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Obstinate and maximal prefilters in EQ-algebras
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Abstract. In this paper the notion of an obstinate prefilter(filter) in an EQ-algebra ξ is
introduced and a characterization of it is obtained by some theorems. Then the notion of

maximal prefilter is defined and is characterized under some conditions. Finally, the relations

among obstinate, prime, maximal, implicative and positive implicative prefilters are studied.
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1. Introduction

A special algebra called EQ-algebra has been recently introduced by Vilém Novák
and B. De Baets [12]. Its original motivation comes from fuzzy type theory, in which
the main connective is fuzzy equality. An EQ-algebra consists of three binaries (meet,
multiplication and a fuzzy equality) and a top element and a binary operation impli-
cation is drived from fuzzy equality. Its implication and multiplication are no more
closely tied by the adjunction and so, this algebra generalizes commutative residuated
lattice. These algebras are intended to develop an algebraic structure of truth values
for fuzzy type theory. EQ-algebras are interesting and important for studying and
researching and residuated lattices [5] and BL-algebras [2,6,14] are particular cases of
EQ-algebras. In fact, EQ-algebras generalize non-commutative resiuated lattices [3].
The prefilter theory plays a fundamental role in the general development of EQ-
algebras. From a logical point of view, various filters correspond to various sets of
provable formulas. Some types of filters on residuated lattice based on logical al-
gebras have been widely studied [7,8,15,16] and some important results have been
obtained. The notion of obstinate filter in residuated lattice is introduced in [1]. For
EQ-algebras, the notions of prefilters (which coincide with filters in residuated lat-
tices) and prime prefilters were proposed and some of their properties were obtained
[3]. Few results for other special prefilters of EQ-algebras have been obtained in [9].
In this paper, we define prefilters in EQ-algebra and characterize them by some the-
orems. We have shown that if F is an obstinate prefilter of an EQ-algebra E, then
E/F is a chain. We hope that these prefilters open a new door into the theory of
prefilters in EQ-algebras. This paper is organized as follows: in section 2, the basic
definitions, properties and special types of EQ-algebras are reviewed. In section 3,
an obstinate prefilter of an EQ-algebra is defined and characterized. In section 4,
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by defining the notion of maximal prefilters, some characteristics of them are pre-
sented. Finally, we study the relation among obstinate, prime, maximal, implicative
and positive implicative prefilters.

2. Preliminaries

In this section, we present some definitions and results about EQ-algebras that
will be used in the sequel.

Definition 2.1. [3] An EQ-algebra is an algebra ξ = (E,∧,⊗,∼, 1) of type (2, 2, 2, 0)
which satisfies the following :
(E1) (E,∧, 1) is a ∧-semilattice with a top element 1. We set a ≤ b if and only if
a ∧ b = a,
(E2) (E,⊗, 1) is a monoid and ⊗ is isotone in arguments w.r.t a ≤ b ,
(E3) a ∼ a = 1,
(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) ≤ (c ∼ (d ∧ b)),
(E5) (a ∼ b)⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d),
(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a,
(E7) a⊗ b ≤ a ∼ b, for all a, b, c ∈ E.

We denote ã := a ∼ 1 and a→ b := (a ∧ b) ∼ a , for all a, b ∈ E .

Theorem 2.1. [3, 12, 13] Let ξ = (E,∧,⊗,∼, 1) be an EQ-algebra. For all a, b, c ∈ E
we have
(e1) a ∼ b = b ∼ a,
(e2)(a ∼ b)⊗ (b ∼ c) ≤ (a ∼ c),
(e3) a ∼ d ≤ (a ∧ b) ∼ (d ∧ b),
(e4) (a ∼ d)⊗ ((a ∧ b) ∼ c) ≤ ((d ∧ b) ∼ c),
(e5) (a ∧ b) ∼ a ≤ (a ∧ b ∧ c) ∼ (a ∧ c) ,
(e6) a⊗ b ≤ a ∧ b ≤ a, b,
(e7) b ≤ b̃ ≤ a→ b,
(e8) a ∼ b ≤ (a→ b) ∧ (b→ a),

