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On the data completion problem for Laplace’s equation

Chakir TAJANI and Jaafar ABOUCHABAKA

Abstract. The purpose of this paper is the study and the resolution of the inverse problem

for the Laplace equation, including the case of data completion problem where it is to cover

the missing data on the inaccessible part of the boundary of a domain from measurements on
the accessible part. Furthermore, we present a survey of the inverse problem of reconstructing

the missing data for the Laplace equation. We describe the notion of ill-posed problems;

namely, the results concerning the existence, uniqueness and stability of their solutions. In
addition, we present several areas and fields of applications of this kind of problem. We also

include the different developed methods for solving this problem, discussing their advantages

and inconveniences. Numerical results with the iterative KMF algorithm and the developed
variant are presented.
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1. Introduction

Many problems of engineering and industry can be considered as inverse prob-
lems; which explains the importance of this type of problems [1]. However, there are
generally ill-posed in the Hadamard sense, since the existence or uniqueness or the
continuous dependence on the data of their solutions may not be ensured.

Several definitions can be given to an inverse problem. Among them, we propose
that given in [2]:

In science, an inverse problem is a situation in which we try to determine

the causes of a phenomenon from experimental observations of its effects. For

example, in seismology, the location of origin of an earthquake from measurements

made by several seismic stations distributed over the surface of the earth is an

inverse problem.

In general, when a number of conditions, partially or completely unknown then an
inverse problem must be formulated to determine the unknown from measurements
or data system. Taking into account the quantities searched, there are two types of
inverse problems:
• Problems of reconstruction to find the parameters or unknown data to the system

from overabundant data.
• Problems of identification which consist in finding an unknown property of an

object or environment.
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The modeling of the phenomenon studied is the first step to solve an inverse prob-
lem. This is called direct problem which describes how the model parameters result in
experimentally observable effects. Then, on the basis of the measurements obtained
on the real phenomenon, the aim is to approach as closely as possible the parameters
which make it possible to realize these measurements. This resolution can be done
by numerical simulation or analytically.

A data completion problem is a class of inverse problems which consists to re-
construct the missing data on the inaccessible part of the boundary of the domain,
that cannot be evaluated because of physical difficulties or geometric inaccessibility,
from measured data on the known parts of the boundary. In other words, unlike
the direct problem, in the data completion problem the geometry of the domain is
determined, but the conditions on the boundary are not all known. The goal is to
find the unknown boundary conditions based on the additional information provided
on the boundary of domain.

This kind of problem has a great importance and these applications are not reduced
only to the Laplace equation; but, it also occurs in several types of equations as the
biharmonic equation [3, 4, 5], the Helmholtz equation [6, 7, 8, 9, 10, 11, 12, 13],
the stocks equation [14, 15], heat conduction equation [16, 17, 18, 19] and elasticity
[20, 21], where the applications are very important.

The problem of our interest concern the data completion problem for the Laplace
equation which can be formulated as follows:
Let Ω be an open subset of R2 with regular boundary Γ. We consider the partition
of the boundary as Γ = Γ0 ∪Γ1 such that Γ0 ∩Γ1 = ∅ and mes(Γ1) 6= 0. We consider
the problem where experimental measurements are available on the boundary Γ0 and
the conditions on Γ1 are unknown, such that:

 ∆u = 0 in Ω
u = f on Γ0

∂nu = g on Γ0

(1)

where, u is the potential (or the temperature) at each point of the domain Ω,
∂nu is the normal derivative of u,
and f and g are respectively the known values of the function u and its flow on Γ0.
This Cauchy problem arises in many areas of engineering and can be considered as

challenge in many fields of industry such as geophysics, medical imaging, structural
mechanics, non-destructive testing of structure · · · We refer for example to [22] and
[23]. However, it is known to be severely ill-posed in Hadamard sense; indeed, exper-
imental measurements are not sufficient to correctly determine the model parameters
and a small perturbation of these measures influence the solution, which makes its res-
olution by direct methods very difficult and leads to very unstable solutions. Hence,
the investigation of many researchers to develop regularizing methods and efficient
numerical approaches.

This type of problem has been the subject of several studies for many years and
they still are. This is due to several factors; indeed, several physical problems of
engineering, industry, medicine, ... are modeled in the form of this type of problem
which must be studied theoretically and resolved numerically. The purpose of this
work is to present an overview of the data completion problem with the Laplace
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equation gathering most of the results and research that has been devoted to the
study and resolution of this problem.

This paper is organized as follows: The second section is devoted to some appli-
cation fields in which occurs this type of problem. In the third section, we present
and study its ill-posed nature, existence, uniqueness and stability of its solution. The
forth section is centered on the different methods of resolution, where we explain the
principle of each method, we present the scheme of the existing algorithms and results
concerning their convergence and the developed variants to accelerate convergence; in
addition to the advantages and disadvantages of each method. At the end, we present
some numerical results using the KMF method and its developped variant.

2. Fields of application

The data completion problems are extensively studied and still interest many re-
searchers. Their importance derives from the fact that they arise in several areas of
industry, engineering and many other fields of science. Physical phenomenon involved
and the measurements can be thermal or electrostatic. In the following, we present
the mathematical modeling of the inverse problem for the Laplace equation with some
interesting problems, most frequently encountered. Particularly, Electroencephalog-
raphy, Electrocardiography, Crack detection, Corrosion detection, Identification of
the boundary, Medical imaging...

It should be noted that several configuration examples are used in the performed
studies, especially in the numerical simulations; in particular the disk, the square and
the annular domain.

disc square annular domain

Figure 1. Examples of configuration.

2.1. Electroencephalography (EEG). The Electroencephalography (EEG) is a
technique for functional cerebral imaging to directly measure cerebral electrical ac-
tivity.

In the direct problem in EEG, from the knowledge of the geometry of the head,
and the properties of conduction in the brain tissue, it is possible to calculate the
potentials obtained on the skin, engendered a configuration of a known sources.

Conversely, the EEG inverse problem is to estimate the current source produced by
neuronal activity, given the electrical conductivity of tissue and measures the potential
u in a few points on the surface of the head. In other words, the EEG inverse problem
is to detect epileptic foci or tumors in the brain from measurements on the scalp (see
[24], [25], [26] and [27]).
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A first step is to construct the Cauchy data on the surface of the brain from the
data of the measured potential by the EEG to the surface of the head. A widely
accepted model of the head three concentric layers Ω = Ω0 ∪Ω1 ∪Ω2 representing the
outside inwards: Ω2 for the Scalp, Ω1 for the Skull and Ω0 for the Brain. The three
domains are considered homogeneous and isotropic (scalar constant conductivity).

We denote by Γ0 the interface between Ω0 and Ω1, Γ1 the interface between Ω1

and Ω2, and by Γ2 the outer surface of the Scalp and by S the portion of Γ2, where
we know potential measurements obtained by the EEG.

Figure 2. Representative scheme of the head model.

In this conductive medium (Air insulated), the electric field E and the magnetic
field B satisfy the following equations:

∆× E = ∂B/∂t (Maxwell − Faraday)
∆.E = ρ/ε (Maxwell −Gauss)

∆×B = µ(J + ε(∂E)∂t) (Maxwell −Amper)
∆.B = 0 (Flow Conservation)

(2)

where J , ρ, µ and ε respectively denote the volume density of current, volume density
of charge, magnetic permeability and electrical permittivity.

