
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 44(2), 2017, Pages 238–248
ISSN: 1223-6934

Custom IDF weights for boosting the relevancy of retrieved
documents in textual retrieval

Ioan Badarinza and Adrian Sterca

Abstract. In this paper we present a technique which allows the user to alter the weights

of query terms in a textual retrieval system so that it returns more relevant results. This
technique is not meant to increase the relevancy of results returned for general search queries,

but is meant to increase the relevancy of the returned results for some specific queries in which

the query terms have disproportionate IDF values.

Key words and phrases. text retrieval, idf, query term, bm25f, rank.

1. Introduction

In Information Retrieval (IR), the items we are trying to retrieve are called doc-
uments, and each document is described by a collection of terms. These two words,
’document’ and ’term’, are now traditional in the vocabulary of IR. Usually a docu-
ment is seen as a piece of text, and a term as a word or phrase which helps to describe
the document, and which may occur one or several times in the document. So, for
example, a document might be about military activity, and could be described by
corresponding terms ’gun’, ’action’, ’soldier’, ’uniform’, ’war’, ’captain’, ’force’ and so
on. More generally a document can be anything we want to retrieve, and a term any
feature that helps describe the document.

In all IR systems, a score of each document from the collection is computed against
the query and the top k documents (where k is usually 10) are returned. The score
of a document is computed as a sum against each term of the query. The score of a
document with respect to a query term usually has two parts:
• a component that measures the importance of the query term for this document

(i.e. number of occurrences of the query term in the document; Term Frequency)
• a component that measures the discriminatory power (i.e. specificity) of the

query term inside the set of all terms from the document collection (i.e. Inverse
Document Frequency)

More formally specified, the score of a document D against a query Q has the
following form:

Score(Q,D) =

n∑
i=1

tf(qi, D) ∗ idf(qi)

where Q = (q1, q2, · · · qn) is the query, qi are query terms, tf(qi, D) is the term
frequency of term qi in document D and idf(qi) is the inverse document frequency of

Received December 1, 2015.

238



CUSTOM IDF WEIGHTS IN TEXTUAL RETRIEVAL 239

term qi. The score of a document D against a query Q can be seen as a weighted sum
of term frequencies, where the weight is given by the idf(qi) term.

In this paper we present a technique for improving the relevancy of the documents
returned by an IR system, by allowing the user to alter the default weights of the query
terms in computing the document score. This is useful when there is an important
absolute difference between the IDF values of the query terms in the same query (i.e.
a query term has an IDF much larger than the IDF of the other query terms) and
in this case, documents containing this high IDF term would monopolize the list of
returned results.

2. Ranking functions used in IR systems

In this section we present some popular ranking functions used in IR systems,
namely the Binary Independence Model used with the Probabilistic Ranking Princi-
ple, BM25 and BM25F.

2.1. Binary Independence Model and Probabilistic Ranking Principle. In
the Binary Independence Model and Probabilistic Ranking Principle [4] we consider
tfi to be a binary variable that will have only the values 0 and 1. This can be
interpreted in the following way: if a term is present in a document, the binary
variable will be equal to 1 and if the term is not present in a document the variable
will be 0. The event when the term is absent is the complement of the event when
the term is present; probability of absence is one minus probability of presence [5].

wi = log(
P (ti|rel)(1− P (ti|rel))
(1− P (ti|rel))P (ti|rel)

)

As mentioned above, the property of relevancy is represented by a random variable
Rel with two possible values: rel, rel (relevant or not). Further we will use the short
notation P (rel|d, q) to describe P (Rel = rel|d, q) (where d is the document and q is
the query). In the above formula: ti is the event that the term ti is present in the
document; rel is the event that the document is relevant to the query; P (ti|rel) is
the probability that the term ti is present in a document, knowing that the docu-
ment is relevant; P (ti|rel) is the probability the term ti is present in the document,
knowing that the document is not relevant. These probabilities can be estimated in
the following way. Because these are conditional on the relevance property, we can
assume that we have some judgments of relevance. First, we can assume that we have
a random sample of the whole collection that was judged for relevance, than derive
an estimator that will be used further. Let’s consider:
N : the size of a judged sample;
ni : the number of documents from the judged sample containing ti;
R : the relevant set size (i.e., number of documents judged relevant);
ri : the number of judged relevant documents that contain ti.

