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Filter theory on good hyper EQ-algebras

B. Ganji Saffar and R. A. Borzooei

Abstract. A special hyper algebra has been recently introduced in [1]. Its original motivation

comes from EQ-algebra. In this paper, we continue the study of hyper EQ-algebra in special

case named good hyper EQ-algebra. We introduce different kinds of (pre)filters and investigate
some results about them and relation between them in good hyper EQ-algebra. Then we gain

conditions which lead to have a quotient hyper EQ-algebra.
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1. Introduction

EQ-algebra introduced by Vilém Novák in [5]. These algebras are intended to
become algebras of truth values for a higher-order fuzzy logic (a fuzzy type theory,
FTT ). The concept of hyper structure (called also multialgebra) was introduced
by Marty [3] at first. That was 8th Congress of Scandinavian mathematician 1934.
Till now, the hyper structures are studied from the theoretical point of view, for
their applications to many subject of pure and applied mathematics. A special hyper
algebra has been recently introduced in [1], named hyper EQ-algebra. In this paper
we continue the study of hyper EQ-algebra in special case named good hyper EQ-
algebra and introduce the concept of different kinds of (pre)filters and investigate
some results about them and study relation between them. We show that can have
good hyper EQ-algebra in type godel by positive implicative filter and have hyper
`EQ-algebra by fantastic filter.

2. Preliminaries

Definition 2.1. [5] An EQ-algebra is an algebra E = (E,∧,⊗,∼, 1) of type (2, 2, 2, 0)
such that, for all x, y, z, t ∈ E:
(E1) 〈E,∧, 1〉 is a commutative idempotent monoid (i.e. ∧-semilattice with top
element 1);
(E2) 〈E,⊗, 1〉 is a commutative monoid and ⊗ is isotone w.r.t. ” ≤ ”
(where x ≤ y is defined as x ∧ y = x);
(E3) x ∼ x = 1; ( reflexivity axiom )
(E4) ((x ∧ y) ∼ z)⊗ (t ∼ x) ≤ z ∼ (t ∧ y); ( substitution axiom )
(E5) (x ∼ y)⊗ (z ∼ t) ≤ (x ∼ z) ∼ (y ∼ t); ( congruence axiom )
(E6) (x ∧ y ∧ z) ∼ x ≤ (x ∧ y) ∼ x; ( monotonicity axiom )
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(E7) (x ∧ y) ∼ x ≤ (x ∧ y ∧ z) ∼ (x ∧ z); ( monotonicity axiom )
(E8) x⊗ y ≤ x ∼ y. ( boundedness axiom )

The hyperstructure theory was introduced by Marty [3], at the 8th Congress of
Scandinavian Mathematicians. In his definition, a function ◦ : A × A → P ∗(A), of
the set A× A into the set of all non-empty subsets of A, is called a binary hyperop-
eration, and the pair (A, ◦) is called a hypergroupoid. If ◦ is associative, then A is
called a semihypergroup, and it is said to be commutative if ◦ is commutative. Also,
an element 1 ∈ A is called an identity element if x ∈ 1 ◦ x, for all x ∈ A.
Note that if A,B ⊆ H, then

(i) x ◦B =
⋃
b∈B

(x ◦ b) , B ◦ x =
⋃
b∈B

(b ◦ x),

(ii) A ◦B =
⋃

a∈A
(
⋃
b∈B

a ◦ b),

Definition 2.2. [1] A hyper EQ-algebra H = (H,∧,⊗,∼, 1) is a non-empty set H
with a binary operations ∧ and two binary hyper operations ⊗, ∼ and top element
”1” satisfying the following conditions, for all x, y, z, t ∈ H:
(HEQ1) 〈H,∧, 1〉 is a commutative idempotent monoid with top element ”1”,
(HEQ2) 〈H,⊗, 1〉 is a commutative semihypergroup with ”1” as an identity and ⊗
is isotone w.r.t. ≤, i.e. if x ≤ y, then x ⊗ z � y ⊗ z( where x ≤ y if and only if
x ∧ y = x ),
(HEQ3) ((x ∧ y) ∼ z)⊗ (t ∼ x)� z ∼ (t ∧ y),
(HEQ4) (x ∼ y)⊗ (z ∼ t)� (x ∼ z) ∼ (y ∼ t),
(HEQ5) (x ∧ y ∧ z) ∼ x� (x ∧ y) ∼ x,
(HEQ6) (x ∧ y) ∼ x� (x ∧ y ∧ z) ∼ (x ∧ z),
(HEQ7) x⊗ y � x ∼ y.
where A� B, means that, for all a ∈ A there exists b ∈ B such that a ≤ b.

Proposition 2.1. [1] Let H = (H,∧,⊗,∼, 1) be a hyper EQ-algebra such that x →
y = (x∧y) ∼ x and x̄ = x ∼ 1. Then the following conditions hold, for all x, y, z, t ∈ H
and A,B,C ⊆ H:
(i) x� x⊗ 1, A� A⊗ 1;
(ii) 1 ∈ x ∼ x , 1� x→ x and 1 ∈ A ∼ A;
(iii) if A� B and B � C, then A� C;
(iv) x ∼ y � x→ y;
(v) if A� B, then A⊗ C � B ⊗ C;
(vi) (x ∼ y)⊗ (y ∼ z)� x ∼ z and (x→ y)⊗ (y → z)� x→ z;
(vii) x⊗ (x ∼ y)� ȳ;
(viii) if x ≤ y, then x̄� ȳ, x ∼ y = y → x , z → x� z → y , y → z � x→ z;
(ix) if A� B, then C → A� C → B;
(x) y, ȳ � x→ y;
(xi) x→ y = x→ (x ∧ y);
(xii) x→ y � (z → x)→ (z → y);
(xiii) x ∼ y � (x ∼ z) ∼ (y ∼ z) and x ∼ y � (z ∼ x) ∼ (z ∼ y).

Definition 2.3. [1] Let H = (H,∧,⊗,∼, 1) be a hyper EQ-algebra. Then H is called,
(i) separated if 1 ∈ x ∼ y, then x = y, for all x, y ∈ H, ( in other words 1 ∈ x ∼ y
if and only if x = y ),
(ii) good if x ∼ 1 = x = 1 ∼ x, for all x ∈ H.



FILTER THEORY ON GOOD HYPER EQ-ALGEBRAS 245

Proposition 2.2. [1] Every good hyper EQ-algebra is separated.

Definition 2.4. [1] Let H be a hyper EQ-algebra and F be a subset of H such that
1 ∈ F . Then F is called a
(i) prefilter of H, if x → y ⊆ F and x ∈ F , imply y ∈ F and (x ⊗ y) ⊆ F , for all
x, y ∈ F ;
(ii) filter of H, if F is a prefilter and x→ y ⊆ F , imply (x⊗ z)→ (y ⊗ z) ⊆ F , for
all x, y, z ∈ H.

Definition 2.5. [1] Let H be a hyper EQ-algebra and D be a non-empty subset of H.
Then D is said to be S→reflexive( S∼reflexive) if (x→ y)∩D 6= ∅((x ∼ y)∩D 6= ∅),
then x→ y ⊆ D(x ∼ y ⊆ D), for all x, y ∈ H.

