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Cubic differential systems with an invariant straight line of
maximal multiplicity

ALEXANDRU SUBA AND OLGA VACARAS

ABSTRACT. In this work the estimation 3n — 2 < M,(n) < 3n — 1 of maximal algebraic
multiplicity Mq(n) of an invariant straight line is obtained for two-dimensional polynomial
differential systems of degree n > 2. In the class of cubic systems (n = 3) we have M,(3) = 7.
Moreover, we prove that if an affine real invariant straight line has multiplicity equal to 1
(respectively, 2,3,4,5,6,7), then the maximal multiplicity of the line at infinity is 7 (respectively,
5,5,5,4,1,1). Each of these cubic systems has a single affine invariant straight line, is Darboux
integrable and their normal forms are given.
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1. Introduction

We consider the real polynomial system of differential equations

dx dy
=Py, - =0Q(xy), gdPQ) (1)
and the vector field X = P (z,y) 2 + Q (z,v) 8% associated to system (1).

Denote n = max {deg (P) ,deg (Q)}. If n = 3 then system (1) is called cubic.

A curve f(z,y) = 0, f € Clz,y] (the function f(z,y) = exp(%), g,h € Clz,y])
is said to be an invariant algebraic curve (invariant exponential function) of (1) if
there exists a polynomial Ky € Clz,y, deg(Ky) < n — 1 such that the identity
X(f) = f(z,y)Kys(z,y) holds. We say that an invariant algebraic curve f(z,y) =0
has the parallel multiplicity equal to m, if m is the greatest positive integer such that
f™~ 1 divides Ky. If f(z,y) = 0 has the parallel multiplicity equal to m > 2, then
exp(1/f),...,exp(1/fm~1) are invariant exponential functions.

The system (1) is called Darboux integrable if there exists a non-constant function
of the form F = fl)‘1 -+ f2s, where fj is an invariant algebraic curve or an invariant
exponential function and \; € C, j = 1, s, such that either F is a first integral or F'
is an integrating factor for (1).

At present, a great number of works are dedicated to the investigation of polynomial
differential systems with invariant straight lines.

The problem of the estimation of the number of invariant straight lines which can
have a polynomial differential system was considered in [1]; the problem of coexistence
of the invariant straight lines and limit cycles in {[15] : n = 2}, {[9], n = 3}, [8]; the
problem of coexistence of the invariant straight lines and singular points of a center
type for cubic system in [7], [16]. An interesting relation between the number of
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invariant straight lines and the possible number of directions for them is established
in [2].

The classification of all cubic systems with the maximum number of invariant
straight lines, including the line at infinity, and taking into account their multiplicities,
is given in [10].

It was proved in [1] that the cubic system (1) can have at most eight affine invariant
straight lines. The cubic systems with exactly eight and exactly seven distinct affine
invariant straight lines have been studied in [10], [11], with invariant straight lines
having total parallel multiplicity seven in [17], and with six real invariant straight lines
along two (three) directions in [13], [14]. The cubic systems with invariant straight
lines (including the line at infinity) of total multiplicity eight and with two (respec-
tively, three, four) distinct infinite singularities were investigated in [3] (respectively,
], [5)).

In this paper the cubic systems with at most two invariant straight lines, including
the line at infinity, of maximal multiplicity are investigated.

The work is organized as follows: In Section 2 the following estimation
3n —2 < M,(n) < 3n — 1 of the maximal algebraic multiplicity M,(n) of an affine
invariant straight line is given in the class of polynomial differential systems of degree
n > 2. We formulate the conjecture, that M,(n) = 3n — 2, n > 2. For quadratic
(n = 2), cubic (n = 3) and quartic (n = 4) systems the conjecture is true (Theo-
rem 2.1, Conjecture 2.1). The coefficient conditions when the cubic system has an
affine real invariant straight line I of algebraic multiplicity my(l) > k, k = 2,...,6
are given in Section 3. Also, in this section we show that in the class of all cubic
differential systems with non-degenerate infinity the maximal algebraic multiplicity
of an affine invariant straight line is equal to seven. If the cubic system possesses
an affine invariant straight line of multiplicity seven, then the multiplicity of the line
at infinity is equal to one (Lemmas 3.1-3.5, Theorem 3.6). In Section 4 the same
result on maximal infinitesimal, integrable and geometric multiplicity of an invariant
straight line is obtained. In Section 5 we show that the multiplicity of the line at
infinity is not greater than seven. If the cubic system has the line at infinity of mul-
tiplicity seven, then it can have at most one affine invariant straight and this line has
the multiplicity equal to one (Theorem 5.1). In Section 6 it is proved that in the class
of non-degenerate cubic differential systems with a real affine invariant straight line
of multiplicity six (respectively, five, four, three, two) the maximal multiplicity of the
line at infinity is equal to one (respectively, four, five, five, five). The normal forms of
the systems which realise these cases are given. Each of these systems posses a single
affine invariant straight line and is Darboux integrable (Theorems 6.1-6.5).

2. Estimation of the algebraic multiplicity of an affine invariant straight
line for polynomial differential systems

Let P(Qj?y) = kiopk(m7y) and Q(-T,y) = kio Qk(w7y)7 where P](.’L‘,y), Qj(x?y) are

homogeneous polynomials in « and y of degrge J-
Suppose that

deg(ged(P,Q)) =0 (2)
and
ypn(xa y) - xQn(‘r7 y) % 0. (3)
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The condition (2) means that the right-hand sides of (1) do not have common divisors
of degree grater that 0, and the condition (3) means that (1) is not degenerate, i.e.
the line at infinity does not consist only of singular points.

Definition 2.1. [6] An invariant algebraic curve f of degree d for the vector field
X has algebraic multiplicity m when m is the greatest positive integer such that the
m-th power of f divides E4(X), where

U1 Vo Vg
Eq(X) = det X(v) X(ve) o X(wr) ; (4)
XE-1(0y) XE1(vg) .. XF—L(uy)

and v, Vg, ..., Uk is a basis of Cy[z, y].
If d =1 then v; =1, vy = x, v3 =y and
B(X) = P-X(Q) - Q- X(P) (5)
The polynomial E4(X) has in = and y the degree (see [12])
1
ﬂd(d+1)(d+2)[8+3(d+3)(n— 1)]. (6)

In the case of cubic systems (n = 3) and straight lines (d = 1) we have deg(E1 (X)) = 8.
Denote by L(P, Q) the set of all affine invariant straight lines of the system
{(1),(2), (3)}; mq(l) the algebraic multiplicity of the line I € L(P, Q);

Ma(n) = maz{ma(1)|l € L(P,Q), max{deg(P), deg(Q)} = n}.
It is well known that M, (n) < 3n — 1.

Theorem 2.1. In the class of polynomial differential systems {(1),(2),(3)} of degree
n > 2 we have 3n —2 < M,(n) < 3n — 1.

Proof. For system
T =a", §=1+na""1y. (7)
the straight line z = 0 is invariant and F;(X) = n(n — 1)ya®"2. O

The system (7) is Darboux integrable and has the first integral

F=(1+2n- l)xn_ly) Jx?n L

Conjecture 2.1. In the class of polynomial differential systems {(1),(2),(3)} of degree
n > 2 we have M,(n) = 3n — 2.

3. Classification of cubic differential systems with an algebraic multiple
real affine invariant straight line

We consider the cubic differential system

{ J,‘:Po—FPl(Jf,y)+P2(.T,y)+P3(1'7y)EP(QS‘,y), (8)
Y= Qo+ Qi(z,y) + Q2(z,y) + Qs(z,y) = Qz,y),
k k
where P, = al(k)+jxk_jyj, Qr = > bl(k)+jxk_jyj, 1(0) =0,1(1) =1,1(2) =3
§=0 3=0
and {(3) = 6.

Suppose that
yP3(‘T7y) - ng(f,y) ié Oa ng(Pa Q) = 17 (9)
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i.e. at infinity the system (8) has at most four distinct singular points and the right-
hand sides of (8) do not have the common divisors of degree greatest that 0.

Let the system (8) have a real invariant straight line [. By an affine transformation
we can make [ to be described by the equation 2z = 0. Then, the system (8) looks as:

&= z(a1 + asz + asy + agz® + arzy + agy?),

. 1
¥ = by + b1z + bay + b3x? + bywy + bsy? + bex> + bray + bgaxy? + boy>. (10)

For (10) the determinant F;(X) is a polynomial in z and y of degree 8. We write it
in the form:

Eu(X) = a(i(y) + Asly)z + As(0)2° + Aaly)a® + Asw)at+ )
+A6(y)2® + A7 (y)2® + As(y)z").

The algebraic multiplicity m,(!) of the invariant straight line z = 0 of the system
(10) is at least two if the identity A;(y) =0 holds. Then we have A;(y) = —A11(y) -
Ai2(y), where

Ai1(y) = bo+ by + bsy* + boy?,
Aa(y) = a2+ agbg — arby + 2a1a4y + 2agboy — 2a1bsy + a2y? + 2aiagy*+
+agbay? — asbsy? — 3a1boy? + 2asasy>® — 2asbgy® + a2yt — asboy™.

From conditions (9) the polynomial A;;(y) is not identically equal to zero.
Let A12(y) =0, i.e.

a% + agbg — ar1by =0, a4(a8 — bg) =0,
aray + agby — a1bs = 0, ag(ag — bg) = 0, (12)
CLZ + 2aq1ag + agby — asbs — 3a1bg = 0.

The system of equalities (12) is compatible if and only if at least one of following four
sets of conditions holds:

a1 =ag =ag = 0; (13)

ay =ag =bs =byg =0, bs = a1, a1 #0; (14)

ag =bg =0, by = ai(by —a1)/aq, b5 = ay; (15)

by = a1(bs — aq)/as, ba = a1 + a4(bs — aq)/as, by = as. (16)

In this way we have proved the following lemma.

Lemma 3.1. For cubic differential system {(10), (9)} the algebraic multiplicity of the
invariant straight line x = 0 is at least two if and only if one of the sets of conditions
(13), (14), (15), (16) is satisfied.