(e9) a ≤ b implies a→ b = 1, b→ a = a ∼ b , ã ≤ b̃,
c→ a ≤ c→ b and b→ c ≤ a→ c,
(e10) If a ≤ b ≤ c, then a ∼ c ≤ a ∼ b and a ∼ c ≤ b ∼ c,
(e11) a⊗ (a ∼ b) ≤ b̃,
(e12) a ∼ d ≤ (b→ a) ∼ (b→ d),
(e13) a→ d ≤ (b→ a)→ (b→ d),
(e14) b→ a ≤ (a→ d)→ (b→ d),
(e15) (a→ b)⊗ (c→ d) ≤ (a ∧ c)→ (b ∧ d),
(e16) (a→ c)⊗ (b→ c) ≤ (a ∧ b)→ c,
(e17) (c→ a)⊗ (c→ b) ≤ c→ (a ∧ b),
(e18)a→ (b→ c) ≤ (a⊗ b)→ c̃4.

Definition 2.2. [12] Let ξ = (E,∧,⊗,∼, 1) be an EQ-algebra. We say that it is

(i) spanned, if it contains a bottom element 0 and 0̃ = 0,
(ii) separated, if for all a, b ∈ E, a ∼ b = 1 implies a = b,
(iii) semi-separated, if for all a ∈ E, a ∼ 1 = 1 implies a = 1.
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If an EQ-algebra ξ contains a bottom element 0, we may define the unary operation
¬ on E, by ¬a = a ∼ 0 and ¬a is called a negation of a ∈ E.

Theorem 2.2. [3, 12] Let ξ = (E,∧,⊗,∼, 1) be an EQ-algebra with a bottom element
0. Then for all a, b, c ∈ E, we have
(i) ¬1 = 0̃,¬0 = 1 ,
(ii) 0→ a = 1 and ¬a = a→ 0,
(iii) a ≤ b implies ¬b ≤ ¬a,

(iv) ¬0̃ = ¬¬1,

(v) a⊗ ¬a ≤ 0̃,
(vi) a→ b ≤ ¬b→ ¬a,

(vii) ¬a⊗ 0̃ ≤ ã,

(viii) ã⊗ 0̃ ≤ ¬a,
(ix) a ∼ b ≤ ¬b ∼ ¬a.

Definition 2.3. [3] A nonempty subset F of an EQ-algebra ξ is called a prefilter of
E, whenever for all a, b, c ∈ E:
(F1) 1 ∈ F ,
(F2) a, a→ b ∈ F implies b ∈ F .
A prefilter F of ξ is called a filter, if it satisfies the following :
(F3) a→ b ∈ F implies a⊗ c→ b⊗ c ∈ F , for any a, b, c ∈ E .

A prefilter (filter) F of an EQ-algebra ξ is called proper, whenever F 6= E.

Theorem 2.3. [3] Let F be a prefilter of an EQ-algebra ξ = (E,∧,⊗,∼, 1). The
following hold, for all x, y, z, s, t ∈ E :
(i) If x ∈ F and x ≤ y, then y ∈ F ,
(ii) If x, x ∼ y ∈ F , then y ∈ F ,
(iii) If x ∼ y ∈ F and y ∼ z ∈ F , then x ∼ z ∈ F ,
(iv) If x→ y ∈ F and y → z ∈ F , then x→ z ∈ F ,
(v) If x ∼ y ∈ F ,s ∼ t ∈ F , then (x ∧ s) ∼ (y ∧ t) ∈ F , (x ∼ s) ∼ (y ∼ t) ∈ F and
(x→ s) ∼ (y → t) ∈ F .

We denote a ⇔ b := (a → b) ∧ (b → a) and a ⇔◦ b := (a → b) ⊗ (b → a), for all
a, b, c ∈ E.

Theorem 2.4. [3] Let F be a filter of an EQ-algebra ξ = (E,∧,⊗,∼, 1). Then the
following hold :
(i) a, b ∈ F implies a⊗ b ∈ F ,
(ii) a ∼ b ∈ F iff a⇔ b ∈ F iff a→ b ∈ F and b→ a ∈ F iff a⇔◦ b,
(iii) If a ∼ b ∈ F , then (a⊗ c) ∼ (b⊗ c) ∈ F and (c⊗ a) ∼ (c⊗ b) ∈ F ,
for all a, b, c ∈ E.