Remark 2.1. [1] Let D be S∼reflexive and (x → y) ∩D 6= ∅, for x, y ∈ D. Then
((x∧y) ∼ x)∩D 6= ∅. Since D is S∼reflexive, then ((x∧y) ∼ x) ⊆ D or (x→ y) ⊆ D.
Therefore, D is S→reflexive.

Lemma 2.1. [1] Let F be an S∼reflexive (pre)filter of H. Then the following con-
ditions hold, for all x, y, z ∈ H and A,B ⊆ H:
(i) if x ∈ F and x ≤ y, then y ∈ F, and if A ⊆ F and A� B, then B ∩ F 6= ∅;
(ii) if (x→ y) ⊆ F and (y → z) ⊆ F, then (x→ z) ∩ F 6= ∅.

For S∼reflexive filter F ,we define x ≡F y if and only if x ∼ y ∩ F 6= ∅. Thus we
have:

Theorem 2.1. [1] Let F be an S∼reflexive filter of H. Then H
≡F

= ( H
≡F

, ∧̄, ⊗̄, ∼̄, [1])
is a hyper EQ-algebra which is separated.

Theorem 2.2. Let F be an S∼reflexive filter of H. Then H
≡F

= ( H
≡F

, ∧̄, ⊗̄, ∼̄, [1])

is a hyper EQ-algebra which is separated. Moreover, if H is good, then H
≡F

is good,

too and [1]≡F
= F .

Proof. By Theorem 2.2, the proof is clear. �

3. (Positive) implicative Filters

In this section we introduce concept of positive implicative (pre)filter and implica-
tive (pre)filter in hyper EQ-algebras. Then we investigate some results about them
and study relations between them.

Definition 3.1. Let H be a hyper EQ-algebra and F be a subset of H such that
1 ∈ F . Then F is called:
(i) a positive implicative prefilter of H, if z → (y → x) ⊆ F and z → y ⊆ F , imply
z → x ⊆ F , for all x, y, z ∈ H and x⊗ y ⊆ F , for all x, y ∈ F .
(ii) a positive implicative filter of H, if F is a positive implicative prefilter and
x→ y ⊆ F , imply (x⊗ z)→ (y ⊗ z) ⊆ F , for all x, y, z ∈ H.
(iii) an implicative prefilter of H, if z → ((x → y) → x) ⊆ F and z ∈ F , imply
x ∈ F , for all x, y, z ∈ H and x⊗ y ⊆ F , for all x, y ∈ F .
(iv) an implicative filter of H, if F is an implicative prefilter and x→ y ⊆ F , imply
(x⊗ z)→ (y ⊗ z) ⊆ F , for all x, y, z ∈ H.
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Example 3.1. (i) Let H be a separated hyper EQ-algebra such that x→ y and x⊗ y
be singleton. Then by [[6], Lemma 15], the concept of (positive)implicative (pre)filter
in hyper EQ-algebra and EQ-algebra are coincide.
(ii) Let (H = {0, a, b, 1},≤) be a poset, such that 0 ≤ a ≤ b ≤ 1. Define ∧,⊗ and ∼
on H as follows:

x ∧ y = x⊗ y = min{x, y} ,

∼ 0 a b 1
0 {1} {0} {0} {0}
a {0} {1} {b,1} {a,1}
b {0} {b,1} {1} {b,1}
1 {0} {a,1} {b,1} {1}

It is easy to see that H = (H,∧,⊗,∼, 1) is a hyper EQ-algebra and F = {a, b, 1} is a
(positive) implicative (pre)filter.
(iii)Let (H = {0, a, b, 1},≤) be a poset, such that 0 ≤ a ≤ b ≤ 1. Define ∧,⊗ and ∼
on H as follows:

⊗ 0 a b 1
0 {0} {0} {0} {0}
a {0} {0,a} {0,a} {0,a}
b {0} {0,a} {b} {b}
1 {0} {0,a} {b} {1}

∼ 0 a b 1
0 {1} {a,b,1} {a,1} {0,1}
a {a,b,1} {a,1} {a,b,1} {a,1}
b {a,1} {a,b,1} {b,1} {b,1}
1 {0,1} {a,1} {b,1} {1}

x ∧ y = min{x, y}.
It is easy to see that H = (H,∧,⊗,∼, 1) is a hyper EQ-algebra. Then F = {b, 1} is
positive implicative (pre)filter but it is not an implicative (pre)filter.
(iv) Let (H = {0, a, b, c, 1},≤) be a poset, such that 0 ≤ a ≤ b ≤ c ≤ 1. Define ∧,⊗
and ∼ on H as follows:

∼ 0 a b c 1
0 {1} {a, b, c, 1} H H H
a {a, b, c, 1} {1} {a, b, c, 1} {a, b, c, 1} {a, b, c, 1}
b H {a, b, c, 1} {1} {b, c, 1} {b, c, 1}
c H {a, b, c, 1} {b, c, 1} {1} {c, 1}
1 H {a, b, c, 1} {b, c, 1} {c, 1} {1}

x ∧ y = x⊗ y = min{x, y}.
It is easy to see that H = (H,∧,⊗,∼, 1) is a hyper EQ-algebra and F1 = {b, c, 1}
is an implicative prefilter of H. Moreover, since a → (a → 0) = {1} ⊆ F1 and
a → a = {1} ⊆ F1 but a → 0 * F1, then F1 is not a positive implicative prefilter.
Also F2 = {a, 1} is not a (positive)implicative (pre)filter.

Proposition 3.1. Let H be a good hyper EQ-algebra. Then
(i) each positive implicative (pre)filter is a (pre)filter.
(ii) each S∼reflexive implicative (pre)filter is a (pre)filter.

Proof. (i): Let F be a positive implicative (pre)filter, x → y ⊆ F and x ∈ F , for
some x, y ∈ H. Then by goodness 1→ (x→ y) = x→ y ⊆ F and 1→ x = {x} ⊆ F .
Thus by Definition 3.1, 1→ y ⊆ F or y ∈ F . Hence F is a (pre)filter.
(ii): Let F be an S∼reflexive implicative (pre)filter, x → y ⊆ F and x ∈ F ,
for some x, y ∈ H. Then by goodness x → y ⊆ x → ((y → 1) → y). Thus
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x → ((y → 1) → y) ∩ F 6= ∅ or x → ((y → 1) → y) ⊆ F . Since x ∈ F , by Definition
3.1, y ∈ F . Hence F is a (pre)filter. �

It is obviously converse of the Proposition 3.1 is not true.

Example 3.2. In Example 3.1(ii), F = {1} is a filter but it is not an implicative
filter and in Example 3.1(iv), F = {a, 1} is a filter but it is not a positive implicative
filter.

Theorem 3.1. Let H be a hyper EQ-algebra such that z → (y → x) � (z → y) →
(z → x), for all x, y, z ∈ H. Then every S∼reflexive (pre)filter F of H is a positive
implicative (pre)filter.