The algebraic multiplicity of the invariant straight line x = 0 is greater than two
if the identity As(y) = 0 holds. Putting each of the conditions (13)-(16) in the
polynomial As(y) we have respectively:

As(y) = —A11(y) - (arbo — agba — 2azbsy — (azbs + 3azbe)y? — 2a7bey?); (17)

Ag(y) = —2a71a3by — a7b(2J + a%bl + a1bgby + 2&1(—&1&3 — 2a7bg + a1by

18
+bobg)y + 30’%(1)8 — a7)y2; ( )
As(y) = (a1 + aqy)(3a2azas — alay + 2a1a2by — dajazasbs + 2a3arbs
,aiblbg + 0,3(141)% — a1a7b% — a%a4b4 + a1a4b2b4 + 2&1&4(70,3(14 + 20,1&7 (19)

—2a7by + asby — aybg + babg)y — a2(azay + arar + 2a7by — asby
—2a1bg — bgbg)y2 + 2ai(bg — a7)y3;
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As(y) = (a1 + asy + asy?)(azai — a1a3ar + 2a1a3a4as + ajaghy + a1ab;
—ajagagby — 2a3aib5 + 2aq1a4a7bs — 2a1asagbs — agagbibs + a1agbabs
—|—a3a4b§ — a1a7b§ + 2a8(a3ai + 2aia4a7 — aiaszag + agagby + ajagby
72&3&41)5 — 2a1a7b5 - a8b1b5 + agbg - a1a4b8 + a1b5b8)y + 0,8(3(1421&7
—3asaqas — 3ai1arag — agbl + 2a4a8by — 4agarbs + 2asagbs — agbsbs + a7b§
—aibg + 3aiagbg + a4b5bg)y2 + a%(bg — a7)(2a4 + agy)y3).
Taking into account (9) the identity As(y) = 0 gives, in each of the cases (17)-(20),

the following series of conditions:

(20)

(17) =
az =ar =0, ag # 0; (21)
ay = by =bs = by = 0,a3 # 0; (22)
by = asba/az, bs = by = 0; (23)
(18) =
b1 = azbo/ai, by = az + arbo/ay, bg = ar; (24)
(19) =
by = 2a1, by = a3 + ayar/ag, by = ar; (25)
b1 = az(by — a1)/aa, by = asz + a7(be — a1) /a4, bs = ar; (26)
(20) =
al = _(2(12 — 3a4b5 + b?))/as, bg =ar,
bl = (20,30,7 - 3(13(14(18 + 2@3&8657 (27)
—3agarbs + a7b? + 2a4asby — agbybs)/a3;
by = a3(b5 — a4)/ag, by = asz + a7(b5 - CL4)/G8, bg = ay. (28)

Lemma 3.2. For cubic differential system {(10), (9)} the algebraic multiplicity of
the invariant straight line © = 0 is at least three if and only if one of the following
eight sets of conditions

2.1) (13), (21); 2.2) (13), (22); 2.3)(13), (23); 2.4) (14), (24);

2.5) (15), (25); 2.6) (15), (26); 2.7)(16), (27); 2.8)(16), (28)
is satisfied.

The invariant straight line x = 0 has algebraic multiplicity m, > 4 if in each of
the cases 2.1)-2.8) the identity A3z(y) = 0 holds. Taking into account (9) we have:
21) = Ag(y) = (16(b2 + 2bsy + 3bgy2) . AH(y) =0=

by = bs = by = 0, by # 0; (29)
2.2) = A3(y) = —a3b0(2a3 — by — 2b8y) =0=
by = 2a3,bg = 0,by # 0; (30)

2.3) = A3(y) = —A11(y)(2a3 —agbe+arby —azbs+2a3(2a7 —bs)y+ar(2a7—bs)y*) =
0=

b1 = (agby + azby — 2a3)/az, bg = 2az, by # 0; (31)

2.4) = As(y) = —a1(3agbg — 2a1b3 — bobr + 3a1(ag — b7)y) =0 =
by = agbo/a1, by = ag; (32)
2.5) = A3(y) = —(a?a3as+2a3asa6—alazar—2araza’iby +atasarb1+aib? —aiaibs—

ai{’a4b7)/aif2a1 (3(110,4(16 fa1a3a7+a4a7bl 70&[)3 —2a1a4b7)y/a4 — (6&1(14&6 —ajaszar+
asarby — a3bs — Sajasby)y? + 2a4%(by — ab)y® =0 =

b1 = aras/as, bs = aia¢/aa, by = ag; (33)
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26) = Ag(y) = ((11 + (1434)((4(1%(16 — bajaghy + aGb% + 3aiagsbz — asbobs — a%b7 +
a1b2b7) — a4(2a1a6 + agby — agbs — 3a1b7)y + 2ai(a6 — b7)y2)/a4 =0=

bz = ag(by — a1)/a4, by = ag; (34)

2.7) = A3( ) = —(2a4 — b5 + agy)(By + Bly + Bay? + Bsy® + Byy*)/ai, where

By = 6a4a7 Sajagas —1lazaiarag +5a3a4a8 3a4a863 + 10a4a7a8b4 - 9a3a4a8b4 +
4a4a§b2 19a4a$b5+18a4a6a8b5+24a3a4a7a8b5 6a3a4a8b5—|—8a4a8b3b5 21a4a7a8b4b5+
10a3a4a8b4b5 4a4a8b2b5+22aia$b2 24a4a6agb5—17a3a4a7agb2+2a§a2b2 7a4a8b3b5+
ldagaragbsb? — 3aza2bsb? + a2b3b2 — 11a4a2b + 14asagagh? + 4azaraghi + 2a2b3b3 —
3a7a8b4b§ + 2&%()% — 3@60,8[)% + 20,3&867 — 7aia8b5b7 + 9aZa8b§b7 — 5a4a8bgb7 + a8b§b7,

By = 2d(7a3as — azaiar + ajasas + 3aiasgbs + 2a3azby — 3azasagby + 2a4asbj —
18aia6b5 +asaqarbs —dagagbsbs —3aqa7babs +azagbybs — (Zgbibg, + 15a4a6b§ +2&8b3b§ +
a7b4b5 4a6b3 4a4b7 + 10a4b5b7 - 8a4b2b7 + 2[)5177)7

By = a8(3a4a7 12a4a6a8 — bazasarag + 2a3a8 3a4a§b3 + 4dagaragby — 3a3a§b4 +

b4 - 5a4a7b5 + 18asagagbs + 4dasaragbs + 2a8b3b5 — 3aragbibs + 2&%[)% — 6a6a8b§ +
9aia8b7 — 13&4&8b5b7 + 4a8b§b7),

B3 = 2a4ai(ag — br), By = al(ag — br).

In this case the identity A3(y) = 0 holds if at least one of the following three series
of conditions is satisfied:

as = b4 — a7(b5 — a4)/a8, bg = ag(b5 - a4)/a8, b7 = 0p; (35)
a3:b4/2, b5:3a4/2, b7:a6; (36)
az = by — asar/(2as), bs = 3as/2, by = ae; (37)

2.8) = As(y) = (a1 + aqy + agy?)(ajae + 3aiasa6as + aaghbs + 2aia2bs — 2a3aghs —
3aiagagbs — asagbsbs + a4a6b§ —ajaqsagby +aiagbsby +ag (3&?1@6 —3ajagas + 3asagbs —
Sagaebs — 2agbzbs + 2a6b§ + 3a1agb7)y — a§(3a4 — b5)(a6 — b7)y2 — ag(ag — b7)y3)/a§ =0
=

b7 = ag, bz = ag(bs — as)/as; (38)
b7 = Qg, b5 = 3&4/2, a]; = ai/(llag). (39)

Lemma 3.3. For cubic differential system {(10),(9)} the algebraic multiplicity of the
invariant straight line x = 0 is at least four if and only if one of the following eleven
series of conditions is satisfied:

2.9) (13), (21), (29); 2.10) (13), (22), (30); 2.11) (13), (23), (31);

2.12) (14), (24), (32); 2.13) (15), (25), (33); 2.14) (15), (26), (34);

2.15) (16), (27), (35); 2.16) (16), (27), (36); 2.17) (16), (27), (37);

2.18) (16), (28), (38); 2.19) (16), (28), (39).

In each of the cases 2.10)-2.15), 2.18), the identity A4(y) = 0 and the conditions
(9) are not compatible. In the cases 2.9), 2.16), 2.17) and 2.19) we have respectively
the implications:

29) = A4(y) = aﬁbo(b4 + 2b8y) =0=
b4 = bg = 0‘ (40)

2.16) = A4(y) = (as + 2agy)(—ajad — 2aagarag + 4ajarabs + 4a3aZagbs +
2a3agazbs —4asaibsby —Sasaraibi +2a3b3 +adaibe2as(a2ad —2a3agarag +4agaraibs —
2a4a2abs+2a4a6a3by —4a3bzby+arabi+3a2albe)y+12asa5bey> +8a3bsy®) /(16a3) =
0=

bo = 0,by = 227 (41)
as
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2.17) = A4(y) = (as4+2asy)?*(2a3asar —4asaragbs —2asagasbs +4a2bsby +ajagbs +
dasabey + 4absy?)/(16a3) = 0 = (41);

2.19) = Ay(y) = (as+2asy)?(aZagar — 2azasagas — 2asaragbs +4aza3bs +a3agbs +
4asabey + 4a3bsy?)/(16a3) = 0 =

aqary

b6 = O, as = (42)

2@8 ’

It is easy to see that the set of conditions {2.16), (41)}, {2.17), (41)} and {2.19), (42)}
are equivalent.

Lemma 3.4. For cubic differential system {(10),(9)} the algebraic multiplicity mg
of the invariant straight line x = 0 is at least five if and only if one of the following
two series of conditions is satisfied:

2.20) (13), (21), (29); (40); 2.21) (16), (27), (36); (41).

In the case 2.20) we have As(y) = —agbo(3ag — b7) =0 =
by = 3ag (43)
and in the case 2.21) the polynomial A5(y) has the form:
As(y) = —(asa — 2asb3)* (as + 2asy)/(4a3) # 0.

Lemma 3.5. The algebraic multiplicity of the invariant straight line x = 0 of system
{(10), (9)} is mq > 6 if and only if the following five series of conditions (13), (21),

(29), (40), (43) hold.
In the conditions of Lemma 3.5 we have: Ag(y) = a2b; =0 =
by =0 (44)
= A;(y) = 2a2(bs + 3agy) # 0, m, = 7 and the cubic system (10) looks as:
i = agx®, § = by + b3x® + bgx® + 3agx’y, aghy # 0. (45)

Via the affine transformation of coordinates: x — x,y — —(2b3 + 3bsz — 6boy)/(6ae)
and the rescaling of time ¢ = 7/ag the system (45) can be written into the form:
i = a3, v =1+ 322%y. (46)
In this way we have proved the following theorem.
Theorem 3.6. In the class of cubic differential systems {(10), (9)} the mazimal al-
gebraic multiplicity of an affine real invariant straight line is equal to 7. Via an

affine transformation of coordinates and time rescaling each cubic system which has
an invariant straight line of algebraic multiplicity 7 can be written in the form (46).