Definition 2.4. [3] A prefilter F of an EQ-algebra ξ is said to be a prime prefilter
if for all a, b ∈ E, a→ b ∈ F or b→ a ∈ F .

For brevity, we need the following notations for all a, z ∈ E and natural number n:

a→0 z = z, a→1 z = a→ z, a→2 z = a→ (a→ z), a→n z = a→ (a→n−1 z).

Definition 2.5. [13] Let ∅ 6= X ⊆ E. A generated prefilter by X, is the smallest
prefilter containing X and denoted by < X >. We have
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< X >:= {a ∈ E : ∃xi ∈ X and n ≥ 1 such that x1 → (x2 → ...(xn → a)...) = 1}.
Moreover, for a prefilter F of ξ and x ∈ E,

F (x) :=< {x} ∪ F >= {a ∈ E |∃n ≥ 1 such that x→n a ∈ F}.

Definition 2.6. [9] A prefilter F of an EQ-algebra ξ is called a positive implicative
prefilter if it satisfies for any x, y, z ∈ E:
(F4) x→ (y → z) ∈ F and x→ y ∈ F imply x→ z ∈ F .

Lemma 2.5. [9] If F is a positive implicative prefilter of an EQ-algebra ξ, then for
all x ∈ E, F (x) = {a ∈ E|x→ a ∈ F}.

Definition 2.7. [9] A nonempty subset F of E is called an implicative prefilter if it
satisfies (F1) and
(F5) z → ((x→ y)→ x) ∈ F and z ∈ F imply x ∈ F , for any x, y, z ∈ E.

Theorem 2.6. [9] Each implicative prefilter of an EQ-algebra ξ is a positive implica-
tive prefilter.

3. Obstinate prefilters (filters) in EQ-algebras

From now on, unless mentioned otherwise, ξ = (E,∧,⊗,∼, 1) will be an EQ-
algebra, which will be referred to by its support set E.

Definition 3.1. A prefilter F of ξ is called an obstinate prefilter of ξ if for all x, y ∈ E,
(F6) x, y 6∈ F implies x→ y ∈ F and y → x ∈ F .
If F is a filter and satisfies (F6), then F is called an obstinate filter.

Example 3.1. (i) Let ξ1 = ({0, a, b, c, d, 1},∧,⊗,∼, 1) such that 0 < a < b, c < d < 1.
The following binary operations ” ⊗ ” and ” ∼ ” define an EQ-algebra [9]. The
implication is also given as follows:

⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 a a a b
c 0 0 a 0 a c
d 0 0 a a a d
1 0 a b c d 1

∼ 0 a b c d 1
0 1 0 0 0 0 0
a 0 1 d d d d
b 0 d 1 d d d
c 0 d d 1 d d
d 0 d d d 1 1
1 0 d d d 1 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 1 1 1 1
b 0 d 1 d 1 1
c 0 d d 1 1 1
d 0 d d d 1 1
1 0 d d d 1 1

Then {a, b, c, d, 1} is an obstinate prefilter of ξ1 while {1, d} is not an obstinate pre-
filter, because 0, b 6∈ {1, d} and b→ 0 = {0} 6∈ {1, d}.
(ii) Let ξ2 = ({0, a, b, c, 1},∧,⊗,∼, 1), such that 0 < a, b < c < 1. The following bi-
nary operations ”⊗” and ” ∼ ” define an EQ-algebra on ξ2 and we have the following
”→ ”:
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⊗ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

∼ 0 a b c 1
0 1 b a 0 0
a b 1 1 a a
b a 1 1 b b
c 0 a b 1 c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Then {b, c, 1} and {a, c, 1} are obstinate prefilters of ξ2.

Theorem 3.1. {1} is a prefilter of ξ if and only if ξ is a semi-separated EQ-algebra.

Proof. Let {1} be a prefilter of ξ and a ∼ 1 = 1 for a ∈ E. We get that a ∼ 1 ∈ {1}
and so by Theorem 2.3 part (ii), a = 1. Therefore, ξ is a semi-separated EQ-algebra.
Conversely, let ξ be a semi-separated EQ-algebra and b, b→ a ∈ {1}. Then 1→ a =
{1}, we get that (1 ∧ a) ∼ 1 = 1 and so a ∼ 1 = 1. Therefore, a = 1 and {1} is a
prefilter of ξ. �

Since every good EQ-algebra is separated, so the above lemma holds for good
EQ-algebra.