Proof. Let z → (y → x) ⊆ F and z → y ⊆ F , for some x, y, z ∈ H. Then by
assumption and Lemma 2.1(i), (z → y) → (z → x) ∩ F 6= ∅ or (z → y) → (z →
x) ⊆ F . Hence z → x ∩ F 6= ∅ or z → x ⊆ F and so F ia a positive implicative
(pre)filter. �

Definition 3.2. Let H be a hyper EQ-algebra. Then we say that H is satisfies in
(i) exchange principle condition or (EP ) condition if A → (B → C) � B → (A →
C), for all A,B,C ⊆ H;
(ii) residuated condition , when A ⊗ B � C if and only if A � B → C, for all
A,B,C ⊆ H.

Example 3.3. (i) In Examples 3.1(iii) and (iv), H satisfies in the (EP ) condition.
(ii) Let (H = {0, a, b, c, 1},≤) be a poset such that 0 ≤ a ≤ b ≤ 1, 0 ≤ a ≤ c ≤ 1 and
b, c are incomparable. Moreover, ∧,⊗ and ∼ are defined on H as follows:

∧ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a b a b
c 0 a a c c
1 0 a b c 1

⊗ 0 a b c 1
0 {0} {0} {0} {0} {0}
a {0} {0} {0} {0} {0, a}
b {0} {0} {0} {0} {0, b}
c {0} {0} {0} {0} {0, c}
1 {0} {0, a} {0, b} {0, c} {1}

∼ 0 a b c 1
0 {1} {a, b, c} {a, b, c} {a, b, c} { 0}
a {a, b, c} {1} {a, b, c} {a, b, c} {a}
b {a, b, c} {a, b, c} {1} {b, c} {b}
c {a, b, c} {a, b, c} {b, c} {1} {c}
1 {0} {a} {b} {c} {1}

Then H = (H,∧,⊗,∼, 1) is a hyper EQ-algebra and satisfies in the residuated
condition.

Lemma 3.1. Let H be a good hyper EQ-algebra. Then the following conditions hold,
for all x, y, z ∈ H and A,B ⊆ H:
(i) x� (x ∼ y) ∼ y;
(ii) x� (x→ y)→ y, A� (A→ B)→ B;
(iii) x⊗ (x ∼ y)� y;
(iv) x⊗ (x→ y)� x ∧ y, x⊗ (x→ A)� A;
(v) x⊗ y � x ∧ y, especially x⊗ 1� x ;
(vii) x→ (y → z)� y → (x→ z);
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(vi) if x� y → z, then x⊗ y � z and if A� y → z, then A⊗ y � z;
(vii) x⊗ (y ∼ z)� (x ∼ y) ∼ z;
If H contains bottom element ”0”, then
(viii) x� ¬¬x.

Proof. (i): By Proposition 2.1(i), (ii), (v), (HEQ4) and goodness,

x� x⊗ 1� (x ∼ 1)⊗ (y ∼ y)� (x ∼ y) ∼ (1 ∼ y) = (x ∼ y) ∼ y.

(ii): By (i) and Proposition 2.1(iii), (iv) and (ix),

x� (x ∼ (x∧y)) ∼ (x∧y) = (x→ y) ∼ (x∧y)� (x→ y)→ (x∧y)� (x→ y)→ y.

The proof of the rest is clear.
(iii): By Proposition 2.1(vii), the proof is straightforward.
(iv): By (iii), x⊗ (x→ y) = x⊗ (x ∼ x ∧ y)� x ∧ y.
(v): By (iv), Proposition 2.1(x) and (v), x⊗ y � x⊗ (x→ y)� x ∧ y.
(vi): Let x� y → z, for some x, y, z ∈ H. Then by Proposition 2.1(v), x⊗y � (y →
z)⊗ y = y ⊗ (y → z)� y ∧ z ≤ z. Hence by Proposition 2.1(iii), x⊗ y � z.
(vii): By (HEQ4), (x ∼ t) ⊗ (y ∼ z) � (x ∼ y) ∼ (t ∼ z). Set t = 1, then by
goodness (vii) is hold.
(viii): By (i), x� (x ∼ 0) ∼ 0 = ¬¬x. �

Proposition 3.2. Let H be a good hyper EQ-algebra and satisfies in the residuated
condition. Then the following statements are hold, for all x, y, z ∈ H and A,B,C ⊆
H;
(i) x→ (y → z)� (x⊗ y)→ z and (x⊗ y)→ z � x→ (y → z);
(ii) x� y → (x⊗ y);
(iii) x� y → z if and only if y � x→ z and A� B → C if and only if B � A→ C.

Proof. (i): By Lemma 3.1(iv), x ⊗ (x → (y → z)) � y → z and so by residuated
condition, we can prove that x⊗(x→ (y → z))⊗y � z or (x⊗y)⊗(x→ (y → z))� z
and so x→ (y → z)� (x⊗ y)→ z. The proof of other case is the same.
(ii): Since x⊗ y � x⊗ y, we obtain x� y → (x⊗ y).
(iii): By definition of residuated condition the proof is straightforward. �

Theorem 3.2. Let H be a good hyper EQ-algebra and satisfies in the (EP ) condition.
If F is an S∼reflexive filter of H, then the following statements are equivalent, for
all x, y, z ∈ H:
(i) F is a positive implicative filter;
(ii) If y → (y → x) ⊆ F , then y → x ⊆ F ;
(iii) If (z → (y → x)) ⊆ F , then (z → y)→ (z → x) ⊆ F ;
(iv) If (z → (y → (y → x))) ⊆ F and z ∈ F , then y → x ⊆ F ;
(v) (x ∧ (x→ y))→ y ⊆ F ;
Moreover, if H is satisfied in the residuated condition, then the above conditions are
equivalent by;
(vi) x ∧ y → x⊗ y ⊆ F .