In the similar way as the proof of Theorem 3.6 it can be shown, that Conjecture
2.1 is true and in the cases of quadratic (n = 2) and quartic (n = 4) systems, i.e.
M,(2) = 4, M,(4) = 10.

4. Infinitesimal, integrable and geometric maximal multiplicity of an affine
invariant straight line for cubic systems

4.1. Infinitesimal multiplicity.
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Definition 4.1. [6] Let f = 0 be an invariant algebraic curve of degree d of a
polynomial vector field X of degree n. We say that

F=fo+ fie+-+ frae" "t e Clz,y, €/ (")

defines a generalized invariant algebraic curve of order k based on f = 0 if fo =
fy-.., fr—1 are polynomials in C[z, y] of degree at most d, and F' satisfies the equation
X(F) = FLp, for some polynomial

Lp=Lo+Lie+-+ Ly 11 € Clz,y, €] /(¥),

which must necessarily be of degree at most n— 1 in « and y. We call Lg the cofactor
of F.

Definition 4.2. [6] A generalized algebraic curve F based on f is called nondegenerate
if the polynomial f; from Definition 4.1 is not multiple of f.

Definition 4.3. [6] Let f = 0 be an invariant algebraic curve of degree d in a
polynomial vector field X of degree n. We say that f = 0 is of infinitesimal multiplicity
m with respect to X if m is the maximal order of all nondegenerate generalized
invariant algebraic curves of X based on f. If such a maximum does not exist, then
the infinitesimal multiplicity is said to be infinite.

In the work [6] it is shown that the notions of infinitesimal and algebraic mul-
tiplicity of an invariant algebraic curve are equivalent. Therefore, for cubic systems
the maximal infinitesimal multiplicity of an affine invariant straight line is not greater
than seven, and each system which has an invariant affine straight line of infinitesimal
multiplicity seven can be written in the form (46). For this system the generalized
invariant algebraic curve F' of order 7 and the cofactor Lg are described respectively
by polynomials f; and L; (i = 0,6):

fO =,
fi =zoq +m,
fo =z + o,

f3 = zaz +y7? + s,

f1=waqg +y(—20177 +3972) + 74,

fs = a5 +y(3air? — 20277 — 6a1viv2 + 37173 + 37is) + 5,

fo = wag + y(—daiy} + 6ara2y — 20577 + 9aPye — a2y — 6anmng + 93 —
617773 + 6717273 + 37174) + %6,

Ly = 22,

Ly =—zv,

Ly = zanm + 91 — 272,

L3 = —xady; + rasy; — 20192 + 22973 + zagy2 + 29172 — 73,

Ly = zaiy — 2zaragm +xasy + 3037 — 20077 — 6xyaryi —yyi —wadys +ragys —
dary172 + 62y73ve + 935 + w13 + 27193 — T4,

Ly = —:1:0/1171 + Sxozfozmq — za%’yl — 2z a37y1 + oy — 40411”7% + 6041@27% — 20[3712 +
12zya2v3 — 6xyasyy + 4yarvi + zadye — 2xayaeye + xasye + 603y v2 — dawyiye —

18zya1yivye — 4yvive — 200793 + 6aym1y3 — Taiys + raoys — darimys + 6xyyiys +
27727y + T ya + 271774 — X5,

Lg = xa?yl — 4xo€a2’yl + 3xa1a§71 + 31:04%05371 —2xasasyr — 2xaiaqyr + rasyr +
5aiy? — 1203y ? 430377 + 6 azy? — 2047 — 20zyada? + 24ayan asyf — 6zyasyi —
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107;&%%1—|—4ya2~yil —2y2~% —za‘f’yz +3z02 oye —Ta3Ye — 2T (372 + T2 — 81 Y2 +
1201027172 — dasy1y2 + 36zyaiviye — 18zyasyiye + 16yaryive + 30573 — 20273 —
18zya1v17s — 6713 + 2xy7s + zatys — 2wonasys + zasys + 6037173 — dayiys —
18xyanyivs — 4yvivs — darveys + 12zymy2ys + 73 — 2oty + zagyy — 4oy +
62yY2v4 + 29274 + Ta1Y5 + 271Y5 — 26, Where oy, 7, @ = 1,6 are parameters.

4.2. Integrable multiplicity.

Definition 4.4. [6] We shall say that the invariant algebraic curve f = 0 has in-
tegrable multiplicity m with respect to X if m is the largest integer for which the
following is true: there are m — 1 exponential factors exp(g;/f?),j = 1,...,m—1, with
deg g; < j deg f, such that each g; is not a multiple of f.

The notions of algebraic and integrable multiplicity are equivalent (see [6]). There-
fore, for cubic systems the maximal integrable multiplicity of an invariant affine
straight line is not greater than 7. Each cubic system which has an invariant affine
straight line can be written in the form (46). For this system we have f = z and
invariant exponential factors exp(g;/z7),j = 1,...,6 associated to = 0, where

g1 =z + 71,

go = %(—a:Qoz% + 22209 — 2wany1 — V3 + 2272),

gs = %(x%ﬁf — 3z3aqa0 + 3233 + 3x2a%’yl — 3x2a2'yl + 330041'7% + ’yf’ + 3x2y'ﬁ’ —
3u2a1y2 — 3z + 32%73),

g4 = %(—5540/11 + 49540@042 — 2.774&% — 4dztoqas + dztay — 4x3a?*yl + 823y —

dadasy; — 6220397 + 4x?aey? — dran Y] — 1223yaryy — v — 4xPyyt + dadady, —

4aanye + 8z v1ye + 4xyive + 1223yivye — 22793 — dxdanys — da?yys + 4adyy),

g5 = %(335&? — 5x’afas + brdarad + 5xtalas — brPasaz — SrPajay + 5xtas +

5x4a‘11'yl — 15x4a%a2'yl +5m4a§’yl +10z%aq a3y — 5m4a4'yl + 1Ox3a‘;’7% — 153:3041@27% +
5xdazy? +1022a2~3 + 30atyaly? — 5ragy; — 15zt yagyd +5xarvi +20x3yarvi +7 +
5x2y’yi’ — 51:404?72 + 1Om4a1a2”yg — 51:4oz3’yg — 15x3a%’yl’yg +1023any172 — 15x2a171272 —
4534 yonv2ys — 5aydye — 2023yy3ys + 5adary? + 5ayivE + 15atyyi2 + Satalys —

5t orpys + 1023 11934+ 522 ys + 152y ys — 5adyeys — Satan va — 5P yiva+5atys ),

Jge = %(—mﬁa‘f + 62%atas — 92%a%a3 + 22503 — 62503 as + 122510003 — 3253 +

6x6a%a4 — 62800y — 62815 + 625 — 696504?71 + 24x5a:f042'yl — 18m5a1agfyl —
18x5a%a371 + 12$5a2a371 + 12x5a1a471 — 6x5a5’yl — 153340/11712 + 3630404%0427% —
92402272 — 18z aasy? + 6zt ayy? — 2023 ad~y] — 60x°yadyd + 2423 arany;
+722%yan agys —623 a3y — 1825 yasy; — 1522 a2y — 60zt yaiyi+6x2 gyt +24xtyagyi—
6za1v? — 3023ya1y) — 4% — 622y — 321y?4S + 62°atye — 1825 a2 anys + 62503y, +
122% a1 a7 — 62°auye + 24atadyivs — 362 aanyiye + 120 agyiye + 3623 afyiye +
10825yairiye — 1823 apyi v — bdadyasyiya + 24x2an vy 4+ 962 yaryiya + 621y +
3023 yyiv2 — 97t adyd + 63t azys — 18z an 173 —54x’yar 1193 — 9227743 — 36z yyi 3 +
223795 + 625yys — 6x°adys + 12050 a0y3 — 62°azys — 18x%a2y1ys + 1228y ys —
182317}y — SdaPyaryivs — 62297ys — 24atyyivys + 1200 ny2ys + 1223917978 +
362°yy17273 — 3193 + 625atys — 62°aoys + 122t ary1va + 62393y + 1825 yyiys —
624274 — 625 01v5 — 62ty1v5 + 625796); i, i = 1,4, vj,J = 1,6, are parameters.

4.3. Geometric multiplicity.

Definition 4.5. An invariant algebraic curve f = 0 of degree d of the vector field
X has weak geometric multiplicity m if m is the largest integer for which there exists
a sequence of vector fields (X;);>o of bounded degree, converging to hX, for some
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polynomial h, not divisible by f, such that each X, has m distinct invariant algebraic
curves, fr1 =0,..., fr,m = 0, of degree at most d, which converge to f = 0 as r goes
to infinity.

Remark 4.1. In [6] it is proved that the notions of algebraic, infinitesimal, integrable
and weak geometric multiplicity are equivalent.

Definition 4.6. If in Definition 4.5 each of the vector field (X;);>0 and X has the
degree equal to n and h = 1, then we say that the invariant algebraic curve f = 0 has
the geometric multiplicity m.

It is clear, that the weak geometric multiplicity of an invariant algebraic curve is
not less than the geometric algebraic multiplicity of the same curve. Our claim is that
in the class of cubic differential systems the notions of weak geometric multiplicity
and geometric multiplicity of an invariant straight lines are equivalent.

Example 4.1. We consider the cubic system
i =z(z — 3€)(z — 3¢ + 6€3),
¥ =1+ 322y — 12zye — 3¢ + 9ye? + 122y — 1229263 (47)
—6e* — 18ye* + 2452t + 8¢0 — 24920 + 16y3€S.

This system has the following seven invariant affine straight lines:

li=2,lp=2—3¢ l3=a—3e+ 66, Iy = — € — 2 — dye>,
Is =2 —e+4e —dyed, lg = v — de + 4% — dye3, 17 = & — 2e + 2 — 2yé>.

If ¢ — 0, than (47) tends to the system (46), and the straight lines I;, i = 2,...,7
converge to the straight line iy which is invariant for both systems (46) and (47).