Taking into account the low frequency signal and low capacitance of the tissues of
the head, which appear as passive conductors, the behavior of electric currents and
magnetic fields can be considered stationary at all times [28]; this explains the use
of quasi-static in studies in the field of EEG. Thus, Maxwell’s equations that govern
the electrical behavior can conclude that the scalar potential satisfies the Laplace
equation in the case of a homogeneous area of constant conductivity and absence of
current sources.

So the problem of determining the potential and the flux on the surface of the
brain Γ0 from the Cauchy data on the scalp surface Γ2 is a data completion problem
for the Laplace equation which can be written as the following form:

−∆u = 0 in Ωi, i = 1, 2
u = f on S ⊂ Γ2

∂nu = g on Γ2

[u] = 0 on Γ1

[∂nu] = 0 on Γ1

(3)

where [u] = u− − u+ with u− denote the inner limit and u+ the outer limit.
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2.2. Electrocardiography. A problem of great interest in electrocardiography is
the computation of the electric potential on a closed surface surrounding the heart,
given the potential part of the body surface and the geometry of the heart and thorax
[29], [30] and [31]. This inverse problem leads to a Cauchy problem for the Laplace
equation in the case of constant conductivity.

A mathematical model of the electric field associated with the bioelectric activity
of the heart is given by Maxwell’s equations. It can be shown from the relative values
of the coefficients that time derivatives in the equation may be neglected in first
approximation. Consequently the electric field E and the current density J satisfy
the equations:

∆× E = 0, ∆.J = 0 outside the region of the heart (4)

The physiological tissue can be considered as a linear medium resistance and therefore
we can take:

J = σE (5)

Since E is irrotational, it admits a scalar potential u. So, if the conductivity σ is
assumed constant, u satisfies:

−∆u = 0 outside the heart (6)

Then, we obtain a Cauchy problem for u in the bounded domain Ω with L the exterior
surface and l the interior surface: −∆u = 0 in Ω

∂nu = 0 on L
u = f on L0 ∈ L

(7)

where : L0 an open part of L.
Note that we have made ∂nu = 0 on L the outer boundary of the body as the

surrounding medium is air that is electrically insulating.

2.3. Detection of fissure. The problem of detection of fissure is an inverse prob-
lem which involves geometric detect and locate the presence of cracks in a material
from measurements on the boundary. This type of problem occurs in several indus-
trial applications under non-destructive testing (imaging and tomography; basements
surveys, monitoring, ...).

Physical phenomena involved and the measurements can be thermal, electrostatic,
acoustic or elastic. We focus here on the physical phenomena governed by the Laplace
equation in dimension 2.

This problem has been the subject of several studies over the last twenty years
where it was particularly interested in the problem of identifiability (Can we identify
an unknown geometry (crack) for temperature measurements? If yes, how many
measures are needed to identify?), stability (Since measurements are taken on board
raised experimentally, it is important to show that perturbation data lead to two
close geometries) in addition to problem identification (different methods to locate
and define the shape of the crack).

The principle of these methods is to impose a condition on the outer edge of the
area concerned (for example by imposing a heat flux Φ in the case of thermal and u
measure the response of the material (temperature in the same case) [32, 97, 34, 35,
36, 37, 38, 39].



16 C. TAJANI AND J. ABOUCHABAKA

Consider a fissure interior modeled by a simple curve Y oriented of class C(1,α), 0 <
α < 1 (for a crack of class C2, you can see [32]) included in a simply connected domain
Ω of R2, with a boundary Γ having the same regularity of Y. Consider a heat flux
density Φ ∈ L2(Γ) not identically zero along Γ and satisfying the condition:∫

Γ

Φds = 0 (8)

The problem consists to:
Given Ω, Y ⊂ Ω and Φ as above, find u solution of the following problem:

−∆u = 0 in Ω/Y
∂u/∂nΓ = Φ on Γ
∂u+
−/∂nY

= 0 on Y0 = Y/{Y0, Y1}
(9)

where Y0 and Y1 are the endpoints of the fissure Y, nΓ is the unit vector normal outside
Γ, nY is one of the two normal vectors of Y.

It is known that this problem has a unique solution when we add the following
normalization condition: ∫

Γ

uds = 0 (10)

The inverse problem associated with the presented direct problem is to determine
the unknown fissure Y ⊂ Ω from overdetermined measurements on the boundary (the
data flow Φ and a measure u on a part K of the boundary, assumed to be available
and of positive measurement.

That is to say: Given Ω, K ⊂ ∂Ω and Φ et uK, find Y ⊂ Ω such that the solution of
the problem verify: u/K = uK.

2.4. Detection of corrosion. The nondestructive evaluation of a boundary corro-
sion continues to be a very interesting topic in engineering and mathematics. Un-
fortunately, in many practical situations, the data on the known boundary is not
complete, and corrosion has occurred on an inaccessible part of the boundary. The
problem is to determine the shape of the corrosive border from the measured data.

Corrosion occurs in many different forms and multiple models may be found in the
literature [40, 41]. We are intersted here to the potential model introduced by Inglese
[42] where the interior domain is governed by the Laplace equation.

We consider a connected bounded domain Ω of R2, representing the specimen to
be tested. We assume that the boundary ∂Ω is at least smooth a piece. Γ0 and Γ1are
two disjointed closed parts of ∂Ω, where Γ0 is the accessible part, however Γ1 is the
part where corrosion has occurred.

Then :

−∆u(x) = 0 in x ∈ Ω (11)

To generate static data, we prescribe a flow given by the Neumann condition:

∂nu(x) = g(x) on x ∈ Γ0 (12)

where ∂nu is the normal derivative of u .
On the corroded part, the condition in the part Γ0 is given by:

∂nu(x) + γ(x)u(x) = 0 on x ∈ Γ1 (13)
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here,γ(x) ≥ 0 represents the corrosion damage. Conventionally, it is interpreted as
energy transfer coefficient known as Robin coefficient [43]. The remaining part of the
boundary is assumed, for simplicity, to be isolated:

∂nu(x) = 0 on x ∈ ∂Ω/Γ0/Γ1 (14)

In the direct problem, γ(x) and g(x) will be given and the aim is to find u(x).
The inverse problem consists in finding γ(x) from the knowledge of u(x) (and of

course g) on the accessible part of the boundary.
We note that the principle of conservation of charge requires:∫

Γ0
g −

∫
Γ1
γu = 0 (15)

This means that the flow of the current density through Γ0 is not necessarily zero. In
fact, we can choose g ≥ 0 to produce a positive solution in Ω, with conditions as the
supports γ and g have a positive Lebesgue measure.

In many applications, Ω is an annular domain where Γ0 is outside the accessible
part, however, Γ1 is the interior part whose corrosion has occurred [44, 45, 46].

So, the problem of corrosion detection resolves into two steps:
The first step is to complete the data on the inaccessible part, which leads to

solving a data completion problem given in the form: ∆u = 0 in Ω
u = f on Γ0

∂nu = g on Γ0

(16)

The second step is to calculate the coefficient of Robin representing corrosion damage
from the condition on Γ0 as the ratio of the two found conditions:

γ(x) = −∂nu(x)

u(x) |Γ1

(17)

3. Study of the data completion problem

3.1. Ill-posed problem. In 1902, J. Hadamard [47] introduced the notion of a well-
posed problem by giving the following definition:

A problem is well posed if it satisfies the following three properties:
• Existence, i.e that the problem has a solution,
• Uniqueness, i.e that the problem has at most one solution;
• Stability, i.e that the solution depends continuously on the data of the problem.

