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ABSTRACT. In this article, we study the growth of solutions of linear complex differential
equations by using the concept of [p,q]-order in a sector of the unit disc instead of the whole
unit disc, and we obtain similar results as in the case of the unit disc.
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1. Introduction

In this article, we assume that the reader is familiar with the fundamental re-
sults and the standard notation of the Nevanlinna’s theory in the unit disc A =
{z€C:|z| <1}, see [6, 7, 8, 12]. Many authors have investigated the growth of
solutions of the linear complex differential equation

FR @) + A1 (2) D 4+ Ag(2)f =0, (1)

where k£ > 2 and the coefficients A; (j =0,1,...,k — 1) are analytic functions in the
unit disc A, see [2, 3, 7, 9] and references therein. Belaidi in [2, 3] investigated the
growth of solutions of the equation (1) by using the concepts of [p,q]-order in the unit
disc A. Wu in [15], and Long in [10] have investigated new problem related to linear
differential equations with analytic coefficients in a sector of the unit disc

Qupg={z€C:a<argz <,z <1},

and they obtained different results concerning the growth of their solutions. In this
paper, we continue to investigate this new problem and study the growth of solutions
of equation (1) when the coefficients A; (j =0,1,...,k — 1) are analytic functions of
[p,q]-order in the sector Q, 3. Before stating our main results, we give some notations
and basic definitions of meromorphic functions in the unit disc A and in a sector Q, g
of the unit disc. The order of a meromorphic function f in A is defined by

log T (r, f)

o (f) = limsup —,
r—1- 08 1

where T'(r, f) is the Nevanlinna characteristic function of f. If f is analytic function
in A, then
log M
oum (f) zlimsupiog (f’f),
r—1- log 1—r
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where M(r, f) = lmlax |f(2)] is the maximum modulus function, it follows by Tsuji

zEA

[12, page 205] that if f is an analytic function in A, then we have the inequalities
o(f) <om(f) <o(f)+1,

which are the best possible in the sense that there are analytic functions g and h such
that o (g) = oa (g9) and opr (h) = o (k) + 1, see [4]. Recently has been introduced
the concept of [p,q]-order for meromorphic and analytic functions in the unit disc in
order to study the growth of solutions of the linear complex differential equations,
for that, let us define inductively that for » € (0,+00), exp; r := e" and exp, ;7 :=
exp (exp,7), p € N. We define also for sufficiently large 7 in (0,+00), log{ r =
log™ r = max (0,logr), log;+1 r = log"t (10g;L r) , p € N. Moreover, we denote by
expy 1 :=r, logd =1

Definition 1.1. [2] Let p > ¢ > 1 be integers. Let f be a meromorphic function in
A, the [p,q]-order of f is defined by

10g+ T (r, f)
Oip.q (f) = limsup—2—"~.
. ro1- log, 1

For an analytic function f in A, we also define

. log;f 1 M (r, f)
OM,[p,q) (f) = hmsup—fﬁ1 T .
r—1- qu 1—r

It is easy to see that 0 < oy, 4 (f) < +o0. If f is non-admissible, i.e., T'(r, f) =
0 <log i) , then o7, g1 (f) = 0 for any p > ¢ > 1. By Definition 1.1, 071 1) (f) = o (f)

is the order of f in A, 02,17 (f) = o2 (f) is the hyper-order of f in A and oy, 17 (f) =
op (f) is the p-iterated order of f in A.

Proposition 1.1. [2] Let p > q > 1 be integers, and let f be an analytic function in
A of [p,qf-order. The following two statements hold :
(i) If p=gq, then
Ip.a) () < Ontpg) (F) S g (F) + 1.
(i) If p > q, then
Ip.q) () = Ont,fp.g) (f)-
In this article, © usually denotes the sector 4,3 (0 < a < 8 < 2m) of the unit

disc, and for any given ¢ € (07 [FTQ) , Q¢ denotes the sector

Qupe={7z€Cat+e<argz < f—e, |z <1}.

