅.

Let Γk be the family of closed symmetric subsets A of E so as 0 6∈ A and γ(A) ≥ k.
We introduce the following assumption:

Assumption 5.3. Let E be an infinite dimensional Banach space, and I ∈ C1(E,R)
meets:
(I1) I(u) is even, bounded from below, I(0) = 0 and I(u) fulfills the Palais-Smale

condition (PS).
(I2) For any k ∈ N, there is an Ak ∈ Γk so as supu∈Ak I(u) < 0.

Under Assumption 5.3, we define ck and Kc as

ck := inf
A∈Γk

sup
u∈A

I(u) , (52)

Kc := {u ∈ E : I ′(u) = 0, I(u) = c} .
We now are in a position to give the symmetric mountain pass lemma (see, e.g.

Ambrosetti and Rabinowitz [3], Clark [9], Kajikiya [21] or Struwe [31]).

Lemma 5.4. Under Assumption 5.3, any ck is a critical value of I, ck ≤ ck+1 < 0
for k ∈ N and ck converges to zero. Furthermore, if ck = ck+1 = · · · = ck+p ≡ c, then
γ(Kc) ≥ p+ 1.

The next result is another critical point theorem related to the symmetric mountain
pass lemma (see Kajikiya [21]).

Proposition 5.5. Under Assumption 5.3, either (i) or (ii) from below holds true.
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(i) There is a sequence uk in E so as I ′(uk) = 0, I(uk) < 0 and uk converges to
zero.

(ii) There are two sequences uk and vk in E so as I ′(uk) = 0, I(uk) = 0, uk 6= 0,
limk→∞ uk = 0, I ′(vk) = 0, I(vk) < 0, limk→∞ I(vk) = 0, and vk converges to a
non-zero limit.

In both cases (i) and (ii), there is a sequence uk 6= 0 of critical points converging to
zero.

Remark 5.1. Whereas our purpose is to prove the existence of a sequence of so-
lutions for (1) that converges to zero in W 1,m(Ω), we can observe that Proposition
5.5 is appropriate to achieve the aim. More precisely, unlike Lemma 5.4 (symmetric
mountain pass lemma), which assures the existence of a sequence of critical values
converging to zero in R, Proposition 5.5 assures the existence of a sequence of critical
points of I converging to zero in W 1,m(Ω). The Palais-Smale condition (PS) guaran-
tees that a critical point uk corresponding to ck converges to zero as k →∞, whether
the problem

I(u) = 0 and I ′(u) = 0 (53)

possesses only the trivial solution u = 0. But we have no certainty that, in the case
of our functional I, defined in (46), the equation (53) has only the solution u = 0;
this is why we can not apply the usual symmetric mountain pass lemma.

Remark 5.2. We point out that, if presume only the Assumption 2.1, our functional
I is not well-defined in W 1,m(Ω). For this to happen, we truncate the functions f
and g. Therefor, we choose an even function h ∈ C∞0 (R) so as h(s) = 1 for s ≤ 1 and
h(s) = 0 for |s| ≥ 2. We define the following:

f̃(x, s) := f(x, s)h(s), g̃(x, s) := g(x, s)h(s),

F̃ (x, u) :=

∫ u

0

f̃(x, s) ds, G̃(x, u) :=

∫ u

0

g̃(x, s) ds.

Therefore, f̃(x, s) and g̃(x, s) are odd with respect to s, f̃ and F̃ are bounded on

Ω× R, and g̃ and G̃ are bounded on ∂Ω× R. So, instead of I, we set

Ĩ(u) :=
1

m

∫
Ω

(|∇u|m + |u|m) dx−
∫

Ω

F̃ (x, u)dx−
∫
∂Ω

G̃(x, u)dσ .