J. Hadamard considered a particular example to illustrate the fact that the Cauchy
problem for elliptic partial differential equations, which is to cover the data on a part
of the boundary, are ill-posed (see section 3.4). He showed by considering a Laplace’s
operator on a square domain that the solution does not depend continuously on the
boundary data. This result was recently generalized to any domain [48].

Mathematically, we can formulate the notion of well-posed in this form:

Definition 3.1. Let X and Y be two normed spaces, A : X → Y be a linear
application. The equation Ax = y is said to be well posed if the following properties
are satisfied:
• For all y ∈ Y there exists x ∈ X such that Ax = y,
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• For all y ∈ Y there exists at most x ∈ X such that Ax = y,
• The solution x depends continuously of y, ie that for every sequence (xn) in X,
limKxn = Kx , we have limxn = x.

These three properties are not always assured for a Cauchy problem for the Laplace
equation, and then the latter is ill-posed. Of course, these concepts must be specified
by the choice of spaces (and topologies) in which data and the solution exist.

3.2. Existence. The existence of the solution of the data completion problem is
not always guaranteed. However, it exists under certain compatibility conditions of
data problem. The challenge is to identify the suitable space with the compatibility
conditions to ensure the existence of the solution.

Let Ω be an open set of R2 with a regular boundary Γ. We consider the partition
of the boundary as Γ = Γ0 ∪ Γ1 such that Γ0 ∩ Γ1 = φ with Γ0 and Γ1 are two parts
of Γ that have positive measures.

We are interested to the problem that is to reconstruct a harmonic function u,
which corresponds to certain prescribed data on Γ0 and belongs to the set H(Ω)
defined as follows:

H(Ω) = {u ∈ (H1(Ω)),∆u = 0 in Ω}.
H(Ω) is a closed subset of H1(Ω), which makes it a Hilbert space when it is equipped
with the scalar product of H1(Ω).
Moreover, H(Ω) is a subspace of H∆(Ω) defined as:

H∆(Ω) = {u ∈ H1(Ω),∆u ∈ L2(Ω)}
This allows to define the trace of the normal derivative belonging to this space as

part of H−
1
2 (Γ) [49].

Thus, the traces (v/Γ, ∂nv/Γ) of H(Ω) cover the space H(Γ) by pairs of compatible
data defined as:

H(Γ) = {Φ = (φ, ψ) ∈ H 1
2 (Γ)×H− 1

2 (Γ),∃v ∈ H(Ω), v/Γ = φ, ∂nv/Γ = ψ}

Lemma 3.1. H(Γ) is a closed subspace of X = H
1
2 (Γ)×H− 1

2 (Γ) and therefore it is

a Hilbert space when equipped with the scalar product of X = H
1
2 (Γ)×H− 1

2 (Γ):

(Φ,Φ
′
) = (φ, φ

′
) 1

2 ,Γ
+ (ψ,ψ

′
)− 1

2 ,Γ

where, Φ = (φ, ψ) and Φ
′

= (φ
′
, ψ
′
) are two elements of H

1
2 (Γ)×H− 1

2 (Γ).

For Γ0 the inaccessible part of the boundary Γ, we introduce the following spaces
[50]:

• H 1
2 (Γ0) space of restrictions on Γ0 the elements of H

1
2 (Γ).

• H
1
2
00(Γ0) subspace of H

1
2 (Γ0) whose elements extended by 0 on Γ belongs to

H
1
2 (Γ).

• H− 1
2 (Γ0) space of restrictions on Γ0 the elements of H−

1
2 (Γ)., which is the dual

space of H
1
2
00(Γ0).

• H(Γ0) is the space of restrictions of the pairs of compatible data on Γ0 defined
by:
H(Γ0) = {Φ = (f, g) ∈ H 1

2 (Γ0)×H− 1
2 (Γ0),∃v ∈ H(Ω), v/Γ0

= f, ∂nv/Γ0
= g}

We note X0 ⊂ H
1
2 (Γ0) × H− 1

2 (Γ0) the set of the compatible Cauchy data (f, g)
for the problem (1) defined as follows:
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Definition 3.2. Let (α, β) ∈ H
1
2 (Γ0) × H−

1
2 (Γ0). The Cauchy data (α, β) are

compatible for the Cauchy problem (1) if it exist a function u ∈ H1(Ω) such that:

∆u = 0 in Ω , u/Γ0
= α , ∂nu/Γ0

= β.

With this notation, an equivalent formulation of the data completion problem (1)
studied can be written as:

Given the compatible data φ = (f, g) ∈ H(Γ0),

Find U = (u, ∂nu) ∈ H(Γ) such that U = φ on Γ0

3.3. Unicity (identifiability). We consider the Cauchy problem for Laplace’s equa-

tion which consists for (f, g) ∈ H 1
2 (Γ0)×H− 1

2 (Γ0) to find u ∈ H1(Ω) such that: ∆u = 0 in Ω
u = f on Γ0

∂nu = g on Γ0

(18)

Based on the foregoing, this problem does not always have a solution. But for
compatible data, it has a solution. However, if the operator of the problem verifies
the property of unique extension, then, this solution is unique.

We will need the three spheres inequality, the proof can be found in [51].

Proposition 3.2 (Three spheres inequality). Let x ∈ Ω and 0 < r0 < r1 < r2

satisfying : B(x, r2) ⊂ Ω,it exists C > 0, s > 0 such that ∀u ∈ H∆(Ω).

‖u‖H1(B(x,r1)) ≤ C ‖∆u‖L2(B(x,r2)) + ‖u‖
s

s+1

H1(B(x,r0)) + ‖u‖
1

s+1

H1(B(x,r1))

We also need the following result, which is proved in [52]:

Proposition 3.3 (Theorem through customs). If E is a topological vector space and
A is a part of E. Any path joining an point of the interior of A to an point outside
of A, necessarily encounter the boundary of A.

Thus, we can cite a Theorem of unique extension as follows:

Theorem 3.4 (unique extension). Let u ∈ H1(Ω) satisfying ∆u = 0 in Ω connected
and such as it exists an open set ω ⊂ Ω, |ω| 6= 0 such that u = 0 in ω. Then u = 0 in
Ω.

To prove the theorem, the connectedness of Ω is used [53].
As we noted earlier, the unique extension property, brings the uniqueness of the so-

lution of the Cauchy problem provided by the following theorem whose demonstration
can be found in [54].

Theorem 3.5 (Uniqueness of Cauchy problem). Let Ω a bounded open set of Rd, Γ0

an open part, nonzero measure and Lipschitz of the boundary of Ω. Let k ∈ R. and
u ∈ H1(Ω) satisfying:  ∆u = 0 in Ω

u = 0 on Γ0

∂nu = 0 on Γ0

(19)

Then u = 0 in Ω.

Thus, we can mention the following lemma, ensuring the uniqueness of the solution
of the Cauchy problem for the Laplace equation.
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Lemma 3.6. There is at most one solution u ∈ H1(Ω) of the Cauchy problem for
Laplace’s equation.

Proof. Let f ∈ H 1
2 (Γ0) and g ∈ H− 1

2 (Γ0) two given functions and let u and v two
solutions of the Cauchy problem (1) corresponding to f and g.
We pose w = u− v. then, we have ∆w = 0 in Ω and ∂nw/Γ0

= 0 and w/Γ0
= 0,

which involves by the preceding theorem that w = 0 in Ω. �

Remark 3.1. • This result is, for example, a consequence of a Theorem shown in
([55] appendix B, p.75).

