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Abstract. In this article, we study the growth of solutions of linear complex differential

equations by using the concept of [p,q]-order in a sector of the unit disc instead of the whole

unit disc, and we obtain similar results as in the case of the unit disc.
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1. Introduction

In this article, we assume that the reader is familiar with the fundamental re-
sults and the standard notation of the Nevanlinna’s theory in the unit disc ∆ =
{z ∈ C : |z| < 1} , see [6, 7, 8, 12]. Many authors have investigated the growth of
solutions of the linear complex differential equation

f (k)(z) +Ak−1(z)f (k−1) + · · ·+A0(z)f = 0, (1)

where k ≥ 2 and the coefficients Aj (j = 0, 1, . . . , k − 1) are analytic functions in the
unit disc ∆, see [2, 3, 7, 9] and references therein. Beläıdi in [2, 3] investigated the
growth of solutions of the equation (1) by using the concepts of [p,q]-order in the unit
disc ∆. Wu in [15], and Long in [10] have investigated new problem related to linear
differential equations with analytic coefficients in a sector of the unit disc

Ωα,β = {z ∈ C : α < arg z < β, |z| < 1} ,
and they obtained different results concerning the growth of their solutions. In this
paper, we continue to investigate this new problem and study the growth of solutions
of equation (1) when the coefficients Aj (j = 0, 1, . . . , k− 1) are analytic functions of
[p,q]-order in the sector Ωα,β . Before stating our main results, we give some notations
and basic definitions of meromorphic functions in the unit disc ∆ and in a sector Ωα,β
of the unit disc. The order of a meromorphic function f in ∆ is defined by

σ (f) = lim sup
r→1−

log T (r, f)

log 1
1−r

,

where T (r, f) is the Nevanlinna characteristic function of f . If f is analytic function
in ∆, then

σM (f) = lim sup
r→1−

logM (r, f)

log 1
1−r

,
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where M(r, f) = max
|z|=r
z∈∆

|f(z)| is the maximum modulus function, it follows by Tsuji

[12, page 205] that if f is an analytic function in ∆, then we have the inequalities

σ (f) ≤ σM (f) ≤ σ (f) + 1,

which are the best possible in the sense that there are analytic functions g and h such
that σ (g) = σM (g) and σM (h) = σ (h) + 1, see [4]. Recently has been introduced
the concept of [p,q]-order for meromorphic and analytic functions in the unit disc in
order to study the growth of solutions of the linear complex differential equations,
for that, let us define inductively that for r ∈ (0,+∞) , exp1 r := er and expp+1 r :=

exp
(
expp r

)
, p ∈ N. We define also for sufficiently large r in (0,+∞), log+

1 r :=

log+ r = max (0, log r) , log+
p+1 r := log+

(
log+

p r
)
, p ∈ N. Moreover, we denote by

exp0 r := r, log+
0 r := r.

Definition 1.1. [2] Let p ≥ q ≥ 1 be integers. Let f be a meromorphic function in
∆, the [p,q]-order of f is defined by

σ[p,q] (f) = lim sup
r→1−

log+
p T (r, f)

logq
1

1−r
.

For an analytic function f in ∆, we also define

σM,[p,q] (f) = lim sup
r→1−

log+
p+1M (r, f)

logq
1

1−r
.

It is easy to see that 0 ≤ σ[p,q] (f) ≤ +∞. If f is non-admissible, i.e., T (r, f) =

O
(

log 1
1−r

)
, then σ[p,q] (f) = 0 for any p ≥ q ≥ 1. By Definition 1.1, σ[1,1] (f) = σ (f)

is the order of f in ∆, σ[2,1] (f) = σ2 (f) is the hyper-order of f in ∆ and σ[p,1] (f) =
σp (f) is the p-iterated order of f in ∆.

Proposition 1.1. [2] Let p ≥ q ≥ 1 be integers, and let f be an analytic function in
∆ of [p,q]-order. The following two statements hold :
(i) If p = q, then

σ[p,q] (f) ≤ σM,[p,q] (f) ≤ σ[p,q] (f) + 1.

(ii) If p > q, then
σ[p,q] (f) = σM,[p,q] (f) .