Lemma 3.2. Let ξ be a separated EQ-algebra. Then {1} is an obstinate prefilter of
ξ if and only if E has at most two elements.

Proof. Let {1} be an obstinate prefilter and x, y ∈ E − {1} . Then x→ y ∈ {1} and
y → x ∈ {1}, and so (x∧y) ∼ x = (x∧y) ∼ y = 1. Since ξ is a separated EQ-algebra,
x = x ∧ y = y, thus x = y. Therefore, E has at most two elements. The converse is
clear. �

Lemma 3.3. Let F be a prefilter of ξ. Then F is an obstinate prefilter of ξ if and
only if x, y 6∈ F implies x ∼ y ∈ F .

Proof. Let F be an obstinate prefilter of ξ and x, y 6∈ F . Then x → y ∈ F and
y → x ∈ F , and so (x ∧ y) ∼ x ∈ F and (x ∧ y) ∼ y ∈ F . Therefore, by Theorem
2.3 part (iii) we get that x ∼ y ∈ F . Conversely, suppose x, y 6∈ F , then x ∼ y ∈ F .
Since x ∼ y ≤ x → y, y → x , by Theorem 2.3 part (i), we get that x → y ∈ F and
y → x ∈ F . Therefore, F is an obstinate prefilter. �

Theorem 3.4. Let F be a filter of ξ. Then F is an obstinate filter of ξ if and only
if a⇔◦ b ∈ F , for all a, b ∈ E − F .

Proof. Let F be an obstinate filter of ξ and a, b ∈ E − F . Then a → b, b → a ∈ F .
By Theorem 2.4 part(i), we get that a ⇔◦ b = (a → b) ⊗ (b → a) ∈ F . Conversely,
let a, b ∈ E − F . Then a⇔◦ b ∈ F . Since (a→ b)⊗ (b→ a) ≤ (a→ b), (a→ b), by
Theorem 2.3 part(i), we have (a→ b), (b→ a) ∈ F and so F is an obstinate filter of
ξ. �
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Theorem 3.5. Let bottom element 0 ∈ E and F be a proper prefilter of ξ . Then F
is an obstinate prefilter of ξ if and only if x 6∈ F implies ¬x ∈ F , for all x ∈ E.

Proof. Let F be an obstinate prefilter and x 6∈ F . Then ¬x = x→ 0 ∈ F . Conversely,
suppose x, y 6∈ F , then ¬x,¬y ∈ F . Thus, by Theorem 2.3 part(ii), we conclude that
x ∼ y ∈ F . Therefore, by Lemma 3.2, F is an obstinate prefilter. �

Corollary 3.6. Let ξ contain a bottom element 0 and F be a proper prefilter of ξ.
Then F is an obstinate prefilter of ξ if and only if x ∈ F or ¬x ∈ F , for all x ∈ E.

Theorem 3.7. If a → 0 = 0, for all a ∈ E − {0}, then F = E − {0} is the only
obstinate proper prefilter of ξ.

Proof. It is clear that by hypothesis, F is a prefilter of ξ . Now let x, y 6∈ F = E−{0}.
Then, x = y = 0 and so x → y = y → x = 0 → 0 = 1 ∈ F . Therefore, F is an
obstinate prefilter. Suppose F = E − {0} and G are obstinate proper prefilters and
G 6= F . Then, there is 0 6= a ∈ F such that a 6∈ G, and so 0 = a→ 0 ∈ G which is a
contradiction. �

Theorem 3.8. (Extension property) Let F be an obstinate prefilter of ξ and F ⊆ G.
Then G is also an obstiante prefilter of ξ.