• The uniqueness of the inverse problem in bioelectric field especially in electroen-
cephalography is shown in [56].

• The uniqueness of the inverse problems has been the subject of several studies
[57, 58, 59, 60], where the theorem of Holmgreen, Carleman estimates are used,
as well as the theorem Kowalewsky.

3.4. Stability. This is the continuous dependence of the solution in relation with the
data problem. For an inverse problem for the Laplace equation a small perturbation
on the data (very low additional noise to the measures) can create a large gap between
the solution obtained by noisy data and the obtained one by undisturbed data [61, 62].
So it is clear that the stability of the inverse problem is the most difficult problem due
to his important implication in the algorithms used to calculate the solution. This
problem has encouraged several authors to develop several regularization schemes to
ensure that the calculation procedures does not diverge and to obtain more relevant
results.

The most well-known example, to illustrate the fact that the inverse problem is ill-
posed is the Cauchy problem for the Laplace equation given by Hadamard [63, 64, 65];
it is to find a solution u of the Laplace equation:

∆u(x, y) = ∂2u(x,y)
∂x2 + ∂2u(x,y)

∂y2 = 0 in R× [0,∞)

which satisfies the following initial conditions:

u(x, 0) = f(x), ∂
∂yu(x, 0) = g(x), x ∈ R

where f and g are two given fonctions.
The unique solution for f(x) = 0 and g(x) = 1

nsin(nx) is given by:

u(x, y) = 1
n2 sin(nx)sinh(ny), x ∈ R, y > 0

Therefore, we have:

supx∈R(|f(x)|+ |g(x)|) = 1
n → 0 , n→∞

But,

supx∈R(|u(x, y)|) = 1
n2 sinh(ny)→∞ , n→∞ for all y > 0.

The data error converges to zero; however, the error u converges to infinity. Then,
the solution does not depends continuously of the data and the problem is ill-posed.

This example shows that the norm of the solution may blow up even if the standard
data converge to zero.

It is very interesting to mention here the work of J. Alessandrini [62] where he
highlights most of the work dedicated to the stability of elliptic Cauchy problems,
since Hadamard.
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3.5. Identification. Among the important questions to ask about the Cauchy prob-
lems for the Laplace equation sight their ill-posed nature that relates to identification
methods to determine their solution.

It is an identification method to determine the solution?

We know that this problem has at most one solution; then, we can try to find the
solution. But, the ill-posed aspect of the cauchy problem for the Laplace equation
and especially the instability makes resolution by the direct methods very delicate
and produce very unstable solutions. Hence, the need to regulate the problem in
order to develop robust numerical methods of resolution.

In the literature, there are two types of methods: Probabilistic methods [56] and
deterministic methods that will make the object of the section (4).

4. Methods for solving the data completion problem

In this part, we will cite most developed methods to solve this kind of problem and
we will present the advantages and disadvantages of each of them.

Most of the methods developed are based on a control approach, ie. the mini-
mization of a functional by taking functions of the unknown part of the boundary as
minimization parameters.

There are also other methods which are distinguished as follows:

4.1. Thikhonov method. Among the most known methods, we find methods that
regulate the Cauchy problem using Tikhonov parametric functions. There is an ex-
tensive literature on this regularization technique [66, 67, 68, 69, 70].

The Tikhonov regularization method is a minimization problem (in the sense of
least squares) which is added a penalty term which depends on a parameter called
regularization parameter.

The data completion problem consists to find an harmonic function u such that:

u|Γ0
= f, ∂nu|Γ0

= g (20)

i.e.: given compatible data Φ0 = (f, g) ∈ X0, the problem is to find:

U = (u, ∂nu) ∈ H(Γ) such that U = Φ0 on Γ0 (21)

where the spaces X0 and H(Γ) are defined in (3.2).
A cost function is defined as follows:

For all v ∈ X, Jc(v) = ‖v − Φ0‖2Γ0
+ c ‖v − Φ‖2Γ (22)

where c is a positive coefficient and Φ is a pair in H(Γ).
And we are addressed in the problem :

Find u ∈ H(Γ) such Jc(u) ≤ Jc(v),∀v ∈ H(Γ) (23)

which is a well-posed problem, its solution depends continuously on the data Φ0 and
the choice of c and Φ, and has a unique solution characterized by:

〈u− Φ0, v〉Γ0
+ c〈u− Φ, v〉Γ = 0, ∀v ∈ H(Γ) (24)

It is shown that the required solution is the only fixed point of a suitable operator,
which naturally gives rise to an iterative process that is shown to be convergent [66].
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There are several methods for the optimal choice of the parameter c, as the L-curve
method and the principle of Mozorov [71]. Among the works Applying this method to
the Cauchy problem, we cite the work of Falk & Monk [68], the work of Cimitiere and
al. [66] where the penalty term covers the distance between two successive iterative
solutions.

Tikhonov methods have the disadvantage of disturbing the operator problem. In
addition, they require a priori information on the solution of the inverse problem.

4.2. Quasireversibility method. Among the most interesting methods, there is
the method of quasi-reversibility, which is a non-iterative method, introduced for the
first time by Lattes and Lions in 1967 [72], which is to replace the inverse problem by
a well-posed problem in the sense of Hadamard introducing a certain parameter, the
convergence of the original problem is assured when this parameter tends to 0. This
method has been adopted by several authors to solve a Cauchy problem, including
Klibanov and Santosa [73] and more recently Bourgeois [74] and others [75, 76, 77].

The Quasi-reversibility method is a method of regularization, its main character-
istic is that, unlike most of regularization methods, it is not based on solving an
optimization problem and is written in a variational form, that can exploited numer-
ically by a Galerkin method.

Several formulations of this method for the Cauchy problem for the Laplace equa-
tion have been developed including the so-called classical formulation and mixed for-
mulation.

This method allows to directly solve the problem and to obtain accurate and ro-
bust results. However, this method has some disadvantages such as the difficulty of
taking into account physical constraints which may be related to the problem and the
particular choice of the introduced parameter that can be difficult to achieve in real
circumstances.

In the following; we will present the various formulations for the Laplace equation.
We first define some spaces that will be useful later.

H∆(Ω) = {u ∈ (H1(Ω))/∆u ∈ L2(Ω)}
H1(∆,Ω,Γ0) = {u ∈ H∆(Ω)/u/Γ0

= 0, ∂nu/Γ0
= 0}

H̃1(∆,Ω,Γ0) = {u ∈ H∆(Ω)/u/Γ0
= f, ∂nu/Γ0

= g}

4.2.1. Classical formulation H1 (in H∆(Ω)). This formulation is slightly different
from those in [72]; this difference is related to the variational formulation.
Thus, the method of Quasi-reversibility is to find an approximation uε of the solution
u of the weak formulation for ε > 0.
Find u ∈ H̃1(∆,Ω,Γ0) such that:∫

Ω

∆u.∆vdx+ ε

∫
Ω

∇u.∇vdx+ ε

∫
Ω

u.vdx = 0,∀v ∈ H1(∆,Ω,Γ0). (25)

And we have the following results of existence and convergence (the demonstrations
can be found in [74]):

Proposition 4.1. Quasi-reversibility problem H1 has a unique solution uε if and
only if H̃1(∆,Ω,Γ0) is not empty.