In this article, Ω usually denotes the sector Ωα,β (0 ≤ α < β ≤ 2π) of the unit

disc, and for any given ε ∈
(

0, β−α2

)
, Ωε denotes the sector

Ωα,β,ε = {z ∈ C : α+ ε < arg z < β − ε, |z| < 1} .
Wu, in [15], has used the Ahlfors-Shimizu characteristic function to measure the
order of growth of a meromorphic function f in Ω, and by same, Long [10] has
defined the p-order of a meromorphic function f in Ω. Before defining the [p,q]-
order of meromorphic function f in Ω, we recall the definition of the Ahlfors-Shimizu
characteristic function, see [5, 12]. Let f be a meromorphic function in Ω, set Ω(r) =
Ω ∩ {z ∈ C : 0 < |z| < r < 1} . Define

S (r,Ω, f) =
1

π

∫∫
Ω(r)

(
|f ′ (z)|

1 + |f (z)|2

)2

dσ,
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the Ahlfors-Shimizu characteristic function is defined by

T0 (r,Ω, f) =

∫ r

0

S (t,Ω, f)

t
dt.

It follows by Hayman [6, pages 12-13], Goldberg and Ostrovskii [5, page 20] that

T0 (r,C, f) = T (r, f) +O (1) .

Now, we introduce the concept of [p,q]-order and [p,q]-type of meromorphic functions
in a sector Ω.

Definition 1.2. Let p ≥ q ≥ 1 be integers. Let f be a meromorphic function in Ω.
Then, the [p,q]-order of f in Ω is defined by

σ[p,q],Ω (f) := lim sup
r→1−

log+
p T0 (r,Ω, f)

logq
1

1−r
.

It is clear that 0 ≤ σ[p,q],Ω (f) ≤ +∞. If f is non-admissible in Ω, i.e., T0 (r,Ω, f) =

O
(

log 1
1−r

)
, then σ[p,q],Ω (f) = 0 for any p ≥ q ≥ 1. By Definition 1.2, σ[1,1],Ω (f) =

σΩ (f) is the order of f in Ω, see [15] and σ[p,1],Ω (f) = σp,Ω (f) is the p-order of f in
Ω, see [10].

Definition 1.3. Let p ≥ q ≥ 1 be integers, and f be a meromorphic function in Ω
with [p, q]-order 0 < σ[p,q],Ω (f) < +∞. Then, the [p, q]-type of f in Ω is given by

τ[p,q],Ω (f) := lim sup
r→1−

log+
p−1 T0 (r,Ω, f)(

logq−1
1

1−r

)σ[p,q],Ω(f)
.

2. Main results

In recent years, Beläıdi in [3], Latreuch and Beläıdi in [9] have investigated the
growth of solutions of equation (1) in the unit disc with analytic coefficients of finite
[p,q]-order, and they obtained the following results.

Theorem 2.1. [3] Let p ≥ q ≥ 1 be integers. Let H be a set of complex numbers sat-
isfying dens {|z| = r : z ∈ H ⊆ ∆} > 0, and let A0(z), A1(z), . . . , Ak−1(z) be analytic
functions in ∆ such that for some real constants 0 ≤ γ < η, we have

T (r,A0(z)) ≥ expp

(
η logq

(
1

1− r

))
,

T (r,Aj(z)) ≤ expp

(
γ logq

(
1

1− r

))
, j = 1, 2, . . . , k − 1

as |z| = r → 1− for z ∈ H. Then every non-trivial solution f of (1) satisfies
σ[p,q] (f) = σM,[p,q] (f) = +∞ and σ[p+1,q] (f) = σM,[p+1,q] (f) ≥ η.

Theorem 2.2. [3] Let p ≥ q ≥ 1 be integers. Let H be a set of complex numbers sat-
isfying dens {|z| = r : z ∈ H ⊆ ∆} > 0, and let A0(z), A1(z), . . . , Ak−1(z) be analytic
functions in ∆ satisfying max

1≤j≤k−1

{
σ[p,q] (Aj)

}
≤ σ[p,q] (A0) = η. Suppose that there
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exists a real number γ satisfying 0 ≤ γ < η such that for any given ε (0 < ε < η − γ)
sufficiently small, we have

T (r,A0(z)) ≥ expp

(
(η − ε) logq

(
1

1− r

))
,

T (r,Aj(z)) ≤ expp

(
γ logq

(
1

1− r

))
, j = 1, 2, . . . , k − 1

as |z| = r → 1− for z ∈ H. Then every non-trivial solution f of (1) satisfies
σ[p,q] (f) = σM,[p,q] (f) = +∞ and

σ[p,q] (A0) ≤ σ[p+1,q] (f) = σM,[p+1,q] (f) ≤ max
0≤j≤k−1

{
σM,[p,q] (Aj)

}
.