Proof. (i) ⇒ (ii): Let F be a positive implicative filter and y → (y → x) ⊆ F , for
x, y ∈ H. Since 1 ∈ y → y and F is an S∼reflexive filter, we get y → y ⊆ F . Thus
by (i), y → x ⊆ F .
(ii) ⇒ (iii): Let z → (y → x) ⊆ F , for x, y, z ∈ H. Then by Proposition 2.1(xii)
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and (EP ) condition, y → x � (z → y) → (z → x) � z → ((z → y) → x). Thus by
Proposition 2.1(ix), z → (y → x) � z → (z → ((z → y) → x)). Hence by Lemma
2.1(i), z → (z → ((z → y) → x)) ∩ F 6= ∅ and so z → (z → ((z → y) → x)) ⊆ F .
Then by (ii), we can see that z → ((z → y)→ x) ⊆ F . By (EP ) condition, z → ((z →
y)→ x)� (z → y)→ (z → x). Then by Lemma 2.1(i), (z → y)→ (z → x) ∩ F 6= ∅
and so (z → y)→ (z → x) ⊆ F .
(iii) ⇒ (iv): Let z → (y → (y → x)) ⊆ F and z ∈ F , for x, y, z ∈ H. Since F is a
S∼reflexive filter, y → (y → x) ⊆ F and so by (iii), (y → y)→ (y → x) ⊆ F . Thus
by 1→ (y → x) ⊆ (y → y)→ (y → x) and goodness, y → x ⊆ F .
(iv)⇒ (i): Let z → (y → x) ⊆ F and z → y ⊆ F , for some x, y, z ∈ H. Then by (EP )
condition and Proposition 2.1(xii), z → (y → x)� y → (z → x)� (z → y)→ (z →
(z → x)). Thus (z → y)→ (z → (z → x))∩F 6= ∅ or (z → y)→ (z → (z → x)) ⊆ F .
Since z → y ⊆ F , by (iv), we can prove that z → x ⊆ F .
(i)⇒ (v): It is clear x ∧ (x→ y)� x, x→ y, for any x, y ∈ H. Thus 1 ∈ (x ∧ (x→
y))→ (x→ y) and 1 ∈ (x∧(x→ y))→ x. Then (x∧(x→ y))→ (x→ y)∩F 6= ∅ and
(x∧(x→ y))→ x∩F 6= ∅ or (x∧(x→ y))→ (x→ y) ⊆ F and (x∧(x→ y))→ x ⊆ F .
Hence by (i), we can prove that (x ∧ (x→ y))→ y ⊆ F .
(v)⇒ (i): Let z → (y → x) ⊆ F and z → y ⊆ F , for x, y, z ∈ H. Then by (HEQ6),
z → (y → x) � z ∧ y → ((y → x) ∧ y). Thus z ∧ y → (y ∧ (y → x)) ∩ F 6= ∅ and so
z ∧ y → (y ∧ (y → x)) ⊆ F . Also by Proposition 2.1(xi), z → y = z → (z ∧ y) ⊆ F .
Then by Lemma 2.1(ii), z → (y ∧ (y → x)) ∩ F 6= ∅ or z → (y ∧ (y → x)) ⊆ F . Now,
by (v), (y ∧ (y → x)) → x ⊆ F . Then again by Lemma 2.1(ii), z → x ∩ F 6= ∅ or
z → x ⊆ F .
(v) ⇒ (vi): By (v), (x ∧ (x → (x ⊗ y))) → (x ⊗ y) ⊆ F , for any x, y ∈ H. Since
H satisfies in the residuated condition, by Proposition 3.2(ii), y � x → (x ⊗ y).
Thus x ∧ y � x ∧ (x → (x ⊗ y) and so 1 ∈ x ∧ y → (x ∧ (x → (x ⊗ y))). That is
x ∧ y → (x ∧ (x→ (x⊗ y))) ∩ F 6= ∅ or x ∧ y → (x ∧ (x→ (x⊗ y))) ⊆ F . Hence by
Lemma 2.1(ii), x ∧ y → x⊗ y ∩ F 6= ∅ or x ∧ y → x⊗ y ⊆ F .
(vi)⇒ (ii): Let y → (y → x) ⊆ F . By Proposition 3.2(i), y → (y → x)� (y ⊗ y)→
x. Thus ((y ⊗ y) → x) ∩ F 6= ∅ and so (y ⊗ y) → x ⊆ F . By (vi), y → (y ⊗ y) ⊆ F .
Then by Lemma 2.1(ii), y → x ⊆ F . �

Example 3.4. Let (H = {0, a, b, 1},≤) be a poset such that 0 ≤ a ≤ b ≤ 1. Define
∧,⊗ and ∼ on H as follows:

x ∧ y = min{x, y},

∼ 0 a b 1
0 {1} {0} {0} {0}
a {0} {1} {0, a} {a}
b {0} {0, a} {1} {b}
1 {0} {a} {b} {1}

It is easy to see that H = (H,∧,⊗,∼, 1) is a good hyper EQ-algebra and satisfies in
the (EP ) condition and F = {a, b, 1} is a positive implicative prefilter.

Proposition 3.3. Let H be a hyper EQ-algebra and satisfies in the residuated con-
dition. Then H satisfies in the (EP ) condition and x→ y � (y → z)→ (x→ z), for
all x, y, z ∈ H.

Proof. Let u ∈ x → (y → z), for x, y, z, u ∈ H. Then u � x → (y → z) and
so u � x → t, for some t ∈ y → z. Since H satisfies in the residuated condition,
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u ⊗ x � t. Hence v � t, for all v ∈ u ⊗ x. By t ∈ y → z, we get v � y → z or
v ⊗ y � z. Thus (u⊗ x)⊗ y � z or u⊗ y � x→ z and so u� y → (x→ z). Hence
x → (y → z) � y → (x → z). Then it is easy to see that A → (B → C) � B →
(A→ C).
Since y → z � y → z, we have (y → z) ⊗ y � z or y � (y → z) → z. Now by
Proposition 2.1(viii), and by (EP ) condition, x → y � x → ((y → z) → z) � (y →
z)→ (x→ z). �

Theorem 3.3. Let H be a good hyper EQ-algebra and satisfies in the residuated
condition. Then every S∼reflexive implicative (pre)filter is a positive implicative
(pre)filter.

Proof. Let F be an implicative (pre)filter and y → (y → x) ⊆ F , for some x, y ∈ H.
Then by Proposition 3.3, y → (y → x) � ((y → x) → x) → (y → x). Thus
(((y → x) → x) → (y → x)) ∩ F 6= ∅ or (((y → x) → x) → (y → x) ⊆ F and by
goodness 1 → (((y → x) → x) → (y → x)) ⊆ F . Since 1 ∈ F , by Definition 3.1, we
can prove that y → x ⊆ F . Therefore F is a positive implicative (pre)filter. �

Example 3.5. in Example 3.1(iii), H is a good hyper EQ-algebra and satisfies in
the residuated condition. We can see that F = {b, 1} is a positive implicative filter
but not implicative filter.

Theorem 3.4. Let H be a good hyper EQ-algebra and satisfies in the (EP ) condition,
F be a S∼reflexive filter of H and F ⊆ G. If F is a positive implicative filter, then
so is G.

Proof. Let A = y → (y → x) ⊆ G. Then 1 ∈ A → (y → (y → x)) and so
A → (y → (y → x)) ∩ F 6= ∅ or A → (y → (y → x)) ⊆ F . By (EP ) condition,
A → (y → (y → x)) � y → (y → (A → x)). Thus y → (y → (A → x)) ∩ F 6= ∅ or
y → (y → (A → x)) ⊆ F . Thus by Theorem 3.2(ii), y → (A → x) ⊆ F and so by
(EP ) condition, A→ (y → x) ∩ F 6= ∅ or A→ (y → x) ⊆ F ⊆ G. Since G is a filter
and A ⊆ G, we obtain y → x ⊆ G. Therefore, G is a positive implicative filter. �

Lemma 3.2. Let H be a good hyper EQ-algebra and satisfies in the residuated condi-
tion. If F is an S∼reflexive filter of H, then H

≡F
satisfies in the residuated condition,

too.

Proof. Let [x]⊗̄[y] � [z], for some [x], [y], [z] ∈ H
≡F

. Then [t] ≤ [z], for all t ∈ x ⊗ y.