Theorem 4.2. For (f, g) ∈ H ⊂ H 1
2 (Γ0)×H(− 1

2 )(Γ0), The solution uε of the Quasi-
reversibility problem H1 converge to u in H∆(Ω) when ε tends to 0.
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The major drawback of this formulation is that any finite element formulation of
uε must be calculated in a finite dimensional space of H∆(Ω) and then, one has to
use the C1 finite element.
However there is another formulation (mixed formulation), for which the use of usual
finite elements class C0 is possible, that we present in the following section.

4.2.2. Mixte Formulation. The mixed formulation is proposed in the sense that the
first Equation of order 4 of the classic formulation containing a function u in a type
space H∆(Ω) is replaced by a system of two equations of second order with u and λ
both in type spaces H1(Ω).
However, this transformation requires the introduction of a second regularization
parameter δ, in addition to classical parameter ε.
The spaces are defined:

H0 = {v ∈ H1(Ω)/v/Γ0
= 0}

H̃0 = {v ∈ H1(Ω)/v/Γ0
= f}

H1 = {v ∈ H1(Ω)/v/Γ1
= 0}

We are interested in problem:
For ε > 0 and δ > 0, find (u, λ) ∈ H̃0 ×H1 such that:

ε

∫
Ω

∇u.∇vdx+ ε

∫
Ω

u.vdx+

∫
Ω

∇v.∇λdx = 0,∀v ∈ H0. (26)

∫
Ω

∇u.∇µdx− δ
∫

Ω

∇λ.∇µdx− (1 + δ)

∫
Ω

λ.µdx =

∫
Γ0

g.µdx,∀µ ∈ H1 (27)

In [64], the integral on Γ0 is defined in the sense of duality between H−
1
2 (Γ0) and

H
1
2
00(Γ0).

We can find a more general mixed formulation in [37].
However, we include in this section some results of existence and convergence of this
formulation where one will find these demonstrations in [74].

Theorem 4.3. For (f, g) ∈ H 1
2 (Γ0) × H− 1

2 (Γ0) , the problem (mixed formulation)

admit an unique (uα, λα) in H̃0 ×H1 with certain estimations.

Theorem 4.4. For (f, g) ∈ H 1
2 (Γ0) × H− 1

2 (Γ0), for which there existe u ∈ H1(Ω)
satisfying the Cauchy problem, and if δ is a function of ε as: limε→0

ε
δ(ε) = 0 then,

the solution (uα(ε), λα(ε)) of the problem (mixed formulation) converges to (u, 0) in
H1(Ω)×H1(Ω) where ε→ 0.

It is interesting to also mention the result showing the relationship between mixed
formulation and classical formulation.

Proposition 4.5. For (f, g) ∈ H ⊂ H 1
2 (Γ0)×H− 1

2 (Γ0), and for a fixed , the solution
(uα, λα) of the problem (mixed formulation) converge to (uε,−∆uε) in H1(Ω)×L2(Ω)
when δ → 0, where uε is the solution of the classical formulation.

The advantage of this formulation is that it ensures the existence of the solution
and the convergence of the solution to the exact solution of the Cauchy problem and
even if we have the noisy data (slightly disturbed), which is not always the case for
classical formulation.
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It is interesting to note that there are other formulations of the Quasi-reversibility
method, including the formulation in H2(Ω), which allows a more regular solution
from data of the Cauchy problem and the more regular part of the boundary Γ0 with
a single regularization parameter to fix. However, it requires adapted finite element
to the space H2(Ω).

Remark 4.1. Conditional Stability results for the Cauchy problem for giving an
estimate of the speed of convergence of the Quasi-reversible method in the case of
C1,1 bounbary area and lipchitzienn can be found in the work [78, 79].

4.3. Iterative Methods. Another class of methods includes the iterative methods
that have a regulating character. These methods have been widely applied to inverse
problems. Among them, we cite the one proposed by Kozlov et al. [80] whose regu-
larization parameters depend on the number of iterations and the initial choice of the
iterative scheme. This method consists in alternatively solve a sequence of well-posed
problems with mixed boundary conditions, until some stopping criterion defined in
advance is satisfied. We also include in this group of methods, the iterative method of
Mann developed by Engl and Leitao [81] and the method of Backus-Gilbert applied
to a formulation in a moment of problem such as the work of Hon and Wei [82].

4.3.1. Advantages. The iterative methods have several advantages, which encourages
many researchers to invest to use their performance. Among the advantages of such
methods, we mention:
• Easy to implement computations schemes to get a sequence as direct numerical

solutions of well posed problems.
• The similarity of the schemes for the problems with linear and nonlinear opera-

tors.
• The high accuracy and stability of the solution.
• It allows physical restraint to be easily taken into account directly in the scheme

of the iterative algorithm.

4.3.2. Disadvantages. The possible disadvantage of iterative algorithms is the large
number of iterations required to achieve convergence. So; we easily used relaxation
algorithms to improve the speed of convergence.

4.4. The KMF method and its variants. This method called here the KMF
standard is called also the method (or solver) Dirichlet-to-Neumann [83], where sev-
eral questions, remarks and discussions can be addressed on the convergence of this
algorithm. In particular; the choice of the initial data and the stopping criterion, the
regularity of the data of the problem needed to have convergence, the most suitable
numerical methods to use; in addition to the choice of the relaxation methods to
accelerate convergence and the choice of the relaxation parameters for faster conver-
gence.

4.4.1. Principle of the method. This is to determine the traces u/Γ1
and ∂nu/Γ1

on
part Γ1. We note respectively f∗ and g∗, thus amounts to determining u solution of
the following problem:  −∆u = 0 in Ω

u = f, ∂nu = g on Γ0

u = f∗, ∂nu = g∗ on Γ1

(28)
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This problem can be divided into two well-posed sub-problems, one with a Dirich-
let condition on Γ0 and Neumann condition on Γ1 and the other with a Neumann
condition on Γ1 and Dirichlet condition on Γ0 defined as follows:

(a)

 −∆ũ = 0 in Ω
ũ = f on Γ0

∂nũ = g∗ on Γ1

and (b)

 −∆ū = 0 in Ω
∂nū = g on Γ0

ū = f∗ on Γ1

(29)

The main idea of the KMF method consists to:
To solve the Cauchy problem (1), it is necessary to determine u which verifies the
problem (28), which is ensured when ũ and ū coincide. From an initial estimate
of solution u = f∗ on Γ1, then the method is to alternatively solve two well- posed
problems type (a) and (b) where each of these problems allows a condition on the part
Γ1 that will be introduced in the other problem to find the other condition. Thus,
a sequence of well posed problems with mixed boundary conditions is constructed
using an alternation of the Dirichlet and Neumann data, on the part of the boundary
containing the data, and the iterative process is stopped when a certain criterion stop
predefined in advance is satisfied.

4.4.2. Scheme of the KMF Algorithm. The KMF iterative algorithm originally de-
veloped by Kozlov and al. is to replace the Cauchy problem by a series of well-posed
mixed problems. It allows to approach the Dirichlet and Neumann conditions on
the inaccessible part Γ1 of the boundary, alternately using the given Dirichlet and
Neumann data on the boundary portion containing the data.