Furthermore, if p > q then

σ[p+1,q] (f) = σM,[p+1,q] (f) = σ[p,q] (A0) .

Theorem 2.3 ([9]). Let p ≥ q ≥ 1 be integers, and let A0(z), A1(z), . . . , Ak−1(z) be
analytic functions in ∆ satisfying

max
1≤j≤k−1

{
σ[p,q] (Aj)

}
< σ[p,q] (A0) .

Then every non-trivial solution f of (1) satisfies σ[p,q] (f) = +∞ and

σ[p,q] (A0) ≤ σ[p+1,q] (f) ≤ max
0≤j≤k−1

{
σM,[p,q] (Aj)

}
.

Furthermore, if p > q then

σ[p+1,q] (f) = σ[p,q] (A0) .

The main purpose of this article is to investigate the growth of solutions of (1) in
sector Ω by using the concept of [p,q]-order similarly to the case of the unit disc. We
need the following definitions : For E ⊂ [0, 1), the upper and lower densities of E are
defined by

densE = lim sup
r→1−

m (E ∩ [0, r))

m ([0, r))
, densE = lim inf

r→1−

m (E ∩ [0, r))

m ([0, r))

respectively, where m (G) =
∫
G

dr
1−r for G ⊂ [0, 1).

We mainly obtain the following results by similar method as in [10, 15].

Theorem 2.4. Let p ≥ q ≥ 1 be integers and ε ∈
(

0, β−α2

)
. Let E be a set of complex

numbers satisfying dens {|z| = r : z ∈ E ⊆ Ω} > 0, and let A0(z), A1(z), . . . , Ak−1(z)
be analytic functions in Ω such that for some real constants η and γ satisfying 0 ≤
γ < η, we have

T0 (r,Ωε, A0(z)) ≥ expp

(
η logq

(
1

1− r

))
, (2)

T0 (r,Ω, Aj(z)) ≤ expp

(
γ logq

(
1

1− r

))
, j = 1, 2, . . . , k − 1 (3)

as |z| = r → 1− for z ∈ E. Then every non-trivial solution f of (1) satisfies
σ[p,q],Ω (f) = +∞ and σ[p+1,q],Ω (f) ≥ η.
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Theorem 2.5. Let p ≥ q ≥ 1 be integers and ε ∈
(

0, β−α2

)
. Let E be a set of complex

numbers satisfying dens {|z| = r : z ∈ E ⊆ Ω} > 0, and let A0(z), A1(z), . . . , Ak−1(z)
be analytic functions in Ω satisfying max

1≤j≤k−1

{
σ[p,q],Ω (Aj)

}
≤ σ[p,q],Ωε (A0) = η. Sup-

pose that there exists a real number γ satisfying 0 ≤ γ < η such that for any given ε
(0 < ε < η − γ) sufficiently small, we have

T0 (r,Ωε, A0(z)) ≥ expp

(
(η − ε) logq

(
1

1− r

))
,

T0 (r,Ω, Aj(z)) ≤ expp

(
γ logq

(
1

1− r

))
, j = 1, 2, . . . , k − 1

as |z| = r → 1− for z ∈ E. Then every non-trivial solution f of (1) satisfies
σ[p,q],Ω (f) = +∞ and

σ[p,q],Ωε (A0) ≤ σ[p+1,q],Ω (f) and σ[p+1,q],Ωε (f) ≤ σ[p,q],Ω (A0) + 1.

Furthermore, if p > q, then

σ[p,q],Ωε (A0) ≤ σ[p+1,q],Ω (f) and σ[p+1,q],Ωε (f) ≤ σ[p,q],Ω (A0) .

Theorem 2.6. Let p ≥ q ≥ 1 be integers and ε ∈
(

0, β−α2

)
. Let A0(z), A1(z), . . . ,

Ak−1(z), be analytic functions in Ω. If

max
1≤j≤k−1

{
σ[p,q],Ω (Aj)

}
< σ[p,q],Ωε (A0) , (4)

then every non-trivial solution of (1) satisfies σ[p,q],Ω (f) = +∞ and

σ[p,q],Ωε (A0) ≤ σ[p+1,q],Ω (f) and σ[p+1,q],Ωε (f) ≤ σ[p,q],Ω (A0) + 1.