5. Maximal multiplicity of the line at infinity for cubic differential systems

We consider the cubic system {(8), (9)} and its associated homogeneous system

{ T = P023 —|—P1(£C7y)Z2 —|—P2(1'7y)Z+ PS(xvy)v
y = QOZS + Q1($79)Z2 + Q2($7y)Z + Q3(may>

In this section for cubic system {(8), (9)} the maximal algebraic multiplicity of the
line at infinity Z = 0 is calculated.
Without loss of generality we suppose that bg = 1.
For (48), E1(X) is a polynomial of degree 8 in z, y, Z. We write E;(X) in the
form:
Ey(X) = Ao(z,y) + A1 (z,y) Z + As(x,y) Z? + As(z,y) 2> + Ay(z,y) Z*
+A5($, y)ZS + Aﬁ(xv y)ZG + A7(1'7 y)Z7 + AB(xv y)st

where A;(z,y), i = 0,...,7, are polynomials in x and y. Polynomial Ag(z,y) looks
as: Ao(x,y) = —Ao1(x,y)Ao2(x,y), where Agi(z,y) = —a* + (ag — br)x3y + (a7 —
bg)z2y? + (ag — b)xy> + agy*, Ava(z,y) = (agbr — a7)z* + 2(aghs — ag) x>y + (3agby +
arbs — agby — 3ag)x?y? + 2(azby — agby)xy® + (asby — agbs)y*.

As Agy # 0, we require Ago to be identically equal to zero. Assume Agy = 0, then
ar = a6b7, ag = aGbg, ag = aﬁbg.

In these conditions we have A;(x,y) = —A1(x,y)Ar2(x,y), where

An(z,y) = 2° 4 bra®y + bsxy® + boy® # 0,

Aja(x,y) = (a4 — azag — agbs + a2bz — azb; + agbsby)x* + 2(as — asas — aghs +
CLgb4 - agbs + agbgbg)xSy + (3&%1)5 - 3&50,6 + a5b7 - a4a6b7 + agb4b7 - a6b5b7 - a4b8 +

(48)

(49)
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a3a6b8 — a%b;;bg + a6b4b8 - 3(131)9 + 3a6b369)$2y2 - 2(a5a6b7 — agb5b7 + (14b9 - a3a669 +
agbgbg — a6b4b9):ry3 + (a%b5bg — a5a6b8 — a5b9 + a4a6b9 — a%b4b9 + a6b5b9)y4.

If Ajo(z,y) =0, then we obtain the following two series of conditions:

1) az = a(;bg7 ayq = a6b4, as = a6b5;

2) ay = azag+ agby — a%bg +azby —agbsbr, a5 = G,ga% + agbs + azbg — agb3 —agbsbs +
asaghy — a%b3b7, by = —CLG(CL% + bg + aﬁb7), as 7é agbs.

In the conditions 1) we have As(z,y) = —A11(x,y) A1 (x,y), where

A21 = ((12 — 2(110,6 - a6b2 + 20%()1 - a1b7 + a6b1b7)x3 + (3&%[)2 - 3@2&6 - 2a1b8 +
2a6b1b8—a1a6b7+a§b1b7)x3y+(3a6b9b1—3a1bg—agbg—i-a@bgbg—2a2a6b7+2a§b2b7)azy2+
(a1a6b9 — 2a9bg + 2agbobg — a%bgbl — asagbg + a%bgbg)y3.

The identity Asq(z,y) = 0 leads us to the following two series of conditions:

a1 = agb1, az = agbo; (50)

as = 2a1a¢ + agby — QG%bl + a1by — a6b1b7,
bs = 70,6(3046 + 2b7), bg = a§(2a6 —+ b7), aq # aﬁbl.

In conditions (50) we have Az(x,y) = adii(x,y)Asi(x,y), where a = ag — agbo,
Asi(x,y) = (3ag + by)x? + 2(bg + agbr)zy + (3bg + agbs)y?).

If @ = 0, then deg(GCD(P,Q)) > 0 (see (9)). Let  # 0 and Asi(x,y) = 0, i.e.
by = —3ag, bs = 3aZ, by = —a?, then Ay(x,y) = aAq1(z,y)((bs + 2abs)x + (2b5 +
a6b4)y).

The identity A4(x,y) = 0 holds if by = —2agbs and bs = a2bs. In these conditions
As(z,y) = a1 (z,y)(ba +aghy) =0 = by = —aghy = Ag(x,y) = 3a2(agy — )% Z£ 0.

We have obtained that Fy(z,y) = a?Z°%(32? — 6agzy + 3a2y? + 2bsxZ — 2asbsyZ +
b1Z?), and therefore the algebraic multiplicity of the line Z = 0 is equal to seven. In
this case the cubic system (8) looks as

(51)

T = agby + a + aghix — a%bly + agbsz? — Qa%ngy + a2b3y2 + agr3—
3a2x?y + 3agry? —agy®, Y = by + bix — agb1y + bzx® — 2aebzry+ (52)
a2bzy? + 13 — 3agx?y + 3airy? — ady’.

Via the transformation of coordinates X = (bs 4+ 3z — 3asy)/(3a), Y = —((27by —
9b1bg + 2b3)x — (27agby — Yagb1bs + 2aeb3 + 27a)y)/(27a*) the system (52) can be
written in the form

X=1  Y=aX+X? (53)
where a = (3b; — b2)/(3a?).

In the case of conditions (51) we have As(x,y) = A11(z,y)As1(z,y), where

Agl(l', y) = (3&0&6 — 3&%[)0 + a0b7 - a6b0b7 + b45 - a6b3ﬂ - b3b75)$2 — 2(3@0@% —
3agb0 + a0a6b7 — a%b0b7 — b5ﬂ — 2@%[)35 — a6b3b76)xy + (3(10&2 — 3a‘ébo + G;oa%b7 —
adbobr + agbs B + 2a2baf + bsbr 3 + asbsbrB)y?, B = a1 — aghy # 0.

The identity Agl(l’, y) =0 yields b4 = (73&0@6 + 3&%1)0 - aob7 + a6b0b7 + aﬁbgﬂ +
b3b7ﬁ)/6 and b5 = —aG(—?)aoae, + 30%[70 - aob7 + a6b0b7 + 2a6b35 + b3b7ﬂ)/5

Therefore Ay(x,y) = Ag(z,y)Asa(z,y)/5, where

Aq = (—z + aey)(x + 2a6y + bry) # 0,

Aga(z,y) = (3adas — 6agazby + 3aibg + a3br — 2agacbobr + a2b3br — 3apaghsB +
3a§b0b3ﬂfaob3b7,8+a6bobgb7,87bgﬂ2+2a6blﬂz+b1b7ﬂ2—2B3)x272(3a3a§—6a0a%bo+
30,%[)(2) + a%(lglh — 20,00%60[)7 + agbglﬁ — 30,0(1%636 + 3@2[)01)35 — a0a6b3b7ﬂ + a%b0b3b7ﬂ —
agba B2 +2a2by B2 + agby by B2 +dag 8% + 207 %) vy + (3a3ad — 6agagby + 3adbE + aZaibr —
2a0agbob7+aéb%b7 — 3a0a%b36+3aéb0b36—aoa§b3b7ﬁ+agbobgb75— a%bgﬂZ +2a%b162 +
a%b1b762 — 8&%53 - 8a6b7ﬁ3 — Qb%ﬁs)yz.

If A42(1‘,y) = 0, then by = —agby — 23, by = —3ag and A5(.’L’,y) = ,8(3(10 — 3aghy —
bsB) A1 (,y).
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The identity As(z,y) = 0 yields ag = (3agbp + b35)/3. In the above conditions
As(z,y) = 282%(x — agy)((b3 — 3b1)x + (98 — ag(h3 — 3b1))y)/3 # 0 and Ey(X) =
Z6ﬁ2(3$ - 3a6y + b3Z)(2b:23(E - 6b1$ + 6a6b1y - 2a6b§y - 9bOZ + bleZ + 18y5)/9
Therefore m,(Z = 0) = 7 and the cubic system (8) has the form

i = (3agbo + b3S + 3(aghr + B)x — 3as(aghy + 38)y + 3agbsx? — 6a2bsxy
+3agbzy? + 3agz® — 9aZx?y + 9a63xy? — 3agy?)/3,

= bo + b1z — (aghy + 28)y + bsz? — 2agbzry + azbzy® + 13 — 3agr?y
+3akry? — adys.

(54)

The transformation of coordinates X = (b3 +3x—3agy)/3 Y = (9bg —b1b3+2(3b1 —
b3)z + 2(agh — 3agbr — 98)y)/18 and time rescaling t = —7/3 reduce (54) to the
system

X=-X, Y=2V¥+X3 (55)

In the case 2) we have As(z,y) = —Aa (2, y)Asa(z,y), where

Agi(z,y) = (2% + agzy + bray + agy® + bsy® + asbry®) # 0,

AQQ(J?, y) = (CLQ — 2a1a¢ — agboy + QG%bl — a1by + agb1by — byy + agbsy + bsbry —
’)/2)134 - 2(2@2@6 - alag - 2&%[)2 + agbl + albs — CL6b1b8 + b5’)/ - a6b4’y — bgbg’}/ + a672 +
6772)x3y+(3a2a§+3a1a2—3agb2—3aéb1—a2b8+5a1a6b8+a6b2bg—5a%b1b8—2a2a6b7+
40,1 a%b7 + 2(1%()2[)7 — 4(1%[)1 b7 + 3(161)5’7 + b4b8’y — 30,2()3’}/ — 4a6b8b37 — b5b7’7 + a6b4b77 —
3a2bsbry — 3a2y? — 2bgv? — dagbry? — b3y?)2%y? + 2(azad — 2a1a — agbs + 2a3by +
asagbg — 2&1&%()8 — a%bgbg + 2&%()1[)8 + 2&2&%()7 — 2&1&%[)7 - 2&%[)21)7 + QG%b1b7 — agb4'y —
agbabgy + agbsy + absbsy + agbsbry — a2bsbry + adbsbry — ady? — agbsy? — 2a2bry? —
bsbry? —agh?y?)xy3 + (a1ad — 2azag +2adby — alby — azabs +aiadbs +adbabs —aghibs —
20,2@%()7 + a1a§b7 + 2aéb2b7 — agb1b7 — agbg,'y + aéb4’7 + a§b4b87 — a%b5b7’y + agb4b7w —
agy? — 2a2bgy? — b3y? — 2a¢bry? — 2a6bgbry? — a2b2y?)yt, v = az — aghz # 0.