The KMF algorithm consists of the following steps:
Step 1: Specify an initial guess u0 on Γ1 and solve:

−∆u(0) = 0 in Ω
u(0) = u0 on Γ1

∂nu
(0) = g on Γ0

(30)

to obtain v0 = ∂nu
0
|Γ1

Step 2: For n ≥ 0 , solving alternatively the following two mixed well-posed bound-
ary value problem until a prescribed stopping is satisfied:

−∆u(2n+1) = 0 in Ω
∂nu

(2n+1) = vn on Γ1

u(2n+1) = f on Γ0

and


−∆u(2n+2) = 0 in Ω
∂nu

(2n+2) = g on Γ0

u(2n+2) = un+1 on Γ1

(31)

to obtain un+1 = u
(2n+1)
/Γ1

to obtain vn+1 = ∂nu
(2n+2)
/Γ1

In what follows, we present the theorem of the convergence of the algorithm pro-
posed in the theoretical study by [80], in addition to other results given by [84].

4.4.3. Convergence result. In this section, we recall the convergence results proposed
in the work of Kozlov and al. in the case of a connected open domain.

Theorem 4.6 (Convergence). For a compatible data, the sequence (uk)k converge in

H1(Ω) to the solution of the Cauchy problem (1) for any initial choice u0 ∈ H
1
2 (Γ1).

Let us also recall the convergence result given by Baumeister and al. where the
demonstration can be found in [84].
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Theorem 4.7. • If the Cauchy problem has a unique solution u ∈ H1(Ω) then
the sequence (un)n≥0 defined in the algorithm converges to u/Γ1

for the norm of

H
1
2 (Γ1).

• If the sequence (un)n≥0 defined in the algorithm converges in H
1
2 (Γ1) then it

converges to u/Γ1
where u ∈ H1(Ω) is the unique solution of the Cauchy problem.

4.4.4. Regularizing character of the method. We consider the problem defined in (1),

f and g represent the exact data set on Γ0, f̃ and g̃ perturbations of f and g. We
denote by U the exact solution of the Cauchy problem corresponding to f and g and
we consider for a given u0, the family of operators Rk(., ., u0) : H

1
2 (Γ0)×H− 1

2 (Γ0)→
H1(Ω) which associates with (f, g) the solution u(k) at iteration k of the iterative
algorithm (k = 0, 1, · · · · ··).

Our goal in this section is to examine the nature of the Regularizing algorithm as
in [80].

Definition 4.1 (regularizing family). The family of operators Rk(., ., u0) : H
1
2 (Γ0)×

H−
1
2 (Γ0)→ H1(Ω) for (k = 0, 1, · · · · ··) is called regularizing for the Cauchy problem

(1) of exact solution U if there is a positive real δ0 and functions k(δ) and ε(δ) defined
in (0, δ0) as ε(δ)→ 0 and inequality∥∥∥f − f̃∥∥∥

H
1
2 (Γ0)

+ ‖g − g̃‖
H−

1
2 (Γ0)

≤ δ

involves the following estimate:∥∥∥Rk(δ)(f̃ , g̃, u0)− U
∥∥∥
H1(Ω)

≤ ε(δ)

Here u0 acts as parameter for the family of operators (Rk)k.
The sequence of operators (Rk)k of the algorithm is regularizing for the Cauchy prob-
lem and we have the following estimate:∥∥∥Rk(f̃ , g̃, u0)− U

∥∥∥
H1(Ω)

≤ ρkδ +
∥∥rk(u0 − U/Γ1

)
∥∥
H1(Ω)

where rk(u0−U/Γ1
) = Rk(0, 0, u0−U/Γ1

) and ρk is the norm of the operator Rk(., ., 0)
whose estimate below is given in [80].

ρk ≤ ck
with c is a constant that depends on the geometry and the elliptic operator of the
Cauchy problem. So finally we have:∥∥∥Rk(f̃ , g̃, u0)− U

∥∥∥
H1(Ω)

≤ ckδ +
∥∥rk(u0 − U/Γ1

)
∥∥
H1(Ω)

and that k(δ) is defined as the smallest iteration such that:

ck(δ) +
∥∥rk(u0 − U/Γ1

)
∥∥
H1(Ω)

≤ ε(δ)
This estimation shows the delicacy of the choice of stopping criterion of the algorithm.
It’s about finding the optimal iteration k0 that depends on δ and u0 and for which
this estimation is satisfied.

Remark 4.2. We can note that:
• The KMF described algorithm is initialized by a type of condition u0 ∈ H

1
2 (Γ0),

however, we can take the form of a condition v0 ∈ H−
1
2 (Γ0) by modifying in

the second step of the algorithm the two mixed problems in such a manner they
were resolved.
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• The algorithm does not converge if the two mixed problems are replaced by two
Dirichlet or Neumann problems.

4.4.5. Bibliographic synthesis. Given the many advantages of the KMF method, this
method has been the basis of several studies in recent years and which covered several
theoretical and numerical aspects. In 1991, Kozlov and al. [80] proposed this method
and they studied only theoretically without presenting any numerical experiment.
This method was taken and tested by other researchers and in several applications,
especially in the case where the problem is generated by the Laplace equation. Princi-
pally, we cite the work of Lesnic and al. [85, 86] where the numerical implementation
of the iterative algorithm is made by the boundary element method, Jourhmane and
al. [87, 88, 89], Leitao and al. [90, 81], Weikel and al. [91], Nachaoui [92] and more
recently Azaiez and al. [83]. These work has treated the iterative method KMF for
the Laplace equation, numerically and theoretically. The applications presented have
been all implemented in 2D with analytical tests on homogeneous areas. However, we
can find applications in the nonlinear case with numerical simulations in the case of a
square [93], applications in the case of linear elasticity [94] and even for the Helmholtz
equation in the case where k is imaginary number that ensures the convergence of the
method requires that the operator is defined positive [95].

This algorithm is used in practical applications especially as a first step to complete
the missing conditions in a pipe to detect eventual corrosion [96]. In another context,
this algorithm is implemented in 3D on a homogeneous piecewise domain (spherical
geometry) from a realistic problem of Electroencephalography (EEG) [63].

Given the importance of this method and the interesting results obtained, works
are devoted to the comparison betwen results obtained with this method and those
obtained by the best known methods, studying the link between these different meth-
ods [6] and also to study the possible relationship between the KMF algorithm and
existing algorithms to solve this problem [97].

For the numerical implementation of the iterative algorithm KMF, some authors
have chosen the finite element method [83, 87, 90, 98, 99], and other the boundary
element method [85, 88, 89], which uses only the conditions on the border which
reduces the dimension by one, in addition to the mesh that will be simpler since we
discretize only the boundary, unlike the first method where one must discretize the
entire domain.

All these studies show the effectiveness of the method and his regularizing character
for slightly perturbed data, but point to a slow numerical convergence especially for
an initial choice relatively far from the exact solution.

On the other hand, note that the results of Lesnic and al. in [85] show that the flow
∂u
∂n is more difficult to calculate with good precision as the potential u; in additon,
where the surfaces of the crown are not regular, the results are less good.

To accelerate convergence, some authors have sought to relaxed the algorithm to
accelerate the convergence. Thus, Jourhmane et al. [87, 89] have relaxed the calcula-
tion of flux at each iteration, and Jourhmane et al. [88] have relaxed calculating the
Dirichlet condition and presented a relaxation scheme of the two conditions Dirichlet
and Neumann, and a comparison between these different schemes. Furthermore, a
strategy for choosing the optimal relaxation parameter is also presented in [87, 88]
which will be presented in the following section.
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4.4.6. Relaxation methods for KMF algorithm. The different work already cited and
numerical results show that this algorithm is effective, it provides satisfactory and
stable results against weak perturbation. However; its only disadvantage is the high
number of iterations required convergence. To accelerate the convergence of the algo-
rithm, variants have been developed called relaxed methods which consists in intro-
ducing a relaxation parameter in the KMF algorithm.