Furthermore, if p > q, then

σ[p,q],Ωε (A0) ≤ σ[p+1,q],Ω (f) and σ[p+1,q],Ωε (f) ≤ σ[p,q],Ω (A0) .

If there exist some other coefficients Aj (j = 1, 2, . . . , k − 1) having the same [p,q]-
order as A0, then we have the following result by making use of the concept of [p,q]–
type.

Theorem 2.7. Let p ≥ q ≥ 1 be integers and ε ∈
(

0, β−α2

)
. Let A0(z), A1(z), . . . ,

Ak−1(z), be analytic functions in Ω. Suppose that

max
1≤j≤k−1

{
σ[p,q],Ω (Aj)

}
≤ σ[p,q],Ωε (A0) = σ (0 < σ < +∞) (5)

and

max
1≤j≤k−1

{τ[p,q],Ω (Aj) : σ[p,q],Ω (Aj) = σ[p,q],Ωε (A0)} < τ[p,q],Ωε (A0) = τ(0 < τ < +∞).

(6)
Then every non-trivial solution of (1) satisfies σ[p,q],Ω (f) = +∞ and

σ[p,q],Ωε (A0) ≤ σ[p+1,q],Ω (f) and σ[p+1,q],Ωε (f) ≤ σ[p,q],Ω (A0) + 1.

Furthermore, if p > q, then

σ[p,q],Ωε (A0) ≤ σ[p+1,q],Ω (f) and σ[p+1,q],Ωε (f) ≤ σ[p,q],Ω (A0) .
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3. Some lemmas

Lemma 3.1. [11] Let

u(z) =

(
ze−iθ0

)π/δ
+ 2

(
ze−iθ0

)π/(2δ) − 1

(ze−iθ0)
π/δ − 2 (ze−iθ0)

π/(2δ) − 1
, (7)

where 0 ≤ θ0 = α+β
2 < 2π, 0 < δ = β−α

2 < π. Then u(z) is a conformal map of
angular domain Ω, (0 ≤ β−α < 2π) onto the unit disc ∆. Moreover, for any positive
number ε satisfying 0 < ε < δ, the transformation (7) satisfies

u

({
z :

1

2
< |z| < r

}
∩ {z : |arg z − θ0| < δ − ε}

)
⊂
{
u : |u| < 1− ε

2
π
2δ+1δ

(1− r)
}
,

u−1 ({u : |u| < %}) ⊂
({

z : |z| < 1− δ

8π
(1− %)

}
∩ {z : |arg z − θ0| < δ}

)
,

where % < 1 is a constant. The inverse transformation of (7) is

z(u) = eiθ0

(
−(1 + u) +

√
2(1 + u2)

1− u

) 2δ
π

. (8)

Lemma 3.2. [15] Let f be a meromorphic function in Ω, where 0 ≤ α < β < 2π.

For any given ε ∈
(

0, β−α2

)
, set δ = β−α

2 and b = ε
2π/(2δ)+1δ

. Then the following

statements hold

T0 (%,C, f (z (u))) ≤ 16π

δ
T0

(
1− δ

8π
(1− %) ,Ω, f(z)

)
+O(1), (9)

T0 (r,Ωε, f(z)) ≤ 2

b
T0 (1− b (1− r) ,C, f (z(u))) +O(1), (10)

where z(u) is the inverse transformation of (7) .

Remark 3.1. By applying the formula T (r, f) = T0 (r,C, f) +O(1), Lemma 3.2 and
the definition of [p,q]-order, we immediately obtain that

σ[p,q],Ωε (f (z)) ≤ σ[p,q] (f (z (u))) ≤ σ[p,q],Ω (f (z)) .