Wu, in [15], has used the Ahlfors-Shimizu characteristic function to measure the
order of growth of a meromorphic function f in 2, and by same, Long [10] has
defined the p-order of a meromorphic function f in 2. Before defining the [p,q]-
order of meromorphic function f in €, we recall the definition of the Ahlfors-Shimizu
characteristic function, see [5, 12]. Let f be a meromorphic function in €, set Q(r) =
QN{zeC:0<|z] <r<1}. Define

S )= //<1f|/f i| ) 4o
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the Ahlfors-Shimizu characteristic function is defined by

TO (7“, Q, f) = /T wdt

0
It follows by Hayman [6, pages 12-13], Goldberg and Ostrovskii [5, page 20] that
TO(ra(Cmf) :T(Taf) +O(1)
Now, we introduce the concept of [p,q]-order and [p,q]-type of meromorphic functions

in a sector 2.

Definition 1.2. Let p > g > 1 be integers. Let f be a meromorphic function in 2.
Then, the [p,q]-order of f in Q is defined by

: log," Ty (r, €2, f)
Toabe ()= e
r q 1—r

It is clear that 0 < oy g0 (f) < 4o00. If f is non-admissible in €, i.e., Ty (r, Q, f) =
0] <log ﬁ) , then o, 5.0 (f) = 0 for any p > ¢ > 1. By Definition 1.2, 071 1).0 (f) =
oq (f) is the order of f in €2, see [15] and oy, 13,0 (f) = 0p,a (f) is the p-order of f in
Q, see [10].

Definition 1.3. Let p > ¢ > 1 be integers, and f be a meromorphic function in 2
with [p, g]-order 0 < o7, 1.0 (f) < +00. Then, the [p, g]-type of f in Q is given by

log;;l TO (Tv Qv f)
)G[p,q],ﬂ(f).

Tip.q,@ (f) == lim Sll—lp :
r— (1qu71 i

2. Main results

In recent years, Belaidi in [3], Latreuch and Belaidi in [9] have investigated the
growth of solutions of equation (1) in the unit disc with analytic coefficients of finite
[p,q]-order, and they obtained the following results.

Theorem 2.1. [3] Let p > q > 1 be integers. Let H be a set of complex numbers sat-
isfying dens{|z| =r:z€ H C A} >0, and let Ag(z), A1(2), ..., Ak—1(2) be analytic
functions in A such that for some real constants 0 < v < n, we have

T'(r,Ao(z)) = exp, <nlogq (117~)> ;

T (r,Aj(2)) < exp, <710gq <1ir>> ,J=12 k=1

as |z| = r — 17 for z € H. Then every non-trivial solution f of (1) satisfies

Ip.al (f) = Onsfp.g (f) = +00 and o711, (f) = o pr1.9) () = 0

Theorem 2.2. [3] Let p > q > 1 be integers. Let H be a set of complex numbers sat-

isfying dens{|z| =r:z€ H C A} >0, and let Ag(z), A1(2), ..., Ak—1(2) be analytic

functions in A satisfying Jnax {a[pyq] (Aj)} < Ofp,q (Ao) = . Suppose that there
<j<k—
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exists a real number v satisfying 0 < v < n such that for any given € (0 < e <n—7)
sufficiently small, we have

(1 A0(2) = exp, (1~ 9 og, (12 )).

T(TaAj(Z)) Sepr <710gq <1i’l">>7 .7:17277k71

as |z| = r — 17 for z € H. Then every non-trivial solution f of (1) satisfies
Olp,q (f) = Onp,q (f) = +00 and

) (A0) < Olpr1q) (F) = Onrfprrg (F) < mmax {onrfpg (4))} -

Furthermore, if p > q then

Olpr1,q) (f) = Oarfpi1,q) (f) = Opp,q) (Ao) -
Theorem 2.3 ([9]). Let p > q > 1 be integers, and let Ao(z), A1(2), ..., Ax—1(2) be

analytic functions in A satisfying

\Jnax {o1pq) (47)} < 0y (Ao).

Then every non-trivial solution f of (1) satisfies oy 4 (f) = +o0 and

Opua) (A0) < Olpi1q) (f) € | max {owipaq) (A7)} -

Furthermore, if p > q then
Tpt1.q) () = Ofp.q) (Ao) -

The main purpose of this article is to investigate the growth of solutions of (1) in
sector € by using the concept of [p,q]-order similarly to the case of the unit disc. We
need the following definitions : For F C [0,1), the upper and lower densities of E are
defined by

densE = lim supw, densE = liminf w
ro1- m([0,7)) r—»1-  m([0,7))

respectively, where m (G) = [, dr for G C [0,1).