The first relaxation method was proposed by Jourhmane et al. [89] since 1999 and
has been the basis of several studies and especially the convergence of the proposed
method in [87], in addition to a study on the choice of the optimal relaxation parame-
ter; Then, in 2004 Jourhmane et al. [88] proposed two other relaxation schemes they
have studied and compared theoretically and numerically.
• The first relaxation algorithm has the same scheme as the KMF standard algo-

rithm, but the calculation of the Neumann condition is relaxed by:

vn = θ(n)∂nu
(2n)
/Γ1

+ (1− θ(n))vn−1 , n ≥ 1 (32)

where θ(n) , n ≥ 1 is a positive relaxation factor. Note that if ∀n ≥ 1 we have
θ(n) = 1, then in this case the considered algorithm is reduced to the standard
KMF algorithm.

• The second relaxation algorithm has the same scheme as the standard KMF
algorithm, but in this case the calculation of the Dirichlet boundary condition is
relaxed by:

un = δ(n)u
(2n−1)
/Γ1

+ (1− δ(n))un−1 , n ≥ 1 (33)

where δ(n) , n ≥ 1 is a positive relaxation factor.
• In this third relaxation algorithm, we relaxes both conditions vn and un in stan-

dard KMF algorithm by replacing them:

un = β(n)u
(2n−1)
/Γ1

+ (1− β(n))un−1 , n ≥ 1

vn = α(n)∂nu
(2n)
/Γ1

+ (1− α(n))vn−1 , n ≥ 1
(34)

where β(n) and α(n) for n ≥ 1 are two positive relaxation factors.

Remark 4.3. • If ∀n ≥ 1, α(n) = 1; in this case, the third method of relaxation
is reduced to the second method.

• If ∀n ≥ 1, β(n) = 1; in this case the third method of relaxation is reduced to the
first method.

• If ∀n ≥ 1, α(n) = 1 and β(n) = 1, the standard iterative method is obtained.
• Some results studies ony been made concerning the choice of the relaxation pa-

rameters and the convergence of the proposed algorithm were developed by the
same authors.

4.4.7. Variant of the KMF Algorithm. Following numerical simulations carried out
to solve the data completion problem for Laplace’s equation, we observed that the
measurement of the inaccessible part influences the results. Thus, the smaller the
measurement, the better the results [?]. Hence, The main idea of the proposed variant
of the KMF algorithm is based in completing the missing data in alternative way
to the two sub-parts of the inaccessible boundary. Then; the inaccessible part is
subdivided in two parts, and the KMF standard algorithm is used to complete the
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data in the first part, then to complete the data in the second part in an alternative
way [98, 99, 100, 101].

For this, we consider Γ1 = Γ1,1 ∪ Γ1,2 such that Γ1,1 ∩ Γ1,2 = ∅ and mes(Γ1,1) =
mes(Γ1,2).

The algorithm consists of the following steps:
Step 1: Specify an initial guess u0 on Γ1 and solve:

−∆u(0) = 0 in Ω
u(0) = u0 on Γ1,1 ∪ Γ1,2

∂nu
(0) = g on Γ0

(35)

to obtain v1,0 = ∂nu
(0)
/Γ1,1

and v2,0 = ∂nu
(0)
/Γ1,2

Step 2: For n ≥ 0 , solve the two well-posed problems:
−∆u(2n−1) = 0 in Ω

∂nu
(2n−1) = v1,n−1 on Γ1,1

∂nu
(2n−1) = v2,n−1 on Γ1,2

u(2n−1) = f on Γ0

and


−∆u(2n−1) = 0 in Ω
u(2n−1) = u1,n on Γ1,1

∂nu
(2n−1) = v2,n−1 on Γ1,2

u(2n−1) = f on Γ0

(36)

to obtain u1,n = u
(2n−1)
/Γ1,1

to obtain u2,n = u
(2n−1)
/Γ1,2

Step 3: For n ≥ 0 , solve the two well-posed problems:
−∆u(2n) = 0 in Ω
u(2n) = u1,n on Γ1,1

u(2n) = u2,n on Γ1,2

∂nu
(2n) = f on Γ0

and


−∆u(2n) = 0 in Ω
∂nu

(2n) = v1,n on Γ1,1

u(2n) = u2,n on Γ1,2

∂nu
(2n) = g on Γ0

(37)

to obtain v1,n = ∂nu
(2n)
/Γ1,1

to obtain v2,n = ∂nu
(2n)
/Γ1,2

Step 4: Repeat the step 3 and 4 until a prescribed stopping criterion is satisfed.

Remark 4.4. It should be noted that:
• The KMF developed algorithm can be seen as two parallel problems of the KMF

standard algorithm. These two problems are initialized with the same initial
data; each problem allows to obtain approximation on each subpart Γ1,i where
i = 1, 2 (for the approximation on Γ1,1 the two first well-posed problems in (36)
and (37), for the approximation on Γ1,2 the two second well-posed problems in
(36) and (37).

• Each solved problem allows an approximation in one of the inaccessible sub-parts
that can be introduced in the other well-posed problems.

4.5. Other methods. The data completion problem is of great importance and
its resolution remains a chalenge to address several problems arising from different
scientific fields. Hence, the investigation of several researchers to develop different
methods to remedy its mal-posed aspect. Thus, in addition to already mentioned
methods, other interesting methods have been developed to solve this famous inverse
problem and even compared them.
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• In [102] the author presents a new method called inverse method of order one,
which is an evolution of the data completion technique developed in [66], later
called method of order zero. It significantly improves the convergence and the re-
construction of solutions; in particular, the normal derivative when the boundary
of the domain provides angular points.

• The method presented by Ben Belgacem and al. [103, 104] is to solve a prob-
lem of Steklov-Poincaré after formulating the problem and demonstrate that its
resolution amounts to finding the unique traces defined on the unknown part
of the boundary to complete. Indeed; the solution u of the Cauchy problem is
duplicated in a couple of functions (v, w) where both functions v and w satisfy
the Laplace equation in Ω; they differ in the state they are subject on Γ0: v has
the Dirichlet condition and w has the Neumann condition. And to ensure that
u = v = w, the traces and the normal derivative on Γi of functions v and w must
coincide, i.e. (v, ∂nv)/Γi

= (ω, ∂nω)/Γi
.

Moreover, in [104, 105] the Cauchy problem has been studied theoretically and
numerically. A non-standard variational approach was presented, it transforms
the Cauchy problem in a pseudo-differential variational equation type Steklov-
Poincaré.
This equation is placed on the part of the boundary where the values of potential
and flux are unknown. To resolve this Steklov-Poincaré problem, the authors
considered the least square method, they demonstrated that for incompatible
data, the Steklov-Poincaré problem that has no solution generally has at least
one solution pseudo consistent which is a minimizing sequence.
They also demonstrated that the cost functional, of least square corresponding to
Steklov Poincaré problem differs from an additive constant of the functional Kohn
Vogelius written for this problem. Then in [105], they have solved numerically
the variational problem of Steklov-Poincaré by applying Tikhonov regularization
scheme using the finite element method.

• Work has been done for the Cauchy problem by Andrieux and al. [97] where
a cost-Kohn Vogelius functional was introduced. They also demonstrated that
the proposed algorithm by Kozlov and al. can be interpreted as a minimization
method of alternating directions on their cost functional.