Lemma 3.3. [15] Let f be a meromorphic function in Ω, where 0 ≤ α < β < 2π
and z(u) be the inverse transformation of (7) . Set F (u) = f (z (u)) and ψ (u) =
f (`) (z (u)) . Then

ψ (u) =
∑̀
j=1

αjF
(j)(u), (11)

where the coefficients αj are polynomials (with numerical coefficients) in the variables

V (u)
(

= 1
z′(u)

)
, V ′(u), V ′′(u), . . . . Moreover, we have

T (%, αj) = O

(
log

1

1− %

)
, j = 1, 2, . . . , `. (12)

Using (11) and by simple calculation, we can easily get the following lemma, see
[15, Proof of Theorem 1.6].
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Lemma 3.4. Suppose f 6≡ 0 is a solution of (1) in Ω. Then F (u) = f (z (u)) is a
solution of

F (k)(u) +Bk−1(u)F (k−1)(u) + · · ·+B0(u)F (u) = 0 (13)

in ∆, where B0(u) = A0 (z (u)) and for j = 1, 2, . . . , k − 1

Bj(u) =
αj
αk

+
αj
αk

k−1∑
n=j

An (z (u)) . (14)

Remark 3.2. From (12) and (14), we have for j = 1, 2, . . . , k − 1,

T (%,Bj) ≤
k−1∑
n=j

T (%,An (z (u))) +O

(
log

1

1− %

)
. (15)

Lemma 3.5. [2] Let p ≥ q ≥ 1 be integers. If B0(u), B1(u), ..., Bk−1(u) are analytic
functions of [p, q]-order in the unit disc ∆, then every solution F 6≡ 0 of (13) satisfies

σ[p+1,q] (F ) = σM,[p+1,q] (F ) ≤ max
0≤j≤k−1

{
σM,[p,q] (Bj)

}
.

Lemma 3.6. Let p ≥ q ≥ 1 be integers. If A0(z), ..., Ak−1(z) are analytic functions
of [p, q]-order in sector Ω satisfying max

0≤j≤k−1

{
σ[p,q],Ω (Aj)

}
≤ η, then for any given

ε ∈
(

0, β−α2

)
, every solution f 6≡ 0 of (1) satisfies

σ[p+1,q],Ωε (f) ≤ η + 1.

Furthermore, if p > q then

σ[p+1,q],Ωε (f) ≤ η.

Proof. Let f(z) 6≡ 0 be a solution of equation (1). Then by Lemma 3.4, F (u) =
f (z (u)) is a solution of equation (13) and by Remark 3.1, Remark 3.2 and Lemma
3.5 , we obtain

σ[p+1,q],Ωε (f) ≤ σ[p+1,q] (F ) = σM,[p+1,q] (F ) ≤ max
0≤j≤k−1

{
σM,[p,q] (Bj)

}
≤ max

0≤j≤k−1

{
σ[p,q] (Bj)

}
+ 1 ≤ max

0≤j≤k−1

{
σ[p,q],Ω (Aj)

}
+ 1

≤ η + 1.

if p > q, we obtain

σ[p+1,q],Ωε (f) ≤ σ[p+1,q] (F ) = σM,[p+1,q] (F ) ≤ max
0≤j≤k−1

{
σM,[p,q] (Bj)

}
= max

0≤j≤k−1

{
σ[p,q] (Bj)

}
≤ max

0≤j≤k−1

{
σ[p,q],Ω (Aj)

}
≤ η.

�

Lemma 3.7. Let p ≥ q ≥ 1 be integers, and let f be a meromorphic function in Ω
such that 0 < σ[p,q],Ω(f) = σ < +∞ and 0 < τ[p,q],Ω(f) = τ < +∞. Then for any

given β < τ , there exists a subset E ⊂ [0, 1) that satisfies
∫
E

dr
1−r = +∞ such that for

all r ∈ E we have

log+
p−1 T0 (r,Ω, f) > β

(
logq−1

1

1− r

)σ
.
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Proof. By the definition of the [p, q]−type in Ω, there exists an increasing sequence
{rm}+∞m=1 ⊂ [0, 1) satisfying 1

m +
(
1− 1

m

)
rm < rm+1, (rm −→

m→+∞
1−) and

lim
m→+∞

log+
p−1 T0 (rm,Ω, f)(
logq−1

1
1−rm

)σ = τ.

Then, there exists a positive integer m1 such that for all m ≥ m1 and for any given
ε (0 < ε < τ), we have

log+
p−1 T0 (rm,Ω, f) > (τ − ε)

(
logq−1

1

1− rm

)σ
. (16)

For r ∈
[
rm,

1
m +

(
1− 1

m

)
rm
]
, we have

lim
m→+∞

(
logq−1

(
1− 1

m

) (
1

1−r

))σ
(

logq−1
1

1−r

)σ = 1.