Proof. Let F be an obstinate prefilter and x, y 6∈ G. Then, x, y 6∈ F and so x→ y ∈ F
and y → x ∈ F . Thus, by hypothesis x→ y ∈ G and y → x ∈ G, i.e G is an obstinate
prefilter. �

Given a filter F of ξ. The relation on E, a ≈F b iff a ∼ b ∈ F is a congruence
relation. For a ∈ E, we denote its equivalence class w.r.t. ≈ F by [a]F (or [a] for
short) and the set of these equivalence classes is denoted by E/F . It is easy to see
that < E/F,∧,⊗,∼F , [1] > is an EQ-algebra. The ordering in E/F is defined using
the derived meet operation in the following way:

[a] ≤ [b] iff [a] ∧ [b] = [a] iff a ∧ b ≈F a iff a ∧ b ∼ a = a→ b ∈ F .

Theorem 3.9. Let F be an obstinate filter of ξ. Then E/F is a chain.

Proof. Let [a], [b] ∈ E/F . If a ∈ F or b ∈ F , then a → b ∈ F or b → a ∈ F , by
Theorem 2.3 part (i) .Then [a] ≤ [b] or [b] ≤ [a]. If a, b 6∈ F , then a → b ∈ F and
b→ a ∈ F and so [a] = [b]. Therefore, E/F is a chain. �

Let A and B be two EQ-algebras. A function f : A → B is a homomorphism of
EQ-algebras, if it satisfies the following conditions, for every x, y ∈ A:

f(1) = 1,

f(x⊗ y) = f(x)⊗ f(y),

f(x ∼ y) = f(x) ∼ f(y),

f(x ∧ y) = f(x) ∧ f(y).

We also define ker(f) = {x ∈ A : f(x) = 1}.
The set of all homomorphisms from A into B is denoted by Hom(A,B) .

Theorem 3.10. Let f ∈ Hom(A,B) and G be an obstinate prefilter of B. Then,
f−1(G) is an obstinate prefilter of A.
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Proof. It is clear that f−1(G) is a prefilter of A. Let x, y 6∈ f−1(G). Then f(x), f(y) 6∈
G, since G is an obstinate prefilter f(x → y) = f(x) → f(y) ∈ G and f(y → x) =
f(y)→ f(x) ∈ G. Thus x→ y ∈ f−1(G) and y → x ∈ f−1(G). Therefore, f−1(G) is
an obstinate prefilter of A. �

Proposition 3.11. Let F be a prefilter of ξ. If a, b ∈ F , then a → b, b → a, a ∼
b, a ∧ b ∈ F .

Proof. Let a, b ∈ F . Since b ≤ a → b and a ≤ b → a, then by Theorem 2.3 (i), we
have a ∧ b ∼ a = a → b ∈ F and a ∧ b ∼ b = b → a ∈ F . Hence, by Theorem 2.3
part(iii), a ∼ b ∈ F . Thus, a ∧ b ∼ a ∈ F and a ∈ F imply that a ∧ b ∈ F . �

Theorem 3.12. Let F be an obstinate filter of a spanned EQ-algebra ξ. Then there
exists f ∈ Hom(E,E) such that ker(f) = F .

Proof. Suppose F is an obstinate filter of ξ. f is defined as follows and it is shown
that f ∈ Hom(E,E). It is easy to check that f(1) = 1. We consider two arbitrary
elements x, y ∈ E in the following cases:

f(x) =

{
1 if x ∈ F,
0 if x 6∈ F.