The goal is to prove that Ĩ possesses a sequence of critical points uk 6= 0 satisfying
‖uk‖W 1,m(Ω) converges to zero. Then uk is a solution of the problem{

−div(|∇uk|m−2∇uk) + |uk|m−2uk = f̃(x, uk) in Ω,

|∇uk|m−2 ∂uk
∂ν = g̃(x, uk) on ∂Ω.

(54)

Whereas f̃ , g̃, F̃ and G̃ are bounded, it is obvious that they fulfill Assumptions 2.1
and 2.3. As a result, Proposition 4.3 ensures that ‖uk‖C(Ω) converges to zero. As

‖uk‖C(Ω) < 1 for k sufficiently large, we have f̃(x, uk) = f(x, uk) and g̃(x, uk) =

g(x, uk). This implies the fact that problem (54) is reduced to (1). In this way, we
acquire a sequence uk of solutions of problem (1) satisfying ‖uk‖W 1,r(Ω) converges to

zero. We rewrite f̃ , g̃ and Ĩ as f , g and I, respectively. Accordingly, f , g, F and G
are bounded.

We now proceed to the proof of Theorem 2.2.
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Proof of Theorem 2.2. As we said, in the proof of Theorem 2.2 we require Proposition
5.5. Therefore, we shall demonstrate that the functional I fulfills (I1) and (I2) in
Assumption 5.3. Firstly, let us show that I satisfies (I1). Indeed, as we pointed out
in Remark 5.2 from above, F and G are bounded, so we deduce immediately that

I(u) ≥ 1

m
‖u‖mW 1,m(Ω) − C,

where C is a positive constant. This means that I is bounded from below. Also, since
f , g, F and G are bounded, they fulfill Assumption 2.3 and, thus, via Lemma 5.1, I
satisfies Palais-Smale condition (PS). We conclude that (I1) is satisfied.

Next, we verify that I satisfies (I2). To this end, let us first deal with (f1) in
Assumption 2.1. We consider B(x0, δ) the ball defined in (f1). Let λk and φk be the
k-th eigenvalue and eigenfunction, respectively, of the problem{

−div(|∇φ|m−2∇φ) = λ|φ|m−2φ in B(x0, δ),

φ = 0 on ∂B(x0, δ).
(55)

We extend φk such that φk(x) = 0 in Ω \ B(x0, δ) and, thus, φk ∈ W 1,m
0 (Ω) ∩ C(Ω).

Let k ∈ N. We plan to construct Ak satisfying (I2). Set

X :=

{
k∑
i=1

tiφi : ti ∈ R

}
, (56)

the linear space spanned by φi with 1 ≤ i ≤ k. Therefore, X is a linear subspace
of W 1,m

0 (Ω) ∩ C(Ω). The fact that X is finite dimensional space, provide us that all
norms are equivalent to each other. We infer that there is α > 0 so as

‖u‖W 1,m(Ω) ≤ α‖u‖Lm(Ω) for u ∈ X. (57)

Considering (9), we can choose an ε > 0 so small that the following fact to happen:

F (x, s) ≥ αm|s|m for x ∈ B(x0, δ), |s| ≤ ε.
On the basis that every u ∈ X vanishes in Ω \B(x0, δ), we get

F (x, u(x)) ≥ αm|u(x)|m for x ∈ Ω, ‖u‖L∞(Ω) ≤ ε, u ∈ X. (58)

Set

A :=
{
u ∈ X : ‖u‖L∞(Ω) = ε

}
, (59)

a (k − 1)-dimensional sphere. Via Borsuk-Ulam theorem, the genus of A is k, i.e.,
γ(A) = k. Let u ∈ A. This yields u = 0 on ∂Ω and, implicitly, G(x, u(x)) vanishes
on ∂Ω. Considering u ∈ A, by relations (57) and (58), we have

I(u) =
1

m

∫
Ω

(|∇u|m + |u|m) dx−
∫

Ω

F (x, u)dx

≤ 1

m
‖u‖mW 1,m(Ω) − α

m

∫
Ω

|u|mdx

≤
(

1

m
− 1

)
‖u‖mW 1,m(Ω)

< 0.