The identity Agg(.r,y) = 0 yields a2 = 2aia6 + agbs — 2&%[)1 + a1by — agb1b7 +
b4"y — a6b3'y — b3b7’)/ + ’YZ, b5 = —a6b4 - a%bg - 3(16’}/ — b77, bs = —a6(3a6 + 2b7)
Taking into account these conditions the polynomial As(x,y) looks as As(z,y) =
Ao (x,y)As1(x,y), where

Asi(z,y) = (—3aoa6 + 3a%b0 — a1by + agb1by + aragbs — a%blbg — agb7 + agbobr +
a1b3b7 — a6b1b3b7 — 3a1'y — bg’}/ + 5a6b17 + b4b3’}/ — a6b§7 + b1b7’7 — b§b7’7 + 2b372)$3 +
(9a0a§—9a260+3a1a6b4—3a%b1b4—3a1a§b3—|—3agb1b3—|—3a0a6b7—3a§b0b7—3a1a6b3b7—|—
3a§b1b3b773(11a6'y+3a6b2'y—3a§b17—3a6b4b3’y+3a%b§7—4a1b77+a6b1b7’y+3agb§b77—
2b4’)/2 + 2a6b3’)’2 + 4b3b7’)’2 - 4’}’3)1'23/ + (gaébo - 90,00% - 3(1/1(1(23[)4 + 3a§b1b4 + 3@1@%[)3 —
3agbibz — 3agadby + 3adbobr + 3aiaZbzby — 3adbibsby — 3ajady — 3a2bay + 9aibiy +
3a2bybzy — 3a3b3y — daragbry + Ta2bibry — 3a2b3bry — 2a1b3y + 2a6b1 b2y + agbsy? +
2a2b3y% — bybry? +2agbsbry? +2b3b2y2 — Tagy® — 5bry? )2y + (3apas — 3agbo +ayaghy —
aéblb4 — alaglb;; + agblb:; + aoa2b7 - aéb0b7 — a1a2b3b7 + a§b1b3b7 + 9(11142’)/ + agbg’y —
11agbiy — adbabsy + agbdy + 8arabry — 9adbibry + adbdbry + 2a1a6b2y — 2a2b1 b2y +
a%b472 — 6a§b;;’y2 + agbsbry? — 6a2b3b7'y2 — 2a6b3b$72 — 7a%73 — Tagbry? — 2b%’y3)y3.

If Asi(z,y) = 0, then by = —ay, by = —2(agbs + ), by = —3as and A4(z,y) =
Asi(x,y)Aq1(x, y), where

Ag1(z,y) = (a} — 2a1a6b1 + a2b? + 2a9y — 2a6boy — 2a1b37y + 2asb1bsy — b1y? +
b2y2)2? — 2(a2ag — 2a1a2by + agb? + 2apasy — 2a2boy — 2a1agbsy + 2a2bi1 b3y — 3a1y? +
2a6b17? + agh3y? + 2b373)zy + (a2ad — 2a1a3by + agh? + 2apady — 2adboy — 2a1akbsy +
2a3b1bzy — 6aiagy? + 5azbiy? + a2b3y? + dagbsy® + 3y1)y?. It is easy to show that
Ay (z,y) #Z 0, and therefore m,{Z = 0} = 5.

In this way we have proved the following theorem.
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Theorem 5.1. For cubic differential systems the algebraic multiplicity of the line
at infinity is not greater than seven. Via an affine transformation of coordinates
and time rescaling each cubic system for which the line at infinity has the algebraic
multiplicity seven can be written in the form of system (53) or (55).

The following two examples show that in the class of cubic systems the maximal
geometric multiplicity of the line at infinity is also equal to seven.

Example 5.1. The cubic system
X =1-4 +ela— 3+ 14€® — 4ae®) X + 26%(1 — 7€) X2
+e(1 — 4e? + 4e*) X3,
Y =aX + X — 4ae®X — €(3 — 142)Y +4€2(1 — 7)) XY
—263(1 — 7e2)Y? — 42 X3 + 1265 X2Y — 125 XY 2 + 4€7Y3

(56)

has six invariant affine straight lines l;, 7 =1,2,...,6:
li-la-ly=1—4e®+€e(a—3+14€® —4ae®) X +2e2(1 — Te?) X2 +€(1 — 4% + 4e*) X3,
li=1—eX+€Y, ls=1—2eX + 227, Ig = —1 + 4€% — 263X + 2€%Y.
If e — 0, then (56) tends to the system (53) and the invariant straight lines [, j =
1,...,6 tend to the infinity.

Example 5.2. The cubic system

X = X (=14 3eX)(1 — 3¢X + 66 X),
Y =2Y + X3 —6¢(1 — )XY — 1263Y? — €2(3 + 66> — 8e*) X3 (57)
+24€*(1 — ) XY?2 + 16653

has seven invariant affine straight lines:

h=X, lo=-1+3X, l3=1-3eX +63X, Iy =1—4eX +4e3X — 463Y,

Is = 1—eX+4 X —4€3Y, lg =1-2eX+23X-263Y, Iy = —1+4+eX+2e3 X +4€3Y.

When € — 0 the system (57) converges to the system (55) and the straight lines
la, 13, ..., 17 tend to the infinity, i.e. for system (55) the line at infinity has the geometric
multiplicity seven.

6. Classification of cubic differential systems with two invariant straight
lines of maximal total multiplicity

Definition 6.1. We shall say that (f1; (25 ...; ik} Hoo), Where p; € N*, 5 =1,2,...,
k,o0 is in the class of cubic systems a sequence of multiplicities of invariant straight
lines if there exists a cubic system with k invariant affine straight lines [y, ..., [ which
have respectively the multiplicities p1; 2] ...; b and the line at infinity has the mul-
tiplicity froo.

Definition 6.2. The sequence of multiplicities (1; f2; --.; b foo) is called mazimal
with respect the component j,j € {1,2, ..., k, 00} if (p1; po;...; 5 + 15 .0 fk; floo) 18 DOE
in the class of cubic systems a sequence of multiplicities of invariant straight lines.
We will denote this sequence by m;(u1; f2;...; ik} o). The sequence of the type
(15 f2; . fks Phoo) 18 called partial maximal. If the sequence (p1; pia; .5 fk; foo) 1S
maximal with respect to all component, then it is called maximal (or total maximal)
and is denoted by m(1; pho; .5 fik; oo )-

According to Sections 3 and 5, in the class of cubic differential systems {(10), (9)}
with an invariant affine straight line we have m(7,1) and m(1,7) (see Theorem 3.6
and 5.1). Note that m(1,7) is realizable by system (55).
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In this section for cubic differential systems {(10), (9)} with an invariant affine
straight line we establish all the partial sequence of the type moo (115 foo)-

Without loss of generality, we can consider that the invariant affine straight line
is described by equation x = 0. This allows us to use the Lemmas 3.1-3.5. For
1 € {2,...,6} we establish u. such as the sequence (i1, fioo) to be maximal with
respect to the component oo.

1. p1 = 6 (Lemma 3.5). Algebraic multiplicity. Let for system (10) the conditions
(9), (13), (21), (29), (40) and (43) are satisfied. Then it looks as

& =agx®, §=by+ b+ bz + bgx® + 3agz’y. (58)
For (58) the invariant straight line = 0 has the algebraic multiplicity at least six. The
condition (9) gives aghy # 0 and the equality E1(X) = a2x5(b; +2b3x +3bsz? +6aszy)
shows us that the multiplicity of the invariant straight line z = 0 is exactly equal to
six, if agby # 0.

Let agbpby # 0. Then for homogeneous system
i =agx®, §=0byZ>+bixZ?+ b3ax’Z + bez> + 3agz?y,

the polynomial E;(X) = a2z5(3bsz? + 6aszy + 2b3xZ + b1 Z?) is not divided by Z.
Therefore, the line at infinity has multiplicity exactly equal to one.

Denote a = by /bg. The affine transformation X = x,Y = (2b3 + 3bgx + 6agy)/(6by)
and the time rescaling 7 = agt reduce (58) to the system

it=2a% §=1+azx+32%,a+#0. (59)
The equality E1(X) = 2°(a + 6zy) shows that x = 0 is a single invariant affine

straight line for (59). The system (59) is Darboux integrable and has the first integral
F(x,y) = (202%y + 5ax + 4)/(20°).

Geometric multiplicity. The following example shows that for system (59) the
algebraic and geometric multiplicities of the invariant straight line x = 0 are equal.

Example 6.1. The perturbed system
i =x(—€? — 2ae® — 2ze + 2?),

§ =14 ax + 322y — e(ey + day + 43y? — 6e2xy® + —4ey3) (60)

has the invariant straight lines: Iy = @, la3 = +e + z + 2e3y, Iy = —2¢ + z + 263y,
lsg = —€? — 2ae® — 2xe + 2. If € — 0 then (60) tend to the system (59) and the
straight lines /;,7 = 2,..,6 tend to the straight line x = 0.

In this way we have proved the following theorem.

Theorem 6.1. Via an affine transformation of coordinates and time rescaling any
cubic differential system {(10),(9)} with an invariant straight line of multiplicity six
can be written in the form (59). This system has a single invariant affine straight
line, is Darbouz integrable and for it we have my(6;1).

2. up =5 (Lemma 3.4). Algebraic multiplicity. In the conditions 2.20): (13),
(21), (29), (40), the system {(10), (9)} looks as

= agx>, 1 = by + bz + bzx? + bga® + brxy, agby # 0. (61)

For (61) A;(y) = 0,7 = 1,4 and As(y) = agbo(br — 3as) (see (11)). If by — 3ag # 0,

then the invariant straight line z = 0 of system (61) has algebraic multiplicity exactly

equal to five.
We consider the homogeneous system

T = agx?’, Y= b0Z3 + bll'ZQ + b3.’L‘22 + b6$3 + b7$2y, agby # 0, (62)



CUBIC DIFFERENTIAL SYSTEMS WITH AN INVARIANT STRAIGHT LINE 441

associated to the system (61). We calculate E;(X) and write it in the form (49).
Thus we have: Ag(z,y) = agbrx” (b — agy + bry). The polynomial Ag(z,y) is identic
zero if by = ag and bg = 0 or if by = 0. If by = ag and bg = 0 then the cubic system
(61) has the degenerate infinity. If by = 0, then: A;(z,y) = —a2bzz” =0 = b3 = 0=
Ag(m,y) = —2a2b12° =0 = by = 0 = Az(z,y) = —3a2box® # 0, jiee = 4. The cubic
system (61) obtains the form

T = aﬁl’g, y = bo + bﬁx?’. (63)
The transformation X = z,Y = (—bgx + agy)/bop, T = agt, reduces (63) to the
following system

t=a3 y=1 (64)

The obtained system is Darboux integrable and has the first integral:

F(z,y) = (22%y + 1)/ (22?).