Case (1): x, y ∈ F .
(1a) By Theorem 2.3 part(i) we get that x ⊗ y ∈ F . Hence, f(x) = 1 = f(y) and
f(x⊗ y) = 1. Therefore, f(x⊗ y) = 1 = f(x)⊗ f(y).
(1b) By Theorem 2.3 part(i), we get that y ≤ x→ y and so x→ y ∈ F . Thus, f(x→
y) = 1 and f(x)→ f(y) = 1 = 1→ 1 = 1. Therefore, f(x→ y) = f(x)→ f(y).
(1c) By Proposition 3.1, x ∧ y ∈ F , thus f(x ∧ y) = 1. We get that f(x) ∧ f(y) =
1 ∧ 1 = 1. Therefore, f(x ∧ y) = 1 = f(x) ∧ f(y).
(1d) By Proposition 3.1, x ∼ y ∈ F . Thus, f(x ∼ y) = 1. So, f(x) = 1 = f(y) and
f(x ∼ y) = 1. Therefore, f(x ∼ y) = 1 = f(x) ∼ f(y).
Case (2): x, y 6∈ F :
(2a) By Theorem 2.3 part (i), x ⊗ y 6∈ F . So f(x ⊗ y) = 0. On the other hand,
f(x)⊗ f(y) = 0⊗ 0 = 0. It follows that f(x⊗ y) = f(x)⊗ f(y).
(2b) Since F is an obstinate filter, x → y ∈ F and so f(x → y) = 1. On the other
hand, f(x)→ f(y) = 0→ 0 = 1. It follows that f(x→ y) = f(x)→ f(y). Similarly,
f(y → x) = f(y)→ f(x).
(2c) By Theorem 2.3 part (i), x ∧ y 6∈ F , and so f(x ∧ y) = 0. On the other hand,
f(x) ∧ f(y) = 0 ∧ 0 = 0. It follows that f(x ∧ y) = f(x) ∧ f(y).
(2d) Since F is an obstinate filter, we have x ∼ y ∈ F , f(x) = 0 = f(y) and
f(x ∼ y) = 1. Therefore, f(x ∼ y) = 1 = 0 ∼ 0 = f(x) ∼ f(y).
Case (3): x 6∈ F , y ∈ F :
(3a) We get that x ⊗ y 6∈ F . So f(x ⊗ y) = 0. Therefore, f(x ⊗ y) = 0 = 0 ⊗ 1 =
f(x)⊗ f(y).
(3b) We have y ≤ x → y, hence x → y ∈ F . Then f(x → y) = 1. On the other
hand, f(x) → f(y) = 0 → 1 = 1. It follows that f(x → y) = f(x) → f(y).
By F2 and hypothesis we have, y → x 6∈ F . Then, f(y → x) = 0. Since ξ is
a spanned EQ-algebra, we get that f(y) → f(x) = 1 → 0 = 0̃ = 0. Therefore,
f(y → x) = 0 = f(y)→ f(x).
(3c) In this case x ∧ y 6∈ F , and so f(x ∧ y) = 0. On the other hand, f(x) ∧ f(y) =
1 ∧ 0 = 0. It follows that f(x ∧ y) = f(x) ∧ f(y).
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(3d) Since x ∼ y ≤ y → x 6∈ F , we get that f(x ∼ y) = 0. On the other hand, since ξ
is a spanned EQ-algebra, f(x) ∼ f(y) = 0 ∼ 1 = 0̃ = 0. Therefore, f(x ∼ y) = 0 =
f(x) ∼ f(y).
Case (4): x ∈ F , y 6∈ F : It can be proved similar to case (3).
Summarizing all the above we have proven that f ∈ Hom(E,E). It is clear that
Ker(f) = f−1(1) = F . �

4. Maximal prefilters in EQ-algebras

Definition 4.1. A prefilter F of ξ is called a maximal prefilter if it is proper and no
proper prefilter of ξ stricly contains F , that is, for each prefilter, G 6= F , if F ⊆ G,
then G = E.

Theorem 4.1. If 0 ∈ E and M is a proper prefilter of ξ, then the following are
equivalent:
(i) M is a maximal prefilter of ξ,
(ii) For any x 6∈M , there exists n ≥ 1 such that x→n 0 ∈M .

Proof. (i)⇒ (ii). If x 6∈M , then 〈M
⋃
{x}〉 = E, and so 0 ∈ 〈M

⋃
{x}〉. Thus, there

exists n ≥ 1 such that x→n 0 ∈M .
(ii)⇒ (i). Assume there is a proper prefilter G such that M ⊂ G. Then, there exists
x ∈ G such that x 6∈ M . By hypothesis, there exists n ≥ 1 such that x →n 0 ∈ M .
By Definition 2.3 we get that 0 ∈ G, which is a contradiction. �

Proposition 4.2. Let ξ contain a bottom element 0. Then, every obstinate proper
prefilter of ξ is a maximal prefilter of ξ.