Since A is compact, we obtain supu∈A I(u) < 0. So, starting from (f1) in Assumption
2.1, we obtained that I fulfills (I2).

Let us also show that, assuming (g1) in Assumption 2.1, I satisfies (I2). To achieve
this goal, we first denote for simplicity D := B(x0, δ)∩Ω and S := B(x0, δ)∩∂Ω. Let
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k be a positive integer. We choose ψi, with 1 ≤ i ≤ k, so as ψi ∈ C1(D), ψi(x) = 0 for
x ∈ ∂B(x0, δ)∩Ω, and ψi|S (i.e., the restrictions of functions ψi to S), for 1 ≤ i ≤ k,
are linearly independent in Lm(S). Thus, ψi are also linearly independent in C1(D).
We set ψi(x) = 0 in Ω \ D. So, ψi ∈ W 1,m(Ω) ∩ C(Ω). Let Y be the linear space
spanned by ψi with 1 ≤ i ≤ k, i.e.,

Y :=

{
k∑
i=1

tiψi : ti ∈ R

}
.

Since Y is finite dimensional space, we deduce the existence of an α > 0 so as

‖u‖W 1,m(D) ≤ α‖u‖Lm(S) for u ∈ Y. (60)

Recalling that F fulfills (11), we infer that there is a positive constant C ′ so as

F (x, s) ≥ −C ′|s|m if x ∈ D, |s| ≤ 1,

and, consequently,

F (x, u(x)) ≥ −C ′|u(x)|m if x ∈ D, ‖u‖∞ ≤ 1. (61)

We take β > 0 so large that

1

m
+ C ′ <

(
β

α

)m
. (62)

Considering (10), we can choose an ε > 0 so small that

G(x, s) ≥ βm|s|m for x ∈ S, |s| ≤ ε.
Since each u ∈ Y vanishes in ∂Ω \ S, we obtain

G(x, u(x)) ≥ βm|u(x)|m for x ∈ ∂Ω, ‖u‖L∞(Ω) ≤ ε, u ∈ Y. (63)

We now define A as in (59), for Y . Thus, for u ∈ A, by (60), (61), (62) and (63) we
obtain the following:

I(u) =
1

m

∫
D

(|∇u|m + |u|m) dx−
∫
D

F (x, u)dx−
∫
S

G(x, u)dσ

≤ 1

m
‖u‖mW 1,m(D) + C ′‖u‖mLm(D) − β

m‖u‖mLm(S)

≤
(

1

m
+ C ′ − βm

αm

)
‖u‖mW 1,m(D)

< 0.

Since A is compact, we deduce supu∈A I(u) < 0, that is, I satisfies (I2). We can finally
conclude that, via Proposition 5.5, problem (1) possesses a sequence of nontrivial
solutions uk such that ‖uk‖W 1,m(Ω) converges to zero. In addition, via Proposition
4.3, ‖uk‖W 1,r(Ω) converges to zero. The proof of Theorem 2.2 is complete. 2

In the following, we are going to demonstrate some auxiliary lemmas that will lead
us step by step to the conclusion of Theorem 2.5. Therefore, we assume Assumptions
2.3 and 2.4 and thus, we have ensured that I is well defined and satisfies the Palais-
Smale condition (PS). First, we emphasize that X and Y involved in the proof of
Theorem 2.2, will be used here as follows: if (f2) in Assumption 2.4 holds, then we
take Zk := X, and if (g2) holds, then we take Zk := Y .

Lemma 5.6. For any k ∈ N, there is a positive Rk so as

I(u) < 0 for u ∈ Zk with ‖u‖W 1,m(Ω) ≥ Rk. (64)
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Proof. We start assuming that (f2) holds. Thus, Zk := X and there exists a positive
constant αk so as

‖u‖W 1,m(Ω) ≤ αk‖u‖Lm(Ω) for u ∈ Zk.