Thus t → z ⊆ F , for all t ∈ x ⊗ y and so (x ⊗ y) → z ⊆ F . Since H satisfies in
the residuated condition, by Proposition 3.2(i), we can get x → (y → z) ⊆ F or
[x] � [y]→̄[z]. Let [x] � [y] → [z], for some [x], [y], [z] ∈ H

≡F
. Then there exists

t ∈ y → z such that [x] ≤ [t] or x → t ⊆ F . Since F is a filter, x ⊗ y → t ⊗ y ⊆ F .
Thus [x] ⊗ [y] � [t] ⊗ [y]. By t ∈ y → z, we have t � y → z or t ⊗ y � z, i.e.
[t]⊗ [y] = {[u]|u ∈ t⊗ y} � [z]. Hence [x]⊗ [y] � [z]. By Theorem 2.2 and Lemma
3.1(vi), converse is hold. Therefore, H≡F

satisfies in residuated condition. �

Theorem 3.5. Let H be a good hyper EQ-algebra and satisfies in the residuated
condition and x⊗ x be singleton, for all x ∈ H. If F be an S∼reflexive filter of H,
then F is a positive implicative filter if and only if H

≡F
is a good hyper EQ-algebra

such that [x]⊗ [x] = {[x]}, for all x ∈ H. Moreover if F is a positive implicative filter,
then each S∼reflexive (pre)filter of H≡F

is a positive implicative (pre)filter.
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Proof. Let F be a positive implicative filter. Then by Theorem 2.2, H≡F
is a good hyper

EQ-algebra. By Proposition 3.2(ii), x� x→ (x⊗x). Hence 1 ∈ (x→ (x→ (x⊗x)))
or (x → (x → (x ⊗ x))) ∩ F 6= ∅ or (x → (x → (x ⊗ x))) ⊆ F . Thus by Theorem
3.2(ii), x → (x ⊗ x) ⊆ F and so [x] ≤ [t], for all t ∈ x ⊗ x. Since by Lemma 3.1(v),
[x]⊗̄[x]� [x] we can obtain [x]⊗̄[x] = [x].
Conversely, let x→ (x→ y) ⊆ F , for x, y ∈ H. Then by Proposition 3.2(i), ((x⊗x)→
y) ∩ F 6= ∅ or (x⊗ x)→ y ⊆ F . Thus [x]⊗ [x]� [y] and so [x] ≤ [y] or x→ y ⊆ F .
Hence F is a positive implicative filter.
Now, let G be an S∼reflexive (pre)filter and [x]→ ([x]→ [y]) ⊆ G. Then by Lemma
3.2 and Proposition 3.2(i), [x]→ [y] ∩G 6= ∅ or [x]→ [y] ⊆ G. Hence G is a positive
implicative (pre)filter. �

Note. By Theorem 3.5, if we have an S∼reflexive positive implicative filter of a
good hyper EQ-algebra, then we can obtain a good hyper EQ-algebra in type godel
algebra.

Remark 3.1. Let A,B,C ⊆ H and A � B. Then in general we do not have
B → C � A→ C.
But if H be a good hyper EQ-algebra and satisfies in the residuated condition this
statement is true. Because by Lemma 3.1(ii) and assumption A� B � (B → C)→
C and so by Proposition 3.2(iii), B → C � A→ C.

Theorem 3.6. Let H be a good hyper EQ-algebra and satisfies in the (EP ) condi-
tion and ”0” be a bottom element of H. If F be an S∼reflexive filter of H, then the
following statements are equivalent;
(i) F is an implicative filter;
(ii) if (x→ y)→ x ⊆ F , then x ∈ F , for all x, y ∈ H;
Moreover, if H is satisfied in the residuated condition, then the above conditions equiv-
alent by:
(iii) (¬x→ x)→ x ⊆ F , for all x ∈ H;
(iv) ((x→ y)→ x)→ x ⊆ F , for all x, y ∈ H;
(v) if x→ (¬z → y) ⊆ F and y → z ⊆ F , then x→ z ⊆ F , for all x, y, z ∈ H;
(vi) if x→ (¬y → y) ⊆ F , then x→ y ⊆ F .

Proof. (i) ⇒ (ii): By goodness 1 → ((x → y) → x) = (x → y) → x ⊆ F . Then by
assumption, x ∈ F .
(ii)⇒ (i): Let z → ((x→ y)→ x) ⊆ F and z ∈ F , for x, y, z ∈ H. Since F is a filter,
(x→ y)→ x ⊆ F . Hence by (ii), x ∈ F .
(ii) ⇒ (iii): At first we note that, by ¬x → x � ¬x → x and Proposition 3.2(iii),
¬x� (¬x→ x)→ x. Let A = (¬x→ x)→ x. Then by the (EP ) condition, Lemma
3.1(ii), (viii) and Proposition 2.1(viii),

(¬x→ x)→ (x→ x) � x→ ((¬x→ x)→ x)� x→ ¬¬((¬x→ x)→ x)

= x→ ((((¬x→ x)→ x)→ 0)→ 0)

� (((¬x→ x)→ x)→ 0)→ (x→ 0)

� (((¬x→ x)→ x)→ 0)→ ((¬x→ x)→ x)

= (A→ 0)→ A

Since 1 ∈ x→ x, we get 1 ∈ (¬x→ x)→ (x→ x) and so (¬x→ x)→ (x→ x)∩F 6= ∅
or (¬x → x) → (x → x) ⊆ F . Thus we can obtain, ((A → 0) → A) ⊆ F and so by
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(ii), we can prove that A ⊆ F .
(iii)⇒ (iv): By Proposition 2.1(viii), ¬x� x→ y and so by Remark 3.1, (x→ y)→
x � ¬x → x. Again by Remark 3.1, (¬x → x) → x � ((x → y) → x) → x. Hence
by (iii) and assumption, (iv) is hold.
(iv)⇒ (ii): Let (x→ y)→ x ⊆ F . Then by (iv) and assumption we have x ∈ F .
(v) ⇒ (vi): Let x → (¬y → y) ⊆ F . Then by 1 ∈ y → y we obtain y → y ⊆ F and
so by (v), x→ y ⊆ F .
(vi) ⇒ (v): Let x → (¬z → y) ⊆ F and y → z ⊆ F . Then by Proposition 3.2(i),
x→ (¬z → y)� (x⊗¬z)→ y. Thus (x⊗¬z)→ y ⊆ F and so ((x⊗¬z)→ y)⊗(y →
z) ⊆ F . By Propositions 2.1(vi) and 3.2(i), ((x⊗ ¬z)→ y)⊗ (y → z)� (x⊗ ¬z)→
z � x→ (¬z → z). Hence x→ (¬z → z) ⊆ F and by (vi), x→ z ⊆ F .
(vi) ⇒ (iii): Since 1 ∈ (¬x → x) → (¬x → x) we get (¬x → x) → (¬x → x) ⊆ F
and so by (vi) we can prove (¬x→ x)→ x ⊆ F .
(i) ⇒ (vi): Let x → (¬y → y) ⊆ F . Since by Proposition 2.1(x), y � x → y we can
have by Remark 3.1, ¬(x → y) � ¬y or x → (¬y → y) � ¬y → (x → y) � (¬(x →
y) → (x → y)). Thus by goodness and assumption 1 → (((x → y) → 0) → (x →
y)) = (¬(x → y) → (x → y)) ⊆ F . Now, since 1 ∈ F , by Definition 3.1(iii), we can
prove that x→ y ⊆ F . �

Proposition 3.4. Let H be a good hyper EQ-algebra and satisfies in the residuated
condition, F be an S∼reflexive filter of H and F ⊆ G. If F is an implicative filter,
then so is G.