In conditions 2.21) ((16), (27), (36); (41)) we have the cubic system

i = x(a? + 2a4a7x + 4asagy + dagagx® + daragxy + daty?)/(4asg),
y = (a3 + 2a3a7x + 6aagy + 8a2bzx? + 8agsarasry + 12a4a3y? (65)
+8agaiz’y + 8araZzy® + 8ady®)/(8a2).

For this system the polynomial Ej(X) looks as E1(X) = —a%(asas — 2agbz)*(as +
arx + 2agy)/(4a2). Therefore, if ajag — 2agbs # 0, then the invariant straight line
x = 0 of system (65) has algebraic multiplicity exactly equal to five.

For the line at infinity of (65) we have: Ag(x,y) = Ai(z,y) = 0, Az(z,y) =
—25((asae — 2agbs)?(arx + 2agy))/(4a3) # 0, and consequently this line has the mul-
tiplicity 3, i.e. poo = 3.

Geometric multiplicity. The geometric multiplicity of the line at the infinity of the
system (64) is equal to four. This is confirmed by the following example.

Example 6.2. [10] The system
& = x(x + 3€)(x + 6¢),
g =(1-2e%y)(1 +4e’y)(1 — 8e%y)

has the invariant straight lines: I; = x, ly = x+3¢, I3 = £+6¢, Iy = 2+8€3y+2€, I =
r -8y +4e, lg=1—2€%y, Iy =1+4€e%y, lg=1—8¢e?y. If ¢ = 0, then the system
(66) tend to (64) and 117.__,5 — T, 16,778 — 0.

(66)

Theorem 6.2. In the class of cubic differential systems {(10),(9)} with an invariant
affine straight line of multiplicity five the mazimal multiplicity of the line at infinity
is equal to four, i.e. mo(5;4). Any system of this class has a single invariant affine
straight line, is Darboux integrable and via an affine transformation of coordinates
and time rescaling it can be written in the form (64).

3. p1 =4 (Lemma 3.3). Algebraic multiplicity. In the case 2.9) ((13), (21), (29))
the system {(10), (9)} looks as

i = agx®, 1§ =bo+ b1z + b3x? + bywy + bex> + bra’y + bgxy?, agby #0.  (67)

For (67) Aj(y) = 0, j = m, A4(y) = aﬁbo(b4 + 2b8y) If (b4,b8) # 0, then the
algebraic multiplicity of the straight line x = 0 is exactly equal to four.

Assume (by, bg) # 0 and consider the homogeneous system associated to the system
(67). For this system we have Ag(z,y) = agz®(brx + 2bsy) (bex? + (by — ag)zy + bgy?).
If b; = bg = 0, then A;(z,y) = aez®((bsbs — ahs)xr — 2agbsy) # 0 and jio = 2. If
be = b7 — ag = bg = 0, then Ao(x,y) = 0, Al(z,y) = O, Az(l‘,y) = a63:5((b3b4 -
agb1)z +b3y) £ 0 and po. = 3.
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In condition 2.10) ((13), (22), (30)) the cubic system {(10),(9)} has the form
i = 2%(a3 + agz), ¥ =bo + b1z + b3x? + bez> + 2azxy + brz?y, aszby #0. (68)

For (68): Aj(y) = 0, j = 1,3, As(y) = as(asby + bobr — 3agby + 2a%y) # 0 and
me(z =0) =4.

For the homogeneous system associated to the system (68) we have Ag(x,y) =
agbrz” (bgr — agy + bry). If bgx — agy + bry = 0, then the infinity of system (68)
is degenerate, contrary to (9). If ag = 0, then Ai(w,y) = azbra®(bsz + bry) = 0
= by =0 = As(x,y) = 3a3be2® £ 0 = oo = 3. Let by = 0 and ag # 0. Then
Ai(z,y) = —aer®(agbsz — 3aszbex + 4azagy) 0 = oo = 2.

It is easy to check that in the cases 2.11), 2.15), 2.16), 2.17), 2.18) and 2.19)
the multiplicity of the line at infinity of system {(10),(9)} is equal to one because
AO (ZL’, y) 5—'5 0.

In the case 2.12) ((14), (24), (32)) we have the following system

i = x(ay + azw + agr?® + arxy), ¥ = (a1bo + azbozr + a3y + agboz?

69
+(aras + arbo)zy + arbex® + ajasz’y + ararwy?)/ay (69)

and the polynomials A;(y) =0, j = 1,2,3; A4(y) = 3atbs. If bg = 0, then the infinity
is degenerate. If bg # 0, then A4(y) # 0 and m,(x = 0) = 4.

For homogeneous system associated to the system (69) we have Ag(z,y) =
— bex®((arbs — a?)z? — 2agarry — a?y?). Because bg # 0 the identity Ag(x,y) = 0
gives ag = a7 = 0. Then, Ag(z,y) =0, A1(z,y) =0 and As(z,y) = 2a3bsz® =0 =
az =0 = As(z,y) =0, A3(z,y) =0, As(z,y) = 3a3bgz* Z 0 = o = 5. The cubic
system (69) looks as

& =ayr, §=bo+ayy+bez® a; #0. (70)
The transformations X =z, Y = (bg + a1y)/bs, 7 = a1t reduce (70) to the system
t=x §=y+as (71)

This system has the single invariant affine straight line x = 0, is Darboux integrable
and has the first integral F(z,y) = (2y — 2®)/z. Note that the system (71) was
examined in [10].

In conditions of the case 2.13) ((15), (25), (33)) we have the system

i = x(ay + a3z + agx? + agy + arvy), ¥ = (a2 + ajazr + 2a1a4y + ajasr®
+(agaq + ara7)zy + a3y? + asber® + asasr®y + asarzy?)/aq,

Aj(y) =0, j = 1,2,3 and A4(y) = 2bs(a1 + asy)?. If bg # O then the invariant
straight line z = 0 has the algebraic multiplicity exactly equal to four.

For homogeneous system associated to the system (72) the polynomial Ag(z,y) =
—bea®(—adr?+arber? —2acarzy—ay?) is identic zero if ag = a7y = 0. Then A (x,y) =
—agb2x” # 0 and therefore po, = 2.

In the last case 2.14) ((15), (26), (34)) the cubic system has the form

i = x(a; + azr + agy + agz? + arwy),
y = (—a? + a1by + az(by — a1)z + asboy + ag(by — aq)a? (73)
+(azaq — arar + arby)zy + a2y? + asbex® + asaery + agarxy?)/ay

and for it A;(y) =0, j =1,3, As(y) = be(a1 +asy)(4a; —ba+2asy). Let bg # 0. Then
A4(y) # 0 and consequently the algebraic multiplicity of the invariant straight line
x = 0 is exactly equal to four. For the homogeneous system associated to the system
(73) we have: Ag(z,y) = —bex®(—aZx? + arbex?® — 2asarzy — a?y?) = ag = a7y = 0
= Ai(z,y) = —asbi2” 0 = po, = 2.

(72)
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Geometric multiplicity. The following example shows that the geometric multiplic-
ity of the invariant affine straight line x = 0 of the system (71) is equal to four and
the line at infinity has the multiplicity equal to five.

Example 6.3. [10] The system
& =x—423, §y=1y+ 2> - 322y — 9etzy? — 9e5y3, (74)

possesses eight invariant affine straight lanes: I} = x, ly 3 = x &+ 3€%y, ly = z + €%y,
l5’6 = 2ex + 1, l7,8 = ex + 363y + 1, and (74)—> (71)7 1172’3’4 — x, l5,6,7,8 — oo if
e — 0.

Theorem 6.3. In the class of cubic differential systems {(10),(9)} with a real in-
variant affine straight line of multiplicity four the mazimal multiplicity of the line
at infinity is equal to five, i.e. mo(4;5). Any system of this class has a single in-
variant affine straight line, is Darboux integrable and via an affine transformation of
coordinates and time rescaling it can be written in the form (71).

4. my = 3 (Lemma 3.2). Algebraic multiplicity.
In Case 2.1)((13), (21)) the cubic system {(10), (9)} has the form:

T =agx>, 9§ =by+bix+ by + b3z + byxy + bsy>
+bex® + brax?y + bgxy? + bey?, ag # 0.

For it A;(y) = 0, A2(y) = 0 and As(y) = ag(ba + 2bsy + 3boy?) (b + boy + bsy? +
boy?). If (ba,bs,bg) # 0 then for system (75) the invariant straight line # = 0 has
the algebraic multiplicity equal to three. Under this condition we will establish the
maximal multiplicity of the line at infinity. For homogeneous system associated to (75)
we have Ag(z,y) = —agr®(brax? + 2bgzy + 3boy?) (—bex> + (ag — by )x?y — bgxy® — boy?)
(see (49)). The identity Ag(z,y) = 0 holds if bg = bg = bg = 0, by = ag or by =
bg = bg = 0. If bg = bg = bg = 0, by = ag, then the infinity for cubic system (10) is
degenerate. Let by = bg = by = 0. Relations (9) and equalities by = bg = bg = 0 give
Ay (%,y) = —a6x5((a6b3—b4b6)x2—|—2(a6b4—b5b6)xy+3a6b5y2) =0=b3=by=b;=0
and As(z,y) = —aex®((2a6b1 — babe)x + 3agbay) # 0. Therefore, fin, = 3.
In Case 2.2) ((13), (22)) we have the system

i = x2(a3 + agr),
g = by + bix + b3x? + byzy + bex® + brxy + bgxy?, az # 0.

For (76) Al(y) = Ag(y) =0 and Ag(y) = —a3b0(2a3 — by — 2b8y). If a3b0<‘b4 — 2@3‘ +
|bs|) # 0, i.e. A3(y) # 0, then the invariant straight line = 0 of the system (76) has
the algebraic multiplicity exactly equal to three. For homogeneous system associated
to (76) the polynomial Ag(z,y) = aex®(brx + 2bgy)(bex? + (by — ag)xy + bgy?) is
identically equal to zero if at

(75)

(76)

ag = 0; (77)
by = bg = 0,a¢ # 0; (78)
bg = bg = 0,b7 = ag,a6 # 0 (79)

holds. Let us consider (77). In this case: {(9), Ai(z,y) = azx*(brx + 2bgy)(bsz? +
b7xy + b8y2) = 0} = bg = by = 0, asbg 74— 0= Ag(x,y) = ag(ag + b4)b6$6 =0=0b, =
—ag = As(x,y) = a3z (—bsz + 2a3y) Z 0, pioo = 4.