Then for any given 0 < β < τ − ε, there exists a positive integer m2 such that for all
m ≥ m2, and for all r ∈

[
rm,

1
m +

(
1− 1

m

)
rm
]
, we have(

logq−1

(
1− 1

m

) (
1

1−r

))σ
(

logq−1
1

1−r

)σ >
β

τ − ε
. (17)

By (16) and (17), for all m ≥ m3 = max {m1;m2} and for all

r ∈
[
rm,

1

m
+

(
1− 1

m

)
rm

]
,

we have

log+
p−1 T0 (r,Ω, f) ≥ log+

p−1 T0 (rm,Ω, f)

> (τ − ε)
(

logq−1

1

1− rm

)σ
≥ (τ − ε)

(
logq−1

(
1− 1

m

)(
1

1− r

))σ
> β

(
logq−1

1

1− r

)σ
.

Set

E =

+∞⋃
m=m3

[
rm,

1

m
+

(
1− 1

m

)
rm

]
.

Then ∫
E

dt

1− t
=

+∞∑
m=m3

∫ 1
m+(1− 1

m )rm

rm

dt

1− t
=

+∞∑
m=m3

log
m

m− 1
= +∞.

�
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Lemma 3.8. [1] Let g : (0, 1) → R and h : (0, 1) → R be monotone increasing
functions such that g (r) ≤ h (r) holds outside of an exceptional set E ⊂ [0, 1) for
which

∫
E

dr
1−r < +∞. Then there exists a constant d ∈ (0, 1) such that if s (r) =

1− d (1− r) , then g (r) ≤ h (s (r)) for all r ∈ [0, 1).

4. Proofs of theorems

Proof of Theorem 2.4.

Proof. Suppose that f 6≡ 0 is a solution of (1) in the sector Ω. From Lemma 3.4, the
function F (u) = f (z ((u)) is a solution of (13) , where z (u) is defined by (8) . Then,
by the formula T (r, f) = T0 (r,C, f) +O(1) and (10) , we have

T (%,B0(u)) = T (%,A0 (z (u))) = T0 (%,C, A0 (z (u))) +O(1)

≥ b

2
T0

(
1− 1− %

b
,Ωε, A0(z)

)
. (18)

By (9), (15) and the formula T (r, f) = T0 (r,C, f) + O(1), for j = 1, 2, . . . , k − 1 we
obtain

T (%,Bj (u)) ≤
k−1∑
n=j

T (%,An (z (u))) +O

(
log

1

1− %

)

=

k−1∑
n=j

T0 (%,C, An (z (u))) +O

(
log

1

1− %

)

≤ 16π

δ

k−1∑
n=j

T0

(
1− δ

8π
(1− %) ,Ω, An (z)

)
+O

(
log

1

1− %

)
.(19)

Now, as |u| = % → 1−, u ∈ Ẽ (Ẽ is a set, image of E by the transformation (7)

satisfying densE1 = dens
{
|u| = % : u ∈ Ẽ

}
> 0), it follows from (2) , (3) , (18) and

(19) that

T (%,B0) ≥ b

2
expp

(
η logq

(
b

1− %

))
= O

(
expp

(
η logq

(
1

1− %

)))
(20)

and for j = 1, 2, . . . , k − 1

T (%,Bj) ≤ 16π

δ
(k − j) expp

(
γ logq

(
8π

δ (1− %)

))
+O

(
log

1

1− %

)
= O

(
expp

(
γ logq

(
1

1− %

))
+ log

1

1− %

)
. (21)

By (13) , we can write

T (%,B0) = m (%,B0) ≤
k−1∑
j=1

m (%,Bj) +

k∑
j=1

m

(
%,
F (j)

F

)
+O(1). (22)
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It follows by (20) , (21) , (22) and lemma of logarithmic derivative Tsuji [12, page 213]
that

expp

(
η logq

(
1

1− %

))
≤ O

(
expp

(
γ logq

(
1

1− %

))
+ log

1

1− %

)
+O

(
log+ T (%, F )