Also, by (f2), there is a positive constant Ck so as

F (x, s) ≥ αmk |s|m − Ck for s ∈ R, x ∈ B(x0, δ).

Since supp(u) ⊂ B(x0, δ) for any u ∈ Zk, we obtain that G(x, u) = 0 for x ∈ ∂Ω.
Then, by the last two inequalities we get

I(u) =
1

m

∫
B(x0,δ)

(|∇u|m + |u|m) dx−
∫
B(x0,δ)

F (x, u)dx

≤ 1

m
‖u‖mW 1,m(Ω) − α

m
k ‖u‖mLm(Ω) + Ck|B(x0, δ)|

≤
(

1

m
− 1

)
‖u‖mW 1,m(Ω) + Ck|B(x0, δ)|

< 0,

on condition that ‖u‖W 1,m(Ω) ≥ Rk with Rk sufficiently large. By |B(x0, δ)| we meant
the volume of the ball B(x0, δ).

Next, suppose that (g2) holds. Thus, Zk := Y and there is a positive constant αk
so as

‖u‖W 1,m(Ω) ≤ αk‖u‖Lm(∂Ω) for u ∈ Zk. (65)

Also, by (g2), there is a positive constant C ′ so as

F (x, s) ≥ −C ′|s|m − C ′ for s ∈ R, x ∈ B(x0, δ) ∩ Ω. (66)

We now consider a positive M so large that

1

m
+ C ′ <

M

αmk
. (67)

Considering (17), we infer the existence of a positive constant C so as

G(x, s) ≥M |s|m − C for s ∈ R, x ∈ B(x0, δ) ∩ ∂Ω. (68)

Every u ∈ Zk satisfies supp(u) ⊂ B(x0, δ) ∩ Ω. We take D := B(x0, δ) ∩ Ω and
S := B(x0, δ) ∩ ∂Ω. By (65), (66), (67) and (68) we have

I(u) =
1

m

∫
D

(|∇u|m + |u|m) dx−
∫
D

F (x, u)dx−
∫
S

G(x, u)dσ

≤ 1

m
‖u‖mW 1,m(D) + C ′‖u‖mLm(D) + C ′|D| −M‖u‖mLm(S) + C|S|

≤
(

1

m
+ C ′ − M

αmk

)
‖u‖mW 1,m(Ω) + C ′|D|+ C|S|

< 0,

on condition that ‖u‖W 1,m(Ω) ≥ Rk with Rk sufficiently large. By |D| and |S| we
meant the volume of D and the surface area of S, respectively. Consequently, (64)
holds true under both hypotheses (f2) and (g2) in Assumption 2.4. The proof of
Lemma 5.6 is complete. 2
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It can be assumed that Rk in Lemma 5.6 is increasing and diverges to infinity as
k → ∞. We now involve another symmetric mountain pass lemma. For this, we
define the following:

Dk := {u ∈ Zk : ‖u‖W 1,m(Ω) ≤ Rk}, ∂Dk := {u ∈ Zk : ‖u‖W 1,m(Ω) = Rk},

Gk := {g ∈ C(Dk,W
1,m(Ω)) : g is odd and g(u) = u on ∂Dk},

dk := inf
g∈Gk

max
u∈Dk

I(g(u)). (69)

Lemma 5.7. dk is a critical value.

The proof of Lemma 5.7 can be found in [29] and [31].
We intend to show that dk diverges to infinity as k →∞. Define

B(r,W 1,m(Ω)) := {u ∈W 1,m(Ω) : ‖u‖W 1,m(Ω) < r},
∂B(r,W 1,m(Ω)) := {u ∈W 1,m(Ω) : ‖u‖W 1,m(Ω) = r}.

Lemma 5.8. Let k be a positive integer and W a closed linear subspace of W 1,m(Ω)
whose codimension is less than k. If g ∈ Gk and r ∈ (0, Rk), then

g(Dk) ∩ ∂B(r,W 1,m(Ω)) ∩W 6= ∅.