Assume (78) is realized, then A;(x,y) = —asz°((agbs — azbs — babg)x + 2a6bsy) =
0= by = 0, by = a3b6/a6 = Ag(l‘,y) = —2a%b1$6 =0=b=0= Ag(x,y) =
—3abox® # 0, foo = 4.

Under conditions (79) the system (76) has the degenerate infinity.
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In Case 2.3) ((13), (23)) we have the system

i =a2(az + agr + ary), U= (agby + azbix + arbzx?® + arbgw3+

+arboy + arbsxy + arbrz?y + azbsry?)/ar (80)

and the polynomials: A;(y) = Aa(y) = 0 and Az(y) = —ba(az + ary)(2a3 — agba +
a7br — asby + 2a3(2a7 — bg)y + a7(2a7 — bg)y2)/a7. If

by #0 (81)

and (|2a7 — bg| + |2a2 — agba + arby — agbs|) # 0, then the invariant straight line
x = 0 of the system (80) has the algebraic multiplicity exactly equal to three. For
homogeneous system associated to (80) the polynomial Ag(x,y) look as: Ag(z,y) =
Ao1(z,y) Aoz (z,y), where Ag1(x,y) = 2 (=bsz? + (ag — br)zy + (a7 — bg)y?) and
Aga(x,y) = (arbg — agbr)x? — 2abgwy — arbgy?. If Agi(z,y) = 0, then the infinity
for (80) is degenerate. Let Aoi(z,y) # 0 and Agz(z,y) = 0. Then bg = agbr/ar and
bs = 0. In these conditions A;(z,y) = 2*(asx + ary)((asarbs — asagby + arbzby —
agbsby — azb?)x® + 2agarbyzy + a2byy?). If Aj(z,y) = 0, then by = ab + by = 0 or
by = azby — azbs = 0. In both cases the identity Az(x,y) = 0 contradicts (81).
In Case 2.4) ((14), (24)) the system {(10), (9)} takes the form

i = x(ay + azx + agr® + arxy), ¥ = (a1bo + azbozr + a3y + aibzx?
+(aras + arbo)zy + a1bex® + a1bra’®y + a1azzy?)/a;.

For (82) Ay (y) =0, Ag(y) =0 and Ag(y) = —a (3a6b0—2a1b3—bob7—|—3a1 (a6—b7)y).
The algebraic multiplicity of the straight line x = 0 is equal to three if the following
inequality |ag—br|+|3agbo—2a1bs—bob7| # 0 holds. Taking into account this inequality
we calculate the maximal multiplicity of the line at infinity Z = 0. The identity
Ao(z,y) = 0, where Ag(x,y) = 2°(bex+ (by —ae)y) ((agbr — azbg)x* + 2arasry + a?y?),
yields the following three sets of conditions:

(82)

b@ = O, b7 = Q¢; (83)
ag = a7 = 0; (84)
a7 = 07b7 = 0, Qg 75 0. (85)

In conditions (83) the cubic system has the degenerate infinity. If the equalities
(84) hold, then A;(z,y) = azbyz%(bgx + bry). The identity A;(x,y) = 0 yields az = 0
or by = 0,a3 # 0. If a3 = 0 then As(w,y) = arbra®(bgz + bry) = 0 = by = 0
= Az(z,y) =0, Ay(x,y) = 3a3bgz? £ 0 (see (9)) = oo = 5.

In this case the system {(10), (9)} looks as

T = a1x, y = b() + a1y + b3$2 + b6l‘37 a1b3b6 7é 0. (86)

The affine transformation X = bgz/bs, Y = b3(by + a1y))/bs and time rescaling
7 = ayt reduce the system (86) to the following system

X=X, Y=Y+X?24+X3 (87)

This system is Darboux integrable and has the following first integral
F(X,Y)=(2Y —2X? - X3)/(2X).
If by = 0,a3 # 0 then As(z,y) = 2a3bez% Z 0 = oo = 3.
If conditions (85) hold, then A;(z,y) = —asx®((agbs — 2azbg)x + 2azacy) = 0 =
az = 0,b3 =0 = Asz(z,y) = 3a1a62’(bex — agy) Z 0, fioo = 3.
In Cases 2.5) and 2.6) we have the systems respectively:

i = x(a; + azx + agy + agx? + arwy), Y= (a? + asbix + 2a1a4y + asbzw?

88
+(azaq + arar)zry + ajy? + asber® + agbrz?y + asarzy?)/ag; (88)
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i = x(a; + a3z + agy + agr® + arzy), U= ((b2 — a1)(a1 + azx + arxy)

2 2,2 3 2 2 (89)

+agboy + agbsz? 4+ agaszy + ajy® + asbgx® + asbrry + agarry?®)/ay.
For these systems A;(y) =0, A2(y) = 0 and As(y) look as respectively:
A3(y) = —(Bo + Biy + Bay® + Bay®) /ai,
A3(y) = —(ar + aay) (B + Biy + Byy?®) Jaa,

where By = a%a§a4 — a§a3a7+2a:{’a4a6 —2a1a3aib1 +a%a4a7b1 +af’1b% —a%aibg —a‘;’a4b7,
31 = 2&1@4(3&1@4&6 —a1a3a7—|—a4a7b1 —a2b3 — 2@1&4[)7), BQ = ai(6a1a4a6 —a1a3a7+
(14(171)17(13()375(11(14[)7), Bg = 2&3(&6767)7 B(l) = 74&%@64*5&1@6()27&61)%73a1a4b3+
(141)263 + (l%b7 - (lleb7, Bi = a4(2a1a6 + aﬁbg - a4b3 - 3a1b7), Bé = QCL?L((I(; - b7)

For (88) ((89)) the invariant straight line = 0 has the algebraic multiplicity
exactly equal to three if |By| + |B1| + |Bz2| + |Bs| #0 (|B{| + |Bi| + |Bs| # 0).

For both homogeneous systems associated to the systems (88) and (89) we have
Ao(z,y) = 25(bex+ (br —ae)y) ((agby —arbe )z +2agarry+a2y?). In conditions (9) the
identity Ag(z,y) = 0 holds if a; = by = 0, a6 # 0 or a7 = ag = 0. These relations give
respectively: Aj(z,y) = —2°(adbsz? — 2azaebex? + asbix® + 2azadzy — dasagbery +
3a4a2y?) £ 0, pieo = 2 and A;(z,y) = (azby —asbe)x(bsz +bry) = 0 = bg = azbr/ay,
Ag(m,y) = brad(azx + agy) (20322 — agbzx® + arbra® + dasagwy + 2a3y?)/as # 0,
Moo = 3.

In each of Cases 2.7) and 2.8) the algebraic multiplicity of the line at infinity of
the cubic system {(10), (9)} is equal to one because Ag(z,y) # 0.

Geometric multiplicity. We consider the cubic differential system

X = X(1+e)(1+e+2ze?)(1+4Xe),

Y=Y +X24+ X34+ €((2+6)(Y + X2+ X3) — 2¢(1 4+ )XY
+16€3(1 + €)Y? + 4e(1 + €)(—3 — 3e + 262) X2Y
F1663(3 + 6e + 2€2) X Y2 — 6463 (1 + 26)Y3).

This system has seven invariant straight lines:

h=X, lo=X—-4€Y, lz3= (14+6)X —4€%Y, Iy =1+4®X, 5 =1+e+262X,
le =(1+€)(1+2eX) -8, I7 = (1+¢)(1—2eX)+863(1+ 2¢)Y.

If € — 0 then the system (90) converges to the system (87), the straight lines lo, I3
tend to the straight line [; and the straight lines l4, l5, lg, 7 tend to the line at infinity.

In this way, we have proved the following theorem.

Theorem 6.4. In the class of cubic differential systems {(10),(9)} with a real in-
variant affine straight line of multiplicity three the maximal multiplicity of the line
at infinity is equal to five, i.e. mo(3;5). Any system of this class has a single in-
variant affine straight line, is Darboux integrable and via an affine transformation of
coordinates and time rescaling it can be written in the form (87).

5. 1 = 2 (Lemma 3.1).
In the conditions (13) the cubic system (10) looks as
i = x?(as + agx + azy), § = bo+ bix + bay + b3x? + by
+bsy? + bx® + +bra?y + bgxy? + byy?,
and for which A;(y) = 0, Ax(y) = (bo + by + bsy? + boy®)(azba — azbg + 2aszbsy +
(arbs + 3azbg)y? + 2a7bgy?). Therefore, the invariant straight line 2 = 0 of (91) has
the algebraic multiplicity exactly equal to two if
(|b()| + |b2| + ‘65‘ + |bg|)(‘a3l)2 — (l7b0| + |a3b5\ + |a7b5 + 3a3b9| + |a7bg|) # 0. (92)

For the homogeneous system associated to the system (91) the polynomial Ag(x,y)
has the form Ag(z,y) = 22 Ag1(z, y) A2 (2, y), where Aoy (z,y) = bsx>—asz?y+bra’y—

(90)

(91)
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arzy? + bgry?® + boy®, Ags = agbrx® — arbgx® + 2a6bsx?y + 3agboxy® + arbgry? +
2a7bgy>. If Agi(z,y) = 0, then the cubic system (91) has the degenerate infinity. Let
Ap1(z,y) # 0 and Ape(z,y) = 0. The identity Apz(z,y) = 0 takes place if at least
one of the following three series of conditions

ag = a7 = 0, (93)
ay =by =bg =bg =0, ag # 0, (94)
b6 = a6b7/a7, bg = bg =0 (95)

holds.

In conditions (93) we have {A;(z,y) = azz?Aoi(z,y)(brz? + 2bgzy + 3boy?) =
0, (9)} = by =bg =by =0,a3 7é 0= AQ(I’,y) = a39:2A01(x,y)((a3 + b4)$ + 2[)52/) =
b4 = —as, b5 = 0, a3b6 # 0= Ag(x,y) = a3x4((b2b6 - a3b3)CL’ + 2a§y) 7_é 0, Moo = 4.

In the case (94) we have A;(z,y) = —aex®(agbsz? — azbsx? — bybex® + 2absxy —
2b5b@$y + 3a6b5y2) =0=by; =04 = O,bg = (lgbﬁ/a(; = A2(1‘7y) = —a6x5(2a5b1x —
babgx + 3agbay). Taking into account the inequality (92) the polynomial As(z,y) is
not identic zero and therefore pi, = 3.