)
(23)

holds for all u satisfying |u| = % ∈ E1\H as % → 1− (E1 =
{
|u| = % : u ∈ Ẽ

}
and

H ⊂ (0, 1) is a set with
∫
H

d%
1−% < +∞). By using Lemma 3.8 and (23) , for all u

satisfying |u| = % ∈ E1 as %→ 1−, we obtain

expp

(
η logq

(
1

1− %

))
≤ O

(
expp

(
γ logq

(
1

d (1− %)

))
+ log

1

d (1− %)

)
+O

(
log+ T (1− d (1− %) , F )

)
, (24)

where d ∈ (0, 1). Thus, from (24) we get σ[p,q] (F ) = +∞ and σ[p+1,q] (F ) ≥ η. Then,
by Remark 3.1, we get that

σ[p,q],Ω (f (z)) = +∞ and σ[p+1,q],Ω (f (z)) ≥ η.

�

Proof of Theorem 2.5.

Proof. Suppose that f 6≡ 0 is a solution of (1) in the sector Ω. Then for any given
ε > 0, by the result of Theorem 2.4, we have σ[p,q],Ω (f (z)) = +∞ and

σ[p+1,q],Ω (f (z)) ≥ η − ε. (25)

Since ε > 0 is arbitrary we get from (25) that σ[p+1,q],Ω (f (z)) ≥ η = σ[p,q],Ωε (A0) .
On the other hand, by Lemma 3.6 we have σ[p+1,q],Ωε (f (z)) ≤ σ[p,q],Ω (A0) + 1, and
if p > q, we have σ[p+1,q],Ωε (f (z)) ≤ σ[p,q],Ω (A0) . �

Proof of Theorem 2.6.

Proof. Suppose that f 6≡ 0 is a solution of (1) in the sector Ω. From Lemma 3.4, the
function F (u) = f (z ((u)) is a solution of (13) , where z (u) is defined by (8) . As in
proof of Theorem 2.4, we obtain (18) and (19) . It follows from (18) that

σ[p,q] (B0) ≥ σ[p,q],Ωε (A0) . (26)

Then, from (19) , (4) and (26) we get

max
1≤j≤k−1

{
σ[p,q] (Bj)

}
≤ max

1≤j≤k−1

{
σ[p,q],Ω (Aj)

}
< σ[p,q],Ωε (A0) ≤ σ[p,q] (B0) . (27)

From (27) , by using Theorem 2.3, we get σ[p,q] (F ) = +∞, and

σ[p,q] (B0) ≤ σ[p+1,q] (F ) ≤ max
0≤j≤k−1

{
σM,[p,q] (Bj)

}
≤ max

0≤j≤k−1

{
σ[p,q] (Bj)

}
+ 1,

then by Remark 3.1, Lemma 3.6 we see that σ[p,q],Ω (f) = +∞ and σ[p,q],Ωε (A0) ≤
σ[p+1,q],Ω (f) , σ[p+1,q],Ωε (f) ≤ σ[p,q],Ω (A0) + 1.
If p > q, then we have σ[p,q] (B0) = σ[p+1,q] (F ) thus σ[p,q],Ωε (A0) ≤ σ[p+1,q],Ω (f) and
σ[p+1,q],Ωl (f) ≤ σ[p,q],Ω (A0) . �
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Proof of Theorem 2.7.

Proof. Suppose that f 6≡ 0 is a solution of (1) in the sector Ω. From Lemma 3.4,
the function F (u) = f (z ((u)) is a solution of (13) , where z (u) is defined by (8) .
If σ[p,q],Ω (Aj) < σ[p,q],Ωε (A0) for all j = 1, · · · , k − 1, then Theorem 2.7 reduces to
Theorem 2.6. Thus, we assume that at least one of Aj (j = 1, · · · , k − 1) satisfies
σ[p,q],Ω (Aj) = σ[p,q],Ωε (A0) = σ. So, there exists a set I ⊆ {1, · · · , k−1} such that for
j ∈ I we have σ[p,q],Ω (Aj) = σ[p,q],Ωε (A0) = σ and τ[p,q],Ω (Aj) < τ[p,q],Ωε (A0) = τ
and for j ∈ {1, · · · , k − 1}\I we have σ[p,q],Ω (Aj) < σ[p,q],Ωε (A0) = σ. Hence, we can
choose α1, α2 satisfying τ[p,q],Ω (Aj) < α1 < α2 < τ (j ∈ I) such that for any given ε(
0 < ε < α2−α1