Given this information, we can estimate the probabilities from as follows:

P (ti|rel) =
ni

R

P (ti|rel) =
ni − ri
N −R



240 I. BADARINZA AND A. STERCA

After replacing the probabilities and trying to obtain a more robust estimator
by introducing a pseudo-count of frequency 0.5, as demonstrated in [6] we get the
well-known Robertson/Sparck Jones weight [5]:

wi = log(
(ri + 0.5)(N −R− ni + ri + 0.5)

(ni − ri + 0.5)(R− ri + 0.5)
)

2.2. BM25. BM25 if the fundamental result of the Probabilistic Relevance Frame-
work for document retrieval created in 1970-1980s. BM25 is one of the most successful
algorithms used in information retrieval systems. In an information retrieval system
we cannot know the values of the relevance property for each document so we might
say that the information given by the system is probabilistic. Based on probabilis-
tic 2-Poisson model, BM25 algorithm will return the documents that are potentially
relevant with our information need. The score formula of the BM25 algorithm is [1]:

Score(Q,D) =

n∑
i=1

log(
N − ni + 0.5

ni + 0.5
)

f(qi, D) ∗ (k1 + 1)

f(qi, D) + k1 ∗ (1− b + b ∗ |D|avgdl )

where f(qi, D) is qi’s term frequency in the document D, |D| is the length of the
document D in words, and avgdl is the average document length in the text collection
from which documents are drawn. k1 and b are free parameters, usually chosen, in
absence of an advanced optimization, as k1 ∈ [1.2, 2] and b = 0.75 [1]. In this formula
the term weight is:

log(
N − ni + 0.5

ni + 0.5
)

2.3. BM25F. BM25F is an extended model of BM25 that also incorporates the
structure of the documents into the scoring process. One final equation form of
BM25F can be sees as [2]:

Score(Q,D) =
∑
tinQ

idf(t) ∗ weight(t,D)

k1 + weight(t,D)

where idf(t) is the inverse document frequency and weight(t,D) is defined as [2]:

weight(t,D) =
∑
cinD

occursDt,c ∗ boostc
((1− bc) + bc ∗ lc

avlc
)

where lc is the field length, avlc is the average length for field c, bc is a constant
related to the field length which is similar to b in BM25 and boostc is the boost factor
applied to field c.

Other classical ranking functions used in information retrieval are described in [7],
[8] and [9].

3. Partial user weighting of query terms

We consider the case when a query has multiple terms, but a query term which
has a lower IDF ranking is more relevant for the information need (expressed by the
query) than some other query term which has a higher IDF weight (i.e. it appears
less frequent in the document collection than the first query term). In probabilistic
ranking IR, the score of a document relative to a given query is equal to the sum of



CUSTOM IDF WEIGHTS IN TEXTUAL RETRIEVAL 241

the scores of the given document with respect to each query term. The score of the
document D with respect to query term ti can be viewed as w(ti)∗s(ti, D) where w(ti)
is a variant of IDF which measures the term’s ti specificity in the whole document
collection (i.e. it is the weight of term’s ti importance for the returned results) and
s(ti, D) is a function of the term frequency of ti which ranks the current document
against other documents containing ti (i.e. it is the actual score of the document
relative to term ti). For example, for the BM25 algorithm, w(ti) = log(N−ni+0.5

ni+0.5 ) and

S(ti, D) = f(qi,D)∗(k1+1)

f(qi,D)+k1∗(1−b+b∗ |D|
avgdl )

. In this perspective, the total score of a document

relative to a given query can be considered a weighted sum of scores, the scores of
this document relative to each of the query terms. So, the weight of each score of
the document relative to a query term depends only on the specificity (depends on
the IDF) of that query term in the document collection. This constitutes a problem
for queries where not all query terms are equally important. For example, in a two
terms query where one term is a polysemantic, high IDF term (i.e. it’s weight/IDF is
high) and the other term is a low IDF term with the role of discriminating between the
meanings of the high IDF term, the results returned by the BM25 algorithm can be
overwhelmed by documents containing non-relevant meanings (relative to the query)
of the high IDF term. For example if the query is ’jaguar lifespan’ and we are searching
for the lifespan of the animal jaguar on Google, we get as results many documents
about Jaguar, the car, which are not relevant to our query (the documents returned
don’t even contain the word ’lifespan’). This is because the IDF of ’Jaguar’ is a lot
higher than the IDF of ’lifespan’. Another example is when we search for the height
of the TV presenter Bear Grylls using the query ’bear grylls height’, we get many
documents containing data about Bear Grylls but no height information, because
the term ’Bear Grylls’ has a much higher IDF (i.e. weight) than the term ’height’
which is far more common. Another example is by considering regional languages; if
we look up the romanian language query ’Transilvania bani’ (which is ”Transilvania
money” translated to English) on Google.ro in order to obtain information about
the Transilvania Bank which is a Romanian financial institution, we also get among
the results documents about the Transilvania highway (which is a highway in the
Transilvania region). The term ’bani’ should discriminate between the two meanings
(i.e. Transilvania bank or Transilvania highway), but its IDF is much lower than the
IDF of Transilvania.