Assume equalities (95) are satisfied, then the identity Ai(z,y) = —2*(agx +
ary)((agazbs — agagbr + arbsby — agbyby — azb?)z3 + 2ag(arby — bsbr)x?y + az(arbs +
3agbs — b5b7)$y2 + 2a$b5y3)/a7 = 0 give us the following two series of conditions:

by = bs = 0,b7 = —ae; (96)
bg = CLg,b7/(l77 b4 = b5 =0. (97)
In conditions (96) we have {Az(z,y) = —23((a3a + adazby + adbs + 2azaarbs +

a?b?)z3 + 2apar(arby + 2a6ba) w2y + aZ(arby + Sagbe)ry? + 2a3bey?) faz =0, (9)} =
b1 = b2 = 0,b3 = —a3a6/a7,b0 7é 0= Ag(x,y) = —2b0x3(a6x + a7y)2 7_é 0, Hoo = 4,
and in conditions (97): {Ax(x,y) = —23(asz + ary)((2asazby + arb1by — agbabr)z? +
a7(a7b1 + 3a6b2)xy + 2&%()2?;2)/07 = 0, (9)} = by =by =0,bg # 0 = Ag(l‘,y) =
—boz3(agx + a7y)(3asz + brx + 2a7y) Z 0, fiee = 4.

In conditions (14) from Lemma 3.1 the cubic system (10) has the form

i = x(ay + asx + agx? + arxy), = by + b1z + a1y + bzx® + byxy
+b6$3 —+ b7l’2y + bg$y27 ay 7£ O

For this system: A;(y) = 0 and As(y) = By + B1y + Bay?, where By = —2ajazby —
a7b% + a%bl + a1bgby, B1 = —2&1(0,1@3 + 2a7bg — a1by — bobg), By = —3a%(a7 — bg)
The invariant straight line x = 0 of the system (98) has the multiplicity exactly equal
to two if the following inequality |Bg| 4 |Bi1| + |Ba| # 0 holds.

Next, we consider the homogeneous system associated to the system (98). We have:
Ao(%y) = CU4A01(CU, y)A()2($7y), where A()l(xvy) = b6$2 + (b7 - GG)QUy + (bg - a7)y2,
Ao2(z,y) = (agbr — arbg)x® + 2agbsry + azbgy®. If Agi(z,y) = 0, then for (98) the
infinity is degenerate. The identity Ags(z,y) = 0 holds if at least one of the following
three series of conditions (93), (99), (100):

ar = by = bg = 0,a¢ # 0; (99)
b = agbr/az,bg =0 (100)

(98)

is satisfied.

Let the equalities (93) be verified. Then Ay (x,y) = azx*(byz +2bsy) (bex? + brry +
bsy?) =0 = by = bg = 0,a3 # 0 or a3 = 0. If by = bg = 0,a3 # 0, then {Az(z,y) =
azbe(az+bg)z =0, (9)} = by = —az = Asz(x,y) = —azz*(asbsz—3a1bgr—2a3y) Z 0,
oo = 4.
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If a3 = 0 we have: As(x,y) = a2 (brx + 2bgy)(bex? + bray + bgy?) = 0 = bg =
by = 0= {A3(z,y) = a1babez® = 0, (9)} = by = 0,b # 0 = Ay(,y) = 3absz* # 0,
Hoo = 5. The cubic system {(98), (9)} takes the form

& =aix, §="0by+bix+ayy+bzx® +bex®, aibg # 0. (101)

The affine transformation X = {¢/bg/a12, Y = y + bg/a; and time rescaling 7 = a;t
reduce (101) to the system

it=z, y=y+ar+br®+23a#0, (102)

where a = by /{/a3bs, b = b/ {/a1b?. This system has: a) the single affine invariant
straight line: = 0; b) the integrating factor of the Darboux form: u(z,y) = 1/2?;
and c) the first integral: F(z,y) = (2y — 2> — 2a2? — 2bz Inx)/z.

In conditions (99) we have: A;(z,y) = —agz®((aghs — asbs — babg)x + 2agbsy) = 0
= by = 0, by = a3b6/a6 = AQ(LL‘, y) = —a6x5((2a6b1 —3a1b6)x+3a1a6y) §_é 0, Moo = 3,
and in conditions (100):

Aq(x,y) = 24 (agx + a7y)((asbsbr — (ag + br)(arbs — azby))x? + 2agarbsry

+a2byy?)/ar =0 = by = 0,b3 = azby/a; = As(x,y) = —23(asz + ary)((2asarby—

3aragby + arbiby — a1b2)x? + a7(3aras + arby — arbr)xy + 2a1a2y?) /ar 0, p = 3;
or

by =0,by = —ag = As(x,y) = —23((a3a2 + 2a1a} + aZarby + 2azagarbs + a2b3)x3

+2agar(3arag + arby ) 2%y + a2(6arae + arby)wy® + 2a1a3y3) /ar £ 0, p = 3.

In conditions (15) from Lemma 3.1 the cubic system (10) takes the form

& = x(ay + asx + agy + agr® + arzy), Y= (a1by — af + agbrz
+agboy + agb3x? + asbswy + a3y® + asbex® + asbrz?y + asbsry?)/ay.

For this system: A;(y) = 0, A2(y) = —(a1 + asay)(Bo + Biy + Boy? + Bsy?) /a3,
where By = azfa7 — Sa%a3a4 — 2a1aib1 + 4daiazasby — 2a%a7b2 + aiblbg — a3a4b§ +
a1a7b% + a§a4b4 — ajagboby, By = 261,1(14(@3&4 — 2a1a7 + 2a7by — agby + a1bg + bgbg),
By = ClZ (a3a4+a1a7—|—2a7b2—a4b4—2a1bg—b2b8), B3 = 2&2 (a7—b8). The Inultiplicity
of the invariant straight line x = 0 is exactly equal to two if the following inequality
‘B0| + ‘Bl| + |BQ| + |Bg| # 0 holds.

The homogeneous system associated to the system (103) gives us: Ag(z,y) =
2 Ag1 (2, y) Aoz (2, y), where Ao (z,y) = bez? + (by — ag)zy + (bs — ar)y?, Az(z,y) =
(agby — azbg)x? + 2agbszy + azbsy?, and {Ag(x,y) =0, (9)} = Aga(z,y) =0 = (93),
(99) or (100).

In conditions (93) we have A;(z,y) = x3Ao1(z,y)((agbr — asbs)x?® + 2azbswy +
asbgy?) =0 = by = 0,bs = azbr/as = Az(z,y) = brz3(azz + asy)((a3 + azbs — asbs +
a1b7)x? + dagazry + 2a3y?) /as £ 0, pieo = 3. Note that (9) imposes by # 0.

In each of the cases (99) and (100) we have respectively
Aj(z,y) = —2°((a2bz —azaebs — agbabs +asb3)x? +2ag(aghs — 2a4bg ) xy +3asady?) £ 0;

Al(l',y) = 71’3(0,61’ + a7y)((a6a$b3 — a3a6a7b7 + a$b3b7 - a6a7b4b7 + (14CL6b$ —
azarb?)z® + 2agar(arby — 2a4b7) 2%y + a2(3asae + arby — 2a4b7)xy? + 2a4a3y3) /a2 £ 0,
and, consequently, in both of the cases the multiplicity of the line at infinity is equal
to two.

In the last case (16) from Lemma 3.1 we have the cubic differential system

(103)

i = x(ay + asx + agy + agx? + arvy + agy?),
v = (a1(bs — as4) + agb1z + (aras + asbs — a?)y + asbsx® + asbszy (104)
+agbsy® + agbr® + agbra®y + agbsxy® + agy®)/as
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for which A;(y) = 0 and As(y) = —(a1 + asy + agy?)(Bo + Biy + Bay? + Bsy® +
Byy*) /a2, where By = aja3ar; — azai — 2ajazasag — ajaghy — ajaby + ajasaghy +
2&3@21)5 — 2a1a4a7b5 + 2a1a3agb5 + a4a8b1b5 — a1a8b4b5 — G,3(l4b§ + a1a7b§, Bl =
_2(18(043@421 + 2ai1a4a7 — arazas + agagby + ajagbs — 2aza4bs — 2a1a7bs5 — agbibs +
agbg — ajaqbg + a1b5bg), By = —ag(3aia7 — 3asaqag — 3ajarag — a%bl + 2a4agby —
4aysarbs + 2azagbs — agbybs + a7b§ — aibg + 3aiagbg + a4b5b8), B3 = 2&4&52;(&7 — bg),
By = ai(a7 —bg). Let Az(y) # 0. Then the algebraic multiplicity of the invariant line
x = 0 of the system (104) is exactly equal to two.

For homogeneous system associated to the system (104) the polynomial Ag(x,y)
has the form: Ag(z,y) = 22 Ao1 (2, y) Aoz (z,y), where Ag1 = (agbr —arbe)x* +2(aghs —
agbe)z3y + (3agas — agby + arbg)z?y? + 2aragry® + a2y* # 0 and (9) = Agx =
bex? + (b7 — ag)xy + (bg — a7)y? # 0. Therefore the line at infinity has the multiplicity
equal to one.

Geometric multiplicity.

We show that the invariant straight line (including the line at infinity) of the system
(102) has the same algebraic and geometric multiplicities.

The system

= x(3 + 2ae + bex) (3 + 2ae — bex),
U = €(3+ 2a€)(9 + 6ae — b%e)x?y + €(3x + €y)(9 + 12ae — b%e + 4a’e? (105)
—ab?e?)y? + (3 + 2ae)*(ax + (1 + ae)y + bexy + bx? + 2?)

has the invariant straight lines: Iy = z, Iy = z+e€y, l34 = 3+ 2aetbex, l5-1s = €(3+
2a€)?x? + (1 +ae)(3+2ae) (34 2ae + 2bxe) +ye? (2x +ye) (9+ 12ae — b e +4a’e® — ab?e?),
and (105) — (102), lo — ll, 13,4,5,6 — oo if € = 0.

Thus it has been proved the following theorem.

Theorem 6.5. In the class of cubic differential systems {(10),(9)} with a real in-
variant affine straight line of multiplicity two the mazimal multiplicity of the line at
infinity is equal to five, i.e. ma(2;5). Any system of this class has a single invariant
affine straight line, is Darboux integrable and via an affine transformation of coordi-
nates and time rescaling it can be written in the form (102).
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