For the proof of Lemma 5.8, we refer the readers to Kajikiya and Naimen [23] or
Rabinowitz [29] (Proposition 9.23).

We also recall the following inequality (see relation (2.25) in [25]):

‖w‖mLr(∂Ω) ≤ ε‖∇w‖
m
Lm(Ω) + Cε‖w‖mLm(Ω) for w ∈W 1,m(Ω),

for small positive ε and r < m(N − 1)/(N −m), where Cε is a positive constant
depending on ε and m. In the particular case when r = m, a standard computation
shows that Cε = C/ε, and, thus, the following result holds:

Lemma 5.9. There are positive constants C, ε0 so as

‖w‖mLm(∂Ω) ≤ ε‖∇w‖
m
Lm(Ω) +

C

ε
‖w‖mLm(Ω),

for every w ∈W 1,m(Ω) and ε ∈ (0, ε0).

Further, let µk be the k-th eigenvalue of the problem{
−div(|∇w|m−2∇w) = µ|w|m−2w in Ω,

|∇w|m−2 ∂w
∂ν = 0 on ∂Ω.

For each k we denote by wk an eigenfunction corresponding to µk. Since we deal
with a homogeneous problem we can assume that for each k we have ‖wk‖W 1,m(Ω) = 1
(wk is the corresponding Lm-normalized eigenfunction or, in other words, the principal
eigenfunction). By definition, wk fulfills

µk‖wk‖mLm(Ω) = ‖∇wk‖mLm(Ω). (70)

We know that µ1 = 0, w1 is a constant function and µk > 0 for k ≥ 2. Considering
that ∂Ω is smooth, then any wk is smooth on Ω. We define

Wk :=

{ ∞∑
i=k

tiwi :

∞∑
i=k

tmi <∞

}
, (71)

the closed linear space spanned by wi with i ≥ k, whose codimension is k − 1.
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Lemma 5.10. There is a positive constant C so as

‖w‖Lm(Ω) ≤ µ
−1/m
k ‖∇w‖Lm(Ω), (72)

‖w‖Lm(∂Ω) ≤ µ
−1/m2

k ‖∇w‖Lm(Ω), (73)

for w ∈Wk with k ≥ 2.

Proof. We consider w =
∑∞
i=k tiwi ∈Wk. By (70) we have

‖∇w‖mLm(Ω) =

∞∑
i=k

tmi ‖∇wi‖mLm(Ω)

=

∞∑
i=k

tmi µi‖wi‖mLm(Ω)

≥ µk
∞∑
i=k

tmi ‖wi‖mLm(Ω)

= µk‖w‖mLm(Ω),

which means that (72) holds true.
Next, Lemma 5.9 together with (72) yield

‖w‖mLm(∂Ω) ≤ ε‖∇w‖
m
Lm(Ω) +

C

ε
‖w‖mLm(Ω)

≤ ε‖∇w‖mLm(Ω) +
C

εµk
‖∇w‖mLm(Ω), (74)

for ε ∈ (0, ε0). Considering that µk → ∞ as k → ∞, we take k0 so large that

µ
−1/m
k0

< ε0. We make the substitution ε = µ
−1/m
k and thus

‖w‖mLm(∂Ω) ≤ Cµ
−1/m
k ‖∇w‖mLm(Ω) for k ≥ k0, (75)

obtaining (73) for k ≥ k0. We now take δ0 > 0 so small that δ0/µ
1/m
k < ε0 for every

k ∈ [2, k0]. We make the substitution ε = δ0/µ
1/m
k in (74) and get relation (75) for

k ∈ [2, k0]. Now the proof of Lemma 5.10 is complete. 2

Going further, we recall a lemma regarding dk defined in (69) (see, e.g. Lemma
4.9 in [22]).