Proof. Let F be an obstinate proper prefilter of ξ, G be a prefilter of ξ and F ⊆ G ⊆ E.
If F 6= G, then there is x ∈ G such that x 6∈ F . So, by Corollary 3.1, ¬x ∈ F and
we get that ¬x ∈ G. By Theorem 2.3 part (ii) we conclude that 0 ∈ G. Therefore,
G = E. �

By the following example we show that the converse of Proposition 4.1 may not be
true.

Example 4.1. Let ξ = ({0, a, b, c, d, 1},∧,⊗,∼, 1) be an EQ-algebra, with 0 < a <
b < c < d < 1. ”→ ”, ”⊗ ” and ” ∼ ” defined as the following [9]:

⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 0 0 a b
c 0 0 0 a a c
d 0 0 a a a d
1 0 a b c d 1

∼ 0 a b c d 1
0 1 c b a 0 0
a c 1 b a a a
b b b 1 b b b
c a a b 1 c c
d 0 a b c 1 d
1 0 a b c d 1
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→ 0 a b c d 1
0 1 1 1 1 1 1
a 1 1 1 1 1 1
b b b 1 1 1 1
c a a b 1 1 1
d 0 a b c 1 1
1 0 a b c d 1

Then, {c, d, 1} is a maximal prefilter of ξ while it is not an obstinate prefilter, because
0, b 6∈ {c, d, 1} and b→ 0 = b 6∈ {c, d, 1}.

Lemma 4.3. Let F be a maximal and positive implicative prefilter of ξ. Then, F is
an obstinate prefilter of ξ.

Proof. Let x, y 6∈ F . Then E =< F, y >= {z ∈ E | y → z ∈ F} and so y → x ∈ F .
Similarly, we can obtain x→ y ∈ F . Thus, F is an obstinate prefilter of ξ. �

Lemma 4.4. Every obstinate prefilter of an EQ-algebra ξ is an implicative prefilter.

Proof. Let (x→ y)→ x ∈ F . Consider the following cases:
Case (1): If y ∈ F , then y ≤ x → y by Theorem 2.3 part (i) implies x → y ∈ F . By
hypothesis, we obtain x ∈ F .
Case (2): If x, y 6∈ F , since F is an obstinate prefilter, then x → y ∈ F and we get
that x ∈ F by hypothesis, which is a contradiction. �

The following example shows that the converse of Lemma 4.2 may not be true.

Example 4.2. Let ξ = ({0, a, b, 1},∧,⊗,∼, 1) be a chain with Cayley tables as fol-
lows:

⊗ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b 1
1 0 a b 1

∼ 0 a b 1
0 1 0 0 0
a 0 1 a a
b 0 a 1 1
1 0 a 1 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a 1 1

Then, ξ is an EQ-algebra [9], and {b, 1} is an implicative prefilter, while it is not an
obstinate prefilter.

By Theorem 2.5 and Lemma 4.1 we have the following:

Corollary 4.5. If F is a maximal and implicative prefilter of ξ, then F is an obstinate
prefilter of ξ.

Theorem 4.6. Every obstinate prefilter F of ξ is a prime prefilter.

Proof. Let a, b ∈ E, a → b 6∈ F and b → a 6∈ F . Then, a ≤ b → a and b ≤ a → b,
imply a, b 6∈ F . Since F is an obsinate prefilter, we get that a→ b ∈ F and b→ a ∈ F ,
which is a contradiction. �
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The converse of the above theorem does not hold in general.

Example 4.3. Consider EQ-algebra in Example 4.1 It is easy to check that {1, d} is
a prime prefilter of ξ, while it is not an obstinate prefilter, because a, b 6∈ {d, 1} and
b→ a = a 6∈ {d, 1}.

Corollary 4.7. Every maximal and implicative prefilter of ξ is a prime prefilter of ξ.

The prefilter F = {1, d} in Example 4.3 is a prime prefilter while it is not a maximal
prefilter.

5. Conclusion and future research

In this paper, we introduced the notions of obstinate prefilters (filters) and maximal
prefilters in an EQ-algebra. We established properties of obstinate prefilters and
maximal prefilters in an EQ-algebra. We proved some relationships between obstinate
prefilters and the other types of prefilters in an EQ-algebra. In future work, we will
introduce other types of prefilters and find the relation between them and the prefilters
in this paper. Also we will find the relation of obstinate filters with congruences.
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