2

)
and for sufficiently large r, we have

T0 (r,Ω, Aj(z)) ≤ expp−1

{(
τ[p,q],Ω (Aj) + ε

)(
logq−1

1

1− r

)σ}
≤ expp−1

{
(α1 + ε)

(
logq−1

1

1− r

)σ}
, j ∈ I (28)

and

T0 (r,Ω, Aj(z)) ≤ expp

(
(σ1 + ε) logq

(
1

1− r

))
, j ∈ {1, · · · , k − 1}\I, (29)

where σ1 + ε < σ. By Lemma 3.7, there exists a subset G ⊂ [0, 1) that satisfies∫
G

dr
1−r = +∞ such that for all r ∈ G we have

T0 (r,Ωε, A0(z)) > expp−1

(
α2

(
logq−1

1

1− r

)σ)
. (30)

Now, as |u| = % → 1−, % ∈ G̃ (G̃ is a set, image of G by the transformation (7)

satisfying
∫
G̃

d%
1−% = +∞). Then, by (18) and (30)

T (%,B0(u)) = T (%,A0 (z (u))) = T0 (%,C, A0 (z (u))) +O(1)

≥ b

2
T0

(
1− 1− %

b
,Ωε, A0(z)

)
≥ O

(
expp−1

(
α2

(
logq−1

1

1− %

)σ))
. (31)

Also, by (19) , (28) and (29) for j = 1, 2, . . . , k − 1

T (%,Bj) ≤
16π

δ

k−1∑
n=j

T0

(
1− δ

8π
(1− %) ,Ω, An (z)

)
+O

(
log

1

1− %

)

≤ O

(
expp−1

{
(α1 + ε)

(
logq−1

1

1− %

)σ})
+O

(
expp

(
(σ1 + ε) logq

(
1

1− %

)))
+O

(
log

1

1− %

)
= O

(
expp−1

{
(α1 + ε)

(
logq−1

1

1− %

)σ}
+ log

1

1− %

)
. (32)

By (13) , we can write

T (%,B0) = m (%,B0) ≤
k−1∑
j=1

m (%,Bj) +

k∑
j=1

m

(
%,
F (j)

F

)
+O(1). (33)
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It follows by (31) , (32) , (33) and lemma of logarithmic derivative Tsuji [12, page 213]
that

expp−1

(
α2

(
logq−1

1

1− %

)σ)
≤ O

(
expp−1

{
(α1 + ε)

(
logq−1

1

1− %

)σ})
O

(
log

1

1− %

)
+O

(
log+ T (%, F )

)
(34)

holds for all u satisfying |u| = % ∈ G̃\H as % → 1−, where H ⊂ (0, 1) is a set with∫
H

d%
1−% < +∞. By using Lemma 3.8 and (34) , for all u satisfying |u| = % ∈ G̃ as

%→ 1−, we obtain

expp−1

(
α2

(
logq−1

1

1− %

)σ)
≤ O

(
expp−1

{
(α1 + ε)

(
logq−1

1

d (1− %)

)σ})
+O

(
log

1

d (1− %)

)
+O

(
log+ T (1− d (1− %) , F )

)
, (35)

where d ∈ (0, 1). Thus, from (35) we get σ[p,q] (F ) = +∞ and σ[p+1,q] (F ) ≥ σ. Then,
by Remark 3.1, we get that

σ[p,q],Ω (f (z)) = +∞ and σ[p+1,q],Ω (f (z)) ≥ σ.

On the other hand, by Lemma 3.6 we have σ[p+1,q],Ωε (f (z)) ≤ σ[p,q],Ω (A0) + 1, and
if p > q, we have σ[p+1,q],Ωε (f (z)) ≤ σ[p,q],Ω (A0) . �

5. Conclusion

Throughout this article, we have investigated the properties of growth of solutions
of linear complex differential equations by using the concept of [p,q]-order in a sector of
the unit disc instead of the whole unit disc. We have obtained similar results as in the
case of the unit disc. Recently, several authors [2, 3, 9, 13, 14] have studied the growth
of solutions of linear complex differential equations with analytic coefficients of [p,q]-
order in the unit disc. So, it is interesting to investigate the growth of solutions when
the coefficients of linear complex differential equations are meromorphic of [p,q]-order
in a sector of the unit disc.
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