The queries presented above are just specific examples where allowing the user
to alter the IDF weights of query terms would help in increasing the relevancy of
the returned results (for this specific user). But in a document collection there are
numerous pairs of query terms, one with a low IDF and the other with a high IDF,
which would benefit from our technique. For example, in the Reuters-RCV1 collection
[3], from 21578 indexed documents and 1217726 indexed terms the distribution of
IDFs is depicted in Fig.1 and Fig. 2. In Fig. 1 we see for each integer IDF value, the
number of indexed terms which have an IDF close to that specific IDF. Because most
IDF values in the index are real values (not integer), the IDF of each term is rounded
to the closest integer and then, for each integer IDF value the number of terms which
have a rounded IDF equal to this one is counted. We can see in Fig. 1 that most
indexed terms have an IDF between 3 and 6. But there are numerous terms which
have an IDF smaller than 3 or larger than 6, as we can see in this figure. If the query



242 I. BADARINZA AND A. STERCA

Figure 1. Number of indexed terms for specific IDF value in the
Reuters collection

Figure 2. IDF value distribution among indexed terms in the
Reuters collection

given by the user is formed by a term with an IDF < 3 and another term with an
IDF > 6, our technique should improve the relevancy of the returned results.

The same type of IDF values distribution can be seen in Fig. 2 in which the
number of indexed terms with a specific IDF value is plotted as a proportion of the



CUSTOM IDF WEIGHTS IN TEXTUAL RETRIEVAL 243

total number of indexed terms. Our technique of allowing the user to alter the IDF
weights of query terms is described in this paragraph. We consider a query made
from two terms: t1 and t2. Let’s assume that IDF (t1) is large and IDF (t2) is small.
We want our IR system to give a weight to t2 larger or just as high as the one of
t1 because t2 is more relevant than t1 in the opinion of the user issuing the query.
If there is no document in the collection that contains both t1 and t2, a classical IR
system will probably return in the first k = 10 results only documents containing t1
(and not t2). Or even if there are documents in the collection that contain both t1
and t2, it may still happen that only documents containing t1 are returned in the
top k = 10 results, because the IDF (t1) is much higher than the IDF (t2). On the
contrary, we want the IR system to return among top k = 10 results also documents
that contain term t2, because t2 is more important for the user than t1. Assuming
that the ranking function of our IR system is:

Score(Q,D) = w(t1) ∗ s(t1, D) + w(t2) ∗ s(t2, D)

where w(ti) is the inverse document frequency of ti and s(ti, D) is a function of the
term frequency of ti in document D, we introduce two mechanisms through which
the user can alter the default weight of each query term when he specifies the query:
(1) t1 t2:++n => by specifying a query like this one, the weight of t2 will become

w(t2) + n, where n = 0.5, 1, 1.5, · · ·
(2) t1 t2:+n => by specifying a query like this one, the weight of t2 will become

w(t2)+n∗0.1∗ (w(t1)−w(t2)), where n = 1, 2, 3, · · · 10. When n = 1, the weight
of t2 will increase with 10% of the initial weight difference between t1 and t2.

4. Evaluations

In order to evaluate the two mechanisms of specifying weights for the query terms,
we built an IR system and indexed the Reuters document collection [3]. We emphasize
here that our mechanisms for boosting the IDF weights of some query terms are not
meant to improve the relevancy of the returned results for general querries, but they
are meant to improve the relevancy of returned results for specific querries and specific
users. Hence the utility of these mechanisms can not be evaluated in a fully objective
manner, because they depend on the personal information need of the user which is
subjective in nature. In other words, the employment of our mechanism can be good
for a user (i.e. it returns more relevant results based on his/her information need) and
bad for some other user (i.e. because other users can have other information needs
for the same query) - that is why the human user, not the search engine itself, should
choose whether to activate our mechanism by specifying the expressions : + + n or
: +n for a query term. In this section we will only present experiments showing that
our mechanisms indeed increase the rank of some documents and reorder the returned
documents based on the user’s personal view of the query, so that more results which
contain the low IDF query term are among the top 15 returned results.