Lemma 5.11. If Rk fulfills (64), then dk is independent of the choice of Rk.

We shall use Lemmas 5.8, 5.10 and 5.11 to prove that dk →∞ as k →∞. In other
words, we propose to show the following lemma:

Lemma 5.12. dk diverges to infinity.

Proof. We consider Wk in (71). Taking into consideration that Wk is a closed linear
subspace of W 1,m(Ω), by Lemma 5.8 we derive

g(Dk) ∩ ∂B(r,W 1,m(Ω)) ∩Wk 6= ∅,
for g ∈ Gk and r ∈ (0, Rk). We obtain from here that

max
u∈Dk

I(g(u)) ≥ inf
{
I(u) : u ∈ ∂B(r,W 1,m(Ω)) ∩Wk

}
,

for g ∈ Gk. We take here the infimums of both sides over g ∈ Gk and get

dk ≥ inf
{
I(u) : u ∈ ∂B(r,W 1,m(Ω)) ∩Wk

}
, (76)
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for r ∈ (0, Rk). If we replace p and q in Assumption 2.3 by larger constants, we can
say that p, q > m− 1. Thus, there exists a positive constant C so as

|F (x, s)| ≤ C(|s|p+1 + 1) for x ∈ Ω, s ∈ R,
|G(x, s)| ≤ C(|s|q+1 + 1) for x ∈ ∂Ω, s ∈ R.

The above two inequalities lead us to

I(u) ≥ 1

m

∫
Ω

(|∇u|m + |u|m) dx− C
∫

Ω

(
|u|p+1 + 1

)
dx− C

∫
∂Ω

(
|u|q+1 + 1

)
dσ

≥ 1

m
‖u‖mW 1,m(Ω) − C‖u‖

p+1
Lp+1(Ω) − C‖u‖

q+1
Lq+1(∂Ω) − C (77)

when u ∈Wk, with C > 0 various constants which do not depend on u and k.
We shall continue the proof considering N > m. In this case we have m < p+ 1 <

mN/(N −m) and m < q + 1 < m(N − 1)/(N −m). We now consider α and β
defined by the following identities:

1

p+ 1
=
α

m
+

(1− α)(N −m)

mN
and

1

q + 1
=

β

m
+

(1− β)(N −m)

m(N − 1)
.

We appeal to the Hölder’s inequality and the Sobolev’s inequality to infer

‖u‖Lp+1(Ω) ≤ ‖u‖αLm(Ω)‖u‖
1−α
LmN/(N−m)(Ω)

≤ C‖u‖αLm(Ω)‖u‖
1−α
W 1,m(Ω), (78)

‖u‖Lq+1(∂Ω) ≤ ‖u‖βLm(∂Ω)‖u‖
1−β
Lm(N−1)/(N−m)(∂Ω)

≤ C‖u‖βLm(∂Ω)‖u‖
1−β
W 1,m(Ω). (79)

By employing Lemma 5.10 together with (78) and (79) we arrive at

‖u‖Lp+1(Ω) ≤
C

µ
α/m
k

‖u‖W 1,m(Ω), ‖u‖Lq+1(∂Ω) ≤
C

µ
β/m2

k

‖u‖W 1,m(Ω),

for u ∈ Wk with k ≥ 2. We combine (77) with the above two inequalities involving
that

I(u) ≥ 1

m
‖u‖mW 1,m(Ω) −

C

µ
α(p+1)/m
k

‖u‖p+1
W 1,m(Ω) −

C

µ
β(q+1)/m2

k

‖u‖q+1
W 1,m(Ω) − C,

for u ∈Wk. This last inequality together with (76) lead to

dk ≥
1

m
rm − C

µ
α(p+1)/m
k

rp+1 − C

µ
β(q+1)/m2

k

rq+1 − C, (80)

for r ∈ (0, Rk). We make the notation

hk(r) :=
1

m
rm − C

µ
α(p+1)/m
k

rp+1 − C

µ
β(q+1)/m2

k

rq+1 − C.