Proof. Let A = x → (¬y → y) ⊆ G, for x, y ∈ H. Then by (EP ) condition,
Propositions 2.1(viii) and 3.2(i), A→ A = A→ (x→ (¬y → y))� A→ ((x⊗¬y)→
y) � (x ⊗ ¬y) → (A → y). Since 1 ∈ A → A we obtain 1 ∈ (x ⊗ ¬y) → (A → y)
and so (x⊗¬y)→ (A→ y) ⊆ F . On the other hand by Remark 3.1 and Proposition
2.1(x), (A → y) → 0 � ¬y and so x ⊗ (¬(A → y)) � x ⊗ ¬y or (x ⊗ ¬y) → (A →
y) � (x ⊗ (¬(A → y))) → (A → y) � x → ((¬(A → y) → (A → y)). Since F is
an S∼reflexive implicative filter, then x→ (A→ y) ⊆ F . Hence by (EP ) condition
A → (x → y) ⊆ F ⊆ G and by A ⊆ G we get x → y ⊆ G. Therefore, G is an
implicative filter. �

Proposition 3.5. Let H be a good hyper EQ-algebra and satisfies in the residuated
condition and F be a positive implicative filter of H. Then F is an implicative filter
if and only if (x→ y)→ y ⊆ F implies (y → x)→ x ⊆ F , for all x, y ∈ H.

Proof. Let F be an implicative filter and (x → y) → y ⊆ F , for x, y ∈ H. Then by
Propositions 2.1(viii), (x), 3.2 and Remark 3.1, ((y → x) → x) → y � x → y. Thus
by Proposition 3.3, we have:

(x→ y)→ y � (y → x)→ ((x→ y)→ x)

� (x→ y)→ ((y → x)→ x)

� (((y → x)→ x)→ y)→ ((y → x)→ x)

Hence (((y → x) → x) → y) → ((y → x) → x) ∩ F 6= ∅ or (((y → x) → x) → y) →
((y → x)→ x) ⊆ F . Thus by Theorem 3.6(ii), we can prove that (y → x)→ x ⊆ F .
Conversely, let (x → y) → x ⊆ F . Then by Proposition 3.3, (x → y) → x �
(x → y) → ((x → y) → y). Hence ((x → y) → ((x → y) → y)) ∩ F 6= ∅ or
(x → y) → ((x → y) → y) ⊆ F . Since F is a positive implicative filter, we have
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(x → y) → y ⊆ F and so (y → x) → x ⊆ F . On the other hand, by y � x → y and
Remark 3.1 we get (x → y) → x � y → x. Hence y → x ∩ F 6= ∅ or y → x ⊆ F .
Thus by (y → x)→ x ⊆ F , y → x ⊆ F and Proposition 3.1, we get x ∈ F . Therefore,
F is an implicative filter. �

Definition 3.3. Let F be a subset of H such that 1 ∈ F . Then F is called a deductive
system of H, if x→ y ⊆ F and x ∈ F , imply y ∈ F , for all x, y ∈ H.

Obviously each (pre)filter is a deductive system but not vice versa.

Definition 3.4. Let H be a hyper EQ-algebra and A be a non-empty subset of H.
Then the smallest deductive system of H containing A, i.e. the intersection of all
deductive system containing A, is said the deductive system generated by A and
denoted by 〈A〉. We write 〈a〉 instead of 〈{a}〉, for each a ∈ H.

For all x, y ∈ H and n ∈ N ∪ {0}, xn → y is defined as follows:

x0 → y = 1→ y, xn+1 → y = x→ (xn → y)

Theorem 3.7. Let H be a good hyper EQ-algebra and satisfies in the (EP ) condition
and ∅ 6= A ⊆ H. Then
〈A〉 ⊆ {x ∈ H|1 ∈ a1 → (a2 → (...→ (an → x)...)) for some a1, a2, ..., an ∈ A and
n ∈ N ∪ {0}}
In particular 〈a〉 ⊆ {x ∈ H|1 ∈ an → x, for some n ∈ N ∪ {0}}.

Proof. We denote the right side above by M . Since A is a non-empty subset of
H, it is clear 1 ∈ M . Let x ∈ M and x → y ⊆ M , for some x, y ∈ H. Then
1 ∈ a1 → (a2 → (... → (an → x)...)) and 1 ∈ b1 → (b2 → (... → (bm → (x → y))...)),
for some a1, a2, ..., an, b1, b2, ..., bm ∈ A and m,n ∈ N ∪ {0}. By Proposition 3.3,
b1 → (b2 → (... → (bm → (x → y))...)) � x → (b1 → (b2 → (... → (bm → y)...))).
Thus 1 ∈ x→ (b1 → (b2 → (...→ (bm → y)...))) and so by goodness and Proposition
??, x � b1 → (b2 → (... → (bm → y)...)). Hence by Proposition ??(ix), a1 → (a2 →
(... → (an → x)...)) � a1 → (a2 → ...(an → (b1 → (b2 → (... → (bm → y)...))))...).
Then 1 ∈ a1 → (a2 → ...(an → (b1 → (b2 → (... → (bm → y)...))))...) or y ∈ M .
Hence M is a deductive system. Since 1 ∈ x→ x, for all x ∈ A, we have A ⊆M and
so 〈A〉 ⊆M . The proof of the rest is clear. �

Corollary 3.1. Let F be an S∼reflexive deductive system and a ∈ H. Then

〈F, a〉 = {x ∈ H|an → x ⊆ F, for some n ∈ N ∪ {0}}.

Proof. Set M the right side above. Let x ∈ 〈F, a〉. Then 1 ∈ a1 → (a2 → (...(am →
(an → x))...)), for some a1, a2, ..., am ∈ F and n,m ∈ N ∪ {0}. Thus a1 → (a2 →
(...(am → (an → x))...)) ∩ F 6= ∅ or a1 → (a2 → (...(am → (an → x))...)) ⊆ F
and so by assumption an → x ∩ F 6= ∅ or an → x ⊆ F . Hence 〈F, a〉 ⊆ M .
Conversely, let x ∈ M . Then an → x ⊂ F , for some n ∈ N. Set t = an → x,
thus 1 ∈ t → (an → x) � an → (t → x) = a → (a → (...(t → x)...)) and so
1 ∈ a→ (a→ (...(t→ x)...)). Hence x ∈ 〈F, a〉. Hence M ⊆ 〈F, a〉 and complete the
proof. �

Theorem 3.8. Let H be a hyper EQ-algebra and F be an S∼reflexive positive
implicative (pre)filter of H. Then 〈F, a〉 = {x ∈ H|a → x ⊆ F} ( We denote
{x ∈ H|a→ x ⊆ F} by Fa).
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Proof. Let F be a positive implicative (pre)filter. Then by 1 ∈ a → 1, we have
a → 1 ∩ F 6= ∅ or a → 1 ⊆ F , i.e. 1 ∈ Fa. Now, if x → y ⊆ Fa and x ∈ Fa,
for some x, y ∈ H, then a → (x → y) ⊆ F and a → x ⊆ F and so by assumption
a → y ⊆ F or y ∈ Fa. By 1 ∈ a → a we can get a ∈ Fa. Since t � a → t, for all
t ∈ F , we obtain t ∈ Fa. Thus Fa is a deductive system contains F and a. If B is a
deductive system such that F ∪ {a} ⊆ B and u ∈ Fa, then a → u ⊆ F ⊆ B. Hence
u ∈ B or Fa ⊆ B. Therefore, Fa is a least deductive system contains F and a, i.e.
〈F, a〉 = {x ∈ H|a→ x ⊆ F}. �

Corollary 3.2. Let F be a (pre)filter such that Fa = {x ∈ H|a → x ⊆ F} be a
deductive system, for all a ∈ H. Then F is a positive implicative (pre)filter.