We considered a query formed by two terms, coke and prices, where the IDF of
prices is 2.52 and the IDF of coke is 7.07. For evaluating the first mechanism, we ran
11 searches using the query ’coke prices:++n’ where n is 0 in the first search, 0.5
in the second search, 1 in the third one and so on until n = 5 in the 11th search. So
the first search is a regular search and the remaining 10 searches use our mechanism



244 I. BADARINZA AND A. STERCA

for boosting the weight of the prices query term. The ranking function used by our
search engine is the popular BM25 function described earlier in Section 2.2. In each
search operation we took the top 15 documents returned. Considering all 11 searches,
there were 27 distinct documents returned. Some of those 27 documents appeared
in the top 15 results of all 11 searches performed and some other appeared only in a
subset of top 15 results of the 11 searches.

In Fig. 3 we can see the rank (i.e. position from 1 to 15; rank 1 represents
the most relevant document/position) of each of the 27 documents in each search
performed. Out of the 27 documents depicted, documents with IDs 1-7,9-12 contain
only the term ’coke’, documents with IDs 13-27 contain only the term ’prices’ and
the document ’doc8’ contains both terms. For a better view, the ranks achieved
by each document are connected by a line. Also for a better view, we showed in
Fig. 4 only the documents containing only the term ’coke’ and in Fig. 5 we showed
only the documents containing only the term ’prices’ and the document ’doc8’ which
contains both terms. We can see in these 3 figures, that as parameter n increases
across searches, the documents containing the low IDF term, prices start to get a
higher rank (i.e. a ’high rank’ actually means a value closer to 1 in these figures).
For example, in Fig. 3 the document ’doc8’ which is the only document containing
both query terms, is ranked in the first search (i.e. the classical BM25 search) only
the 8th in the top 15 results returned. Then, as the weight of the query term prices
is increased in subsequent searches, we can see that the document ’doc8’ was ranked
as the 7th in search no. 2 and then, the 6th in search no. 3 and so on until it settles
at a rank between 1 and 2 (i.e. the first and the second returned result) in searches
no. 6-9. Then, because the weight of the prices term is too high, ’doc8’ starts to
have lower ranks in searches 10 and 11 (rank 3 in search no. 10 and it does not make
the top 15 returned results in search no. 11). In Fig. 4 we can see that as the search
number increases on the OX axis (so the weight of the prices query term increases)
the rank of the documents containing only coke and not containing prices decreases
(i.e. it moves away from the value 1 which is the highest rank). And finally, in the
last searches these documents are not even among the top 15 returned results. In Fig.
5 we see the opposite for documents containing prices: their rank increases (i.e. it
gets closer to the value 1) as the search number increases.

We performed a similar evaluation for the second mechanism where the weight of
the low IDF term is increased with a percent from the weight difference between the
two terms. This time we used the query ’coke prices:+n’ for our 11 searches and in the
first search n = 0, then n = 1 for the second search and so on until n = 10 for the 11th
search. We also considered the top 15 results of each search and we obtain 26 distinct
documents from all 11 searches. We can see in figures 6, 7 and 8 the same type of
results as we have seen in the evaluation of the first mechanism. As n increases and so
the weight of prices increase, the documents containing this term get a higher rank
(i.e. a rank closer to 1). For example, in Fig. 8 we can see that the only document
containing both query terms (coke and prices), document ’doc8’, was ranked as the
7th in search no. 2 and then, the 6th in search no. 3 and so on until it settles at rank
2 in searches no. 6-9 and eventually reaching rank 1 in search no. 10. So, it seams
that both mechanisms (query-term:++n and query-term:+n) achieve approximately
the same results. This is due to the specific IDF values of the two query terms and the
way we have chosen the value of parameter n in both experiments. For our specific



CUSTOM IDF WEIGHTS IN TEXTUAL RETRIEVAL 245

Figure 3. The rank of the returned documents in each of the 11
searches (a rank closer to 1 means a more relevant document)