It is obvious that hk(r) < 0 for r sufficiently large. We replace Rk by a larger
constant so as hk(r) < 0 for Rk < r. Lemma 5.11 help us to remark that the expanse
of Rk leaves dk invariant. We can assume that p > q. In truth, we take p1 so as
max(p, q) < p1 < ((m− 1)N +m)/(N −m). This means that f(x, s) still fulfills (12)
even if we replace p by p1 and C by a larger constant, and, consequently, we can
suppose p > q. We define

ak :=
(p+ 1)C

µ
α(p+1)/m
k

, bk :=
(q + 1)C

µ
β(q+1)/m2

k

.
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Thus, we have

hk(r) =
1

m
rm − ak

rp+1

p+ 1
− bk

rq+1

q + 1
− C.

Since p, q > m− 1 in Assumption 2.3, hk(r) achieves its maximum at a unique point
rk ∈ (0, Rk). In truth, it is obvious that equation h′k(r) = 0 is equivalent to

akr
p−m+1 + bkr

q−m+1 = 1. (81)

Thus, the unique positive solution rk of (81) corresponds to the maximum value of
hk(r). Equation (81) is the same with

(p+ 1)C

µ
α(p+1)/m
k

rp−m+1
k +

(q + 1)C

µ
β(q+1)/m2

k

rq−m+1
k = 1,

meaning that rk →∞ as k →∞. Considering inequality (80), we attain dk ≥ hk(rk).
Since p > q > m− 1, by (81) we get

hk(rk) = rmk

(
1

m
− 1

p+ 1
akr

p−m+1
k − 1

q + 1
bkr

q−m+1
k

)
− C

≥ rmk
(

1

m
− 1

q + 1
akr

p−m+1
k − 1

q + 1
bkr

q−m+1
k

)
− C

=

(
1

m
− 1

q + 1

)
rmk − C →∞,

as k →∞, and, thus, dk diverges to infinity as k →∞.
Let now consider N = 1, 2, ...,m. We take some constants P and Q satisfying

p < P and q < Q, respectively. Also, we consider α and β defined as follows:

1

p+ 1
=
α

m
+

1− α
P + 1

,
1

q + 1
=

β

m
+

1− β
Q+ 1

.

We use the Hölder’s inequality and the Sobolev’s inequality to obtain

‖u‖Lp+1(Ω) ≤ ‖u‖αLm(Ω)‖u‖
1−α
LP+1(Ω)

≤ ‖u‖αLm(Ω)‖u‖
1−α
W 1,m(Ω),

‖u‖Lq+1(∂Ω) ≤ ‖u‖βLm(∂Ω)‖u‖
1−β
LQ+1(∂Ω)

≤ ‖u‖βLm(∂Ω)‖u‖
1−β
W 1,m(Ω),

and from now on the proof is similar to that for the case N > m. 2

Proof of Theorem 2.5. Let vk be a critical point corresponding to dk. This means
that I(vk) = dk and I ′(vk) = 0. We want to show that ‖vk‖W 1,m(Ω) →∞. We argue

indirectly. So, suppose that there exists a bounded subsequence of vk in W 1,m(Ω),
labeled again vk. We then obtain, via Proposition 4.3, that ‖vk‖W 1,r(Ω) is bounded for
every r < ∞. Moreover, by Sobolev embedding, we have that ‖vk‖C(Ω) is bounded.

Therefore,

dk = I(vk) =
1

m
‖vk‖mW 1,m(Ω) −

∫
Ω

F (x, vk)dx−
∫
∂Ω

G(x, vk)dσ

is bounded, a contradiction. Hence, ‖vk‖W 1,m(Ω) →∞, and, considering Lemma 4.4,
we actually infer that ‖vk‖C(Ω) →∞. The proof of Theorem 2.5 is complete. 2
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