Proof. Let z → (y → x) ⊆ F and z → y ⊆ F , for some x, y, z ∈ H. Then y ∈ Fz and
z → t ⊆ F , for all t ∈ (y → x). Thus t ∈ Fz, for all t ∈ (y → x) and so y → x ⊆ Fz.
Since Fz is a deductive system, we get x ∈ Fz or z → x ⊆ F . Therefore, F is a
positive implicative (pre)filter. �

Example 3.6. In Example 3.1(iii), if F = {b, 1}, then F is a (pre)filter. We have:
F0 = {x ∈ H|0→ x ⊆ F} = H, which is a deductive system;
Fa = {x ∈ H|a→ x ⊆ F} = ∅, which is a deductive system;
Fb = {x ∈ H|b→ x ⊆ F} = {b, 1}, which is a deductive system;
F1 = {x ∈ H|1→ x ⊆ F} = {b, 1}, which is a deductive system.
Therefore, F is a positive implicative (pre)filter.

Example 3.7. In Example 3.1(iii), F = {a, b, 1} is a positive implicative filter and
F0 = {0} is not deductive system.

Corollary 3.3. Let H be a good hyper EQ-algebra and satisfies in the residuated
condition and ¬¬x = x, for all x ∈ H and F be an S∼reflexive (pre)filter of H.
Then F is an implicative (pre)filter if and only if F is a positive implicative (pre)filter.

Proof. If F is an implicative (pre)filter, then by Theorem 3.3, F is a positive implica-
tive (pre)filter. Now, let F be a positive implicative (pre)filter and x→ (¬y → y) ⊆ F .
By Propositions 3.3 and 2.1(viii), x → (¬y → y) � ¬y → (x → y) � ¬y → (¬y →
¬x) and so we can have ¬y → ¬x ⊆ F . Again by Proposition 3.3 and assumption we
have ¬y → ¬x� x→ y. Hence we can get x→ y ⊆ F . Therefore F is an implicative
(pre)filter. �

4. Fantastic filters

In this section we introduce concept fantastic (pre)filter and investigate some re-
sults about them. Then we study the relation between fantastic (pre)filter and (posi-
tive)implicative (pre)filters. In the end we show that we can have hyper `EQ-algebra
by fantastic filter.

Definition 4.1. Let H be a hyper EQ-algebra and F be a subset of H such that
1 ∈ F . Then F is called
(i) fantastic prefilter of H, if z → (y → x) ⊆ F and z ∈ F , then ((x → y) → y) →
x ⊆ F , for all x, y, z ∈ H and x⊗ y ⊆ F , for all x, y ∈ F .
(ii) fantastic filter of H, if F is a fantastic prefilter and x→ y ⊆ F , imply (x⊗ z)→
(y ⊗ z) ⊆ F , for all x, y, z ∈ H.
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Example 4.1. (i) Let H be a separated hyper EQ-algebra such that x→ y and x⊗ y
be singleton. Then by [[6], Lemma 15], the concept of fantastic (pre)filter in hyper
EQ-algebras and EQ-algebra are coincide.
(ii): In Example 3.1(ii), F = {a, b, 1} is fantastic (pre)filter and in Example 3.4,
F = {a, b, 1} is a fantastic prefilter.
(iii): In Example 3.1(iii), since for b ∈ F and b→ (0→ 0) ⊆ F we have ((0→ 0)→
0)→ 0 * F , then F = {1, b} is not a fantastic prefilter.

Proposition 4.1. Let H be a good hyper EQ-algebra. Then each fantastic (pre)filter
is a (pre)filter.

Proof. Let F be a fantastic filter, x → y ⊆ F and x ∈ F , for x, y ∈ H. Since
x → (1 → y) ⊆ F and x ∈ F , we have ((y → 1) → 1) → y ⊆ F . By goodness
y ∈ (y → 1)→ 1)→ y. Hence y ∈ F and so F is a filter. �

Proposition 4.2. Let H be a hyper EQ-algebra and satisfies in the residuated con-
dition. If F is an S∼reflexive fantastic (pre)filter of H, then every (pre)filter G
containing F is a fantastic (pre)filter.

Proof. Let y → x ⊆ G, for x, y ∈ H. Then by Proposition 3.3, we have, (y →
x) → (y → x) � y → ((y → x) → x). Since 1 ∈ (y → x) → (y → x) we get,
y → ((y → x)→ x)∩F 6= ∅ or y → ((y → x)→ x) ⊆ F . Set A = (y → x)→ x. Thus
y → A ⊆ F and so ((A→ y)→ y)→ A ⊆ F . By (EP ) condition:

((A→ y)→ y)→ A = ((A→ y)→ y)→ ((y → x)→ x)

� (y → x)→ (((A→ y)→ y)→ x)

Thus we can prove (y → x)→ (((A→ y)→ y)→ x) ⊆ F ⊆ G. Since y → x ⊆ G and
G is a (pre)filter, (((A→ y)→ y)→ x) ⊆ G. On the other hand by Proposition 3.3:

1 ∈ (y → x)→ 1 ⊆ (y → x)→ (x→ x)� x→ ((y → x)→ x)

� (((y → x)→ x)→ y)→ (x→ y)

� ((x→ y)→ y)→ ((((y → x)→ x)→ y)→ y)

� (((((y → x)→ x)→ y)→ y)→ x)→ (((x→ y)→ y)→ x)

= ((A→ y)→ y)→ x)→ ((x→ y)→ y)→ x) = B

Thus B ∩ F 6= ∅ or B ⊆ F ⊆ G. Since (((A → y) → y) → x ⊆ G, we get
(((x→ y)→ y)→ x) ⊆ G. Therefore, G is a fantastic (pre)filter. �

Theorem 4.1. Let H be a good hyper EQ-algebra and satisfies in the residuated
condition and {1} be an S∼reflexive fantastic (pre)filter of H. Then any filter is a
fantastic (pre)filter.

Proof. By Proposition 4.2, the proof is clear. �

Proposition 4.3. Let H be a good hyper EQ-algebra and satisfies in the residuated
condition. If F is an S∼reflexive implicative (pre)filter of H, then F is a fantastic
(pre)filter.

Proof. Let y → x ⊆ F , for x, y ∈ H. Then by Proposition 2.1(x), x � ((x → y) →
y) → x. Now, by Remark 3.1, (((x → y) → y) → x) → y � x → y and so again by
Remark 3.1, (x → y) → (((x → y) → y) → x) � ((((x → y) → y) → x) → y) →
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(((x → y) → y) → x). Thus by Propositions 2.1(xii), 3.3 and (EP ) condition, we
have:

y → x � ((x→ y)→ y)→ ((x→ y)→ x)

� (x→ y)→ (((x→ y)→ y)→ x)

� ((((x→ y)→ y)→ x)→ y)→ (((x→ y)→ y)→ x)

Since y → x ⊆ F , then we can get

[((((x→ y)→ y)→ x)→ y)→ (((x→ y)→ y)→ x)] ⊆ F

Since F is a implicative (pre)filter, then ((x→ y)→ y)→ x ⊆ F . �

In the next example we can see that the converse of the above proposition is not
true.