Figure 4. The rank of the returned documents which contain only
the term ’coke’ (a rank closer to 1 means a more relevant document)

query, the term prices has the IDF 2.52 and coke has the IDF 7.07. So, for the first
experiment (i.e. query ’coke prices:++n’ is used) in search no. 4 n is equal to 1.5 and
the new, boosted weight of prices will be 2.52 + 1.5 = 4.02. In the case of the second
experiment (i.e. query ’coke prices:+n’ is used), in search no. 4 n would be equal to 3
and so the new, boosted weight of prices would be 2.52+3 ·0.1 · (7.07−2.52) = 3.885



246 I. BADARINZA AND A. STERCA

Figure 5. The rank of the returned documents containing the term
’prices’ (a rank closer to 1 means a more relevant document)

which is very close to 4.02. This is why we see for example in figures 5 and 8 that
document ’doc8’ has approximately the same rank in the search operations with the
same number (e.g. in search no. 2 ’doc8’ was ranked the 7th in both experiments, in
search no. 3 ’doc8’ was ranked the 6th in both experiments). But if we have chosen
a different sequence of values for parameter n in the two experiments we would see
different results. Choosing the value of n is very subjective in nature and it is left to
the human user.

5. Conclusions

In this paper we presented two mechanisms which allow the user to artificially
increase the weight of a query term in order to improve the relevancy of the returned
results in an IR system. These two mechanisms are useful when there is an important
absolute difference between the IDF values of the query terms in the same query
(i.e. a query term has an IDF much larger than the IDF of the other query terms)
and in this case, documents containing this high IDF term would monopolize the
list of returned results. We also evaluated these two mechanisms and showed that
they can improve the results retrieved by an IR system for the case of specific user
queries, but because the effects of these mechanisms are very dependent on the user
input parameter (i.e. parameter n) we could not evaluate them fully in an objective
manner.

References

[1] C.D. Manning, P. Raghavan, H. Schutze, An introduction to Information Retrieval, Cambridge
University Press, 2009.



CUSTOM IDF WEIGHTS IN TEXTUAL RETRIEVAL 247

Figure 6. The rank of the returned documents in each of the 11
searches (a rank closer to 1 means a more relevant document)

Figure 7. The rank of the returned documents which contain only
the term ’coke’ (a rank closer to 1 means a more relevant document)

[2] J. Pérez-Iglesias, J. Pérez-Aguera, V. Fresno, Y.Z. Feinstein, Integrating Probabilistic Model
BM25/BM25F into Lucene, CoRR abs/0911.5046 (2009).

[3] Reuters Corpus Volume 1, http://trec.nist.gov/data/reuters/reuters.html
[4] V. Rijsbergen, C. Joost, Information Retrieval, 2nd edition, Butterworths, 1979.
[5] S. Robertson, H. Zaragoza, The Probabilistic Relevance Framework: BM25 and Beyond, Foun-

dations and Trends in Information Retrieval 3 (2009), no. 4, 33–389.



248 I. BADARINZA AND A. STERCA

Figure 8. The rank of the returned documents which contain only
the term ’prices’ (a rank closer to 1 means a more relevant document)

[6] S.E. Robertson, K. Sparck Jones, Relevance weighting of search terms, Journal of the American

Society for Information Science 27 (1977), no. 3, 129-146.
[7] G. Amati, C.J. van Rijsbergen, C. Joost, Probabilistic models of information retrieval based

on measuring the divergence from randomness, ACM Transactions on Information Systems 20

(2002), no. 4, 357–389.
[8] S.E. Robertson, C. J. van Rijsbergen, M.F. Porter, Probabilistic models of indexing and search-

ing in Information Retrieval Research, SIGIR ’80 Proceedings of the 3rd annual ACM conference

on Research and development in information retrieval, Cambridge (1980), 35–56.
[9] J. Lafferty, C. Zhai, Document language models, query models, and risk minimization for infor-

mation retrieval, ACM SIGIR Forum - SIGIR Test-of-Time Awardees 1978-2001, 51 (2017),
no. 2, 251–259.

(Ioan Badarinza, Adrian Sterca) Babes-Bolyai University, Faculty of Mathematics and
Computer Science, 1 M.Kogalniceanu st., 400084 Cluj-Napoca, Romania
E-mail address: ionutb@cs.ubbcluj.ro, forest@cs.ubbcluj.ro