5. Numerical Examples

In this part, we will present some numerical results obtained by solving the data
completion problem by the KMF iterative method and its variant deveoped and pre-
sented in 4.4.7., by focusing on the choice of initial data, the calculated errors and
the choice of stopping criteria in this case.

Thus, we consider a typical benchmark test example in a non-smooth geometry,
such as a square Ω = (0, L) × (0, L) where L = 1, namely, the analytical harmonic
function to be retrieved is given by:

uex(x) = cos(x)cosh(y) + sin(x)sinh(y). (38)

where;
Γ0 = {0} × (0, L) as underspecified boundary, Γ1 = (0, L) × {0}, Γ2 = {L} × (0, L)
and Γ3 = (0, L)× {L} as overspecified boundary.
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The known data is given by: u/Γ1
= cos(x)

u/Γ2
= cos(L)cosh(y) + sin(L)sinh(y),

∂nu/Γ2
= −sin(L)cosh(y) + cos(L)sinh(y)

∂nu/Γ3
= cos(x)sinh(L) + sin(x)cosh(L)

and the unknown data on the underspecified boundary Γ0 is given by:

u/Γ0
= cosh(y) and ∂nu/Γ0

= −sinh(y) (39)

The following stoping criterion was addopted:

E = ‖un+1 − un‖ ≤ 10−5 (40)

The convergence of the algorithm may be investigated by evaluating at every iter-
ation the error:

eu = ‖un − uex‖0,Γ1
and ev = ‖∂nun − ∂nuex‖0,Γ1 (41)

where un is the approximation obtained for the function on the boundary Γ1 after
n iterations and uex is the exact solution of the problem (1). However, in practical
applications the error eu cannot be evaluated since the analytical solution is not
known and therefore the error E has to be used.

For the step 1 of the algorithm, as an initial guess u0 ∈ H1/2(Γ0), we have chosen:

u0(y) = 1 + y(−L+ sinh(L)) + y2/2, y ∈ [0, 1] (42)

u iter 0 u iter 20 u exact

Figure 3. The reconstruction function u with the new algorithm (u iter
final) in comparison with (u exact) and u obtained with the initian guess
(u iter 0) .

The figure 4 present the error eu and ev obtained with the KMF standard algorithm
and with the developed KMF algorithm according to the number of iterations.

6. Conclusion

The purpose of this article is to make a general synthesis of an important class of
inverse problem where we present the set of results and work dedicated to the data
completion problem for Laplaces’s equation. This problem arises in various fields
and its importance can be seen by the number of theoretical and numerical studies
carried out and from the large number of methods developed to solve it. Hence; areas
of applications of this type of problems are presented; in addition, to a review of
interesting results regarding the three aspects of his ill-posed nature in the sense of
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Figure 4. The numerical results obtained for eu and ev.

Hadamard; namely, existence, unicity and stability. In addition, importance is given
to the developed regularizing methods and its variants to solve this inverse problem.
To make their methods robust and faster, researchers continue to develop them and
to propose new procedures to better approach the solution.

References

[1] S.I. Kabanikhin, Definitions and examples of inverse and ill-posed problems, J. Inv. Ill-Posed

Problems 16 (2008), 317-357.

[2] http://en.wikipedia.org/

[3] D. Lesnic, L. Elliott, D.B. Ingham; An alternating boundary element method for solving Cauchy

problems for the biharmonic equation, Inverse probl. eng. 5 (1997), 145–168.

[4] D. Lesnic, L. Elliott, D.B. Ingham, A. Zeb, A numerical method for an inverse biharmonic
problem, Inverse probl. eng. 7 (1999), 409–431.

[5] C. Tajani, H. Kajtih, A. Daanoun, Iterative method to solve a data completion problem for bi-

harmonic equation for rectangular domain, Annals of West Univ. of Tim. - Math. and Comput.
Sci. 1 (2017), 129-147.

[6] L. Marin, L. Elliott, P.J. Heggs, D.B. Ingham, D. Lesnic, X. Wen, Comparison of regularization

methods for solving the Cauchy problem associated with the Helmholtz equation, Int. J. Numer.
Meth. Engng 60 (2004), 1933-1947.

[7] C. Tajani, J. Abouchabaka, O. Abdoun, KMF Algorithm for solving the Cauchy problem for
Helmholtz equation, Appl. Math. Sci. 6 (2012), no. 89-92, 4577–4587.

[8] H.H. Qin, T. Wei, Quasi-reversibility and truncation methods to solve a Cauchy problem of the

modifed Helmholtz equation, Math. Comput. Sim. 80 (2009), 352–366.
[9] H.H. Qin, D.W. Wen, Tikhonov type regularization method for the Cauchy problem of the

modified Helmholtz equation, Appl. Math. Comput 203 (2009), 617–628.

[10] L. Marin, L. Elliott, P.J. Heggs, D.B. Ingham, D. Lesnic, X. Wen, Conjugate gradient-boundary
element solution to the Cauchy problem for Helmholtz-type equations,Comput. Mech. 31 (2003),

367–377.

[11] L. Marin, An alternating iterative MFS algorithm for the Cauchy problem for the modified
Helmholtz equation, Comput. Mech. 45 (2010), 665–677.

[12] L. Marin, L. Elliott, P.J. Heggs, D.B. Ingham, D. Lesnic, X. Wen, An alternating iterative

algorithm for the Cauchy problem associated to the Helmholtz equation, Comput. Meth. Appl.
Mech. Eng. 192 (2003), 709–722.

[13] R. Shi, T. Wei, H.H. Qin, A fourth-order modified method for the Cauchy problem of the
modified Helmholtz equation, Inverse Problem 2 (2009), 326–340.

[14] A. Ben Abda, I. Ben Saad, M. Hassine, Data completion for the Stokes system, C. R. Mecanique

337 (2009), 703-708.
[15] A. Ben Abda, I. Ben Saad, M. Hassine, Recovering boundary data: The Cauchy Stokes system,

Appl. Math. Mod. 37 (2013), no. 1-2, 1–12.



ON THE DATA COMPLETION PROBLEM FOR LAPLACE’S EQUATION 33

[16] C.S. Liu, A self-adaptive LGSM to recover initial condition or heat source of one-dimensional

heat conduction equation by using only minimal boundary thermal data, Int. J. of Heat and

Mass Trans. 54 (2011), 1305-1312.
[17] T.T.M. Onyango, D.B. Ingham, D. Lesnic, Inverse reconstruction of boundary condition coef-

ficients in one-dimensional transient heat conduction, Appl. Math. and Comput. 207 (2009),

569-575.
[18] T.T.M. Onyango, D.B. Ingham, D. Lesnic, Reconstruction of boundary condition laws in heat

conduction using the boundary element method, Comp. and Math. with Appl. 57 (2009), 153–

168.
[19] B.T. Johansson, D. Lesnic, T. Reevea, A comparative study on applying the method of funda-

mental solutions to the backward heat conduction problem, Math. and Comp. Mod. 54 (2011),
403-416.

[20] A. Karageorghis, D. Lesnic, L. Marin, The method of fundamental solutions for the detection of

rigid inclusions and cavities in plane linear elastic bodies, Comp. and Struct. 106–107 (2012),
176-188.

[21] F. Delvare, A. Cimetière, J.L. Hanusa, P. Bailly, An iterative method for the Cauchy problem

in linear elasticity with fading regularization effect, Comp. Meth. in Appl. Mech. and Eng. 199
(2010), no. 49–52, 3336–3344.
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