Example 4.2. In Example 3.1(iii), F = {1, a, b} is a fantastic (pre)filter but it is
not an implicative (pre)filter.

Theorem 4.2. Let H be a good hyper EQ-algebra and satisfies in the residuated
condition and F be an S∼reflexive filter of H. Then F is an implicative filter if and
only if F is both positive implicative filter and fantastic filter.

Proof. Let F be an implicative filter. Then by Theorem 3.3 and Proposition 4.3, F
is both positive implicative and fantastic filter.
Conversely, let (x → y) → x ⊆ F , for x, y ∈ H. By Proposition 3.3, (x → y) →
x � (x → y) → ((x → y) → y). Since F is a positive implicative filter we have,
(x → y) → y ∩ F 6= ∅ or (x → y) → y ⊆ F . On the other hand by Proposition
2.1(x) and Remark 3.1, (x → y) → x � y → x, i.e. we can get y → x ⊆ F and so
((x → y) → y) → x ⊆ F . Now, since F is a filter and we obtain x ∈ F . Hence F is
an implicative filter. �

Corollary 4.1. Let F be an S∼reflexive fantastic filter of H. Then F is a positive
implicative filter if and only if F is an implicative filter.

Proof. By Theorem 4.2 and Theorem 3.3, the proof is clear. �

Corollary 4.2. Let F be an S∼reflexive positive implicative filter of H. Then F is
an implicative filter if and only if F is a fantastic filter.

Proof. By Theorem 4.2, Proposition 4.3, the proof is clear. �

Remark 4.1. We note that if ¬¬x = x, for all x ∈ H, then ¬x is singleton. Let
u, v ∈ ¬x. Then u → 0 ⊆ (x → 0) → 0 = x. Thus u → 0 = x. Since v ∈ x → 0 =
(u→ 0)→ 0 = u, we get u = v, i.e. ¬x is singleton.

Theorem 4.3. Let H be a good hyper EQ-algebra contains bottom element ”0” such
that ¬¬x be singleton and F be an S∼reflexive fantastic filter of H. Then H

≡F
is a

good hyper EQ-algebra such that ¬¬[x] = [x], for all x ∈ H.

Proof. By Theorem 2.2, H≡F
is a good hyper EQ-algebra. Since 1 ∈ 0 → x, for all

x ∈ H, then (0→ x)∩F 6= ∅ or 0→ x ⊆ F . Thus by Definition 4.1, ((x→ 0)→ 0)→
x ∩ F 6= ∅ or ¬¬x → x ⊆ F and so [¬¬x] � [x]. By Lemma 3.1(viii), [x] � ¬¬[x]
and so by Remark 4.1, ¬¬[x] = [x]. �
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Definition 4.2. Let H be a hyper EQ-algebra. Then H is called a lattice hyper EQ-
algebra( hyper `EQ-algebra ) if, it is a lattice and the following substitution axiom
holds, for all x, y, z, t ∈ H.

((x ∨ y) ∼ z)⊗ (t ∼ x)� (z ∼ (t ∨ y))

Example 4.3. (i) In Example 3.1(iii), it is easy to see that H = (H,∧,⊗,∼, 1) is a
hyper `EQ-algebra.
(ii) Let H = {0, a, b, c, 1}, which 0 < a < b < 1, 0 < a < c < 1 such that b, c be
incomparable and ∧,⊗ and ∼ are defined on H as follows:

∧ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a b a b
c 0 a a c c
1 0 a b c 1

⊗ 0 a b c 1
0 {0} {0} {0} {0} {0}
a {0} {0} {0} {0} {0, a}
b {0} {0} {0} {0} {0, b}
c {0} {0} {0} {0} {0, c}
1 {0} {0, a} {0, b} {0, c} {1}

∼ 0 a b c 1
0 {1} {a, b, c} {a, b, c} {a, b, c} { 0}
a {a, b, c} {1} {a, b, c} {a, b, c} {a}
b {a, b, c} {a, b, c} {1} {b, c} {b}
c {a, b, c} {a, b, c} {b, c} {1} {c}
1 {0} {a} {b} {c} {1}

Then H = (H,∧,⊗,∼, 1) is a hyper EQ-algebra which is not `EQ-algebra.

Theorem 4.4. Let H be a good hyper EQ-algebra contains bottom element ”0” such
that ¬¬x be singleton and F be an S∼reflexive fantastic filter of H. Then H

≡F
a

lattice good hyper EQ-algebra.

Proof. Let [x] ∨ [y] = ¬(¬[x] ∧ ¬[y]). Since ¬[x] ∧ ¬[y] ≤ ¬[x],¬[y] (by Remark 4.1
and Theorem 4.3, ¬[x] is singleton). Then [x], [y] ≤ ¬(¬[x] ∧ ¬[y]) = [x] ∨ [y]. Let
[x], [y] ≤ [c], for some [c] ∈ H

≡F
. Then ¬[c] ≤ ¬[x]∧¬[y] or [x]∨ [y] = ¬(¬[x]∧¬[y]) ≤

[c]. Hence [x] ∨ [y] is the supremum of [x] and [y]. We can prove that H
≡F

is a lattice
by some modification. �

Corollary 4.3. Let H be a good hyper EQ-algebra contains bottom element ”0” such
that ¬¬x be singleton and F be an S∼reflexive fantastic filter of H.Then H

≡F
is an

`EQ-algebra.

Proof. By Theorem 4.4, H≡F
is a lattice. By Proposition 2.1(v), (xiii), Theorem 4.3

and (HEQ3), we have:

(([x] ∨ [y]) ∼ [z])⊗ ([t] ∼ [x]) � (([x] ∨ [y]) ∼ [z])⊗ (¬[t] ∼ ¬[x])

= (¬(¬[x] ∧ ¬[y]) ∼ [z])⊗ (¬[t] ∼ ¬[x])

� ¬(¬(¬[x] ∧ ¬[y])) ∼ ¬[z])⊗ (¬[t] ∼ ¬[x])

= ((¬[x] ∧ ¬[y]) ∼ ¬[z])⊗ (¬[t] ∼ ¬[x])

� ¬[z] ∼ (¬[t] ∧ ¬[y])

� ¬¬[z] ∼ ¬(¬[t] ∧ ¬[y]) = [z] ∼ ([t] ∨ [y])

Therefore, H≡F
is a hyper `EQ-algebra. �
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Corollary 4.4. Let H be a good hyper EQ-algebra and satisfies in the residuated
condition, contains bottom element ”0” such that ¬¬x is singleton and F be an
S∼reflexive fantastic filter of H.Then in H

≡F
implicative filters and positive implica-

tive filters are equivalent.

Proof. By Theorem 4.3 and Corollary 3.3, the proof is clear. �

5. Conclusions

In this paper, we verify some results in good hyper EQ-algebra. Then we intro-
duce different kinds of (pre)filters and gain some results about them. Also we study
relations between these (pre)filters. In each kind of filter we obtain conditions that
can help us to have a quotient structure. Definition of new filters and study about
them and their quotient algebra will be my next task.
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