1—r

We mainly obtain the following results by similar method as in [10, 15].

Theorem 2.4. Letp > q > 1 be integers and € € (0, [FTO‘) Let E be a set of complex

numbers satisfying dens{|z| =r:z € E CQ} >0, and let Ag(z), A1(2), ..., Ak—1(2)
be analytic functions in Q0 such that for some real constants n and ~y satisfying 0 <

v < 1n, we have
1
1r>)7 2)

1 .
TO (T797Aj(z)) < epr (’Ylogq (1_7_>) y J = 1327"'ak_1 (3)

as |z| = r — 17 for z € E. Then every non-trivial solution f of (1) satisfies
Olp,q],Q (f) = 400 and O[p+1,q],Q (f) =n.

Ty (r, Qe, Ao(2)) > exp, (77 log, (
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Theorem 2.5. Letp > q > 1 be integers and € € (0, ﬁfTa) Let E be a set of complex

numbers satisfying dens{|z| =r: 2z € E CQ} >0, and let Ag(2), A1(2), ..., Ar—1(2)
be analytic functions in Q satisfying | Jnax {op.q.0(4)} < opa.a. (A) =n. Sup-
<k

pose that there exists a real number ~ satisfying 0 < v < n such that for any given €
(0 < € <n—7) sufficiently small, we have

Ty (r,Qc, Ao(2)) > exp, ((n — €)log, <1;>) :

T (r, 2, Aj(2)) < exp, (’ylogq <1i7“>) ,7=12,...,k—1
as |z| = r — 17 for z € E. Then every non-trivial solution f of (1) satisfies
O, (f) = 400 and
Tlp.al. . (A0) < Opr1g.a (f) and oy g0, (f) < opg.0 (Ao) + 1.
Furthermore, if p > q, then

Olp,q),0. (Ao) < opinq,0 (f) and opi1,q.0. (f) < op g0 (Ao) -

Theorem 2.6. Let p > q > 1 be integers and € € (0, ﬂTa) Let Ao(2), A1(2), ...,

Ak—1(2), be analytic functions in Q. If
max  {op,q.0 (45)} < op.g .. (Ao), (4)

1<j<k-1
then every non-trivial solution of (1) satisfies o, g0 (f) = +o00 and
Ol (Ao) S oprigre (f) and oy g 0. (f) < opqg.0 (o) + 1.
Furthermore, if p > q, then
Tp.al. . (Ao) < Oprrga (f) and opia g, (f) < opg.a(do)-

If there exist some other coefficients A; (j = 1,2,...,k — 1) having the same [p,q]-
order as Ap, then we have the following result by making use of the concept of [p,q]—

type.
Theorem 2.7. Let p > q > 1 be integers and € € (0, 5%“) Let Ao(2), A1(2), ...,
Ak—1(2), be analytic functions in Q. Suppose that

\ax {oipa.0(4))} < opaa. (do) =0 (0 <0 < +oo) ()

and

[ Jnax {Tpga (45)  opg . (45) = Tp.g.0. (Ao)} < Ty, (Ao) = 7(0 <7 < +o0).
N (6)

Then every non-trivial solution of (1) satisfies oy g 0 (f) = +oo and

Olp,g,0. (Ao) < opr1gue (f) and oppy1 g 0. (f) < 0p g0 (Ao) + 1.
Furthermore, if p > q, then

Olp,q), 0. (Ao) < Opr1,g.0 (f) and oppi1 g0, () < opp g0 (Ao)-
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3. Some lemmas

Lemma 3.1. [11] Let

(ze_w‘))ﬂ/(S + 2 (ze_wo)w/(%) -1
(Ze—ieo)ﬂ/é _9 (ze_wo)ﬂ/(%) 1’

u(z) = (7)

where 0 < 6y = # <2m 0< = BfTa < 7. Then u(z) is a conformal map of
angular domain 2, (0 < f—a < 27) onto the unit disc A. Moreover, for any positive
number ¢ satisfying 0 < e < ¢, the transformation (7) satisfies

1 €
u({z.2<|z|<r}ﬁ{z.|argz90|<55})C{u.u|<1M(lr}},

w ({u: |ul < o}) C ({z 12| < 1—8ir(1—g)}ﬂ{z:argz—90| <5}>,

where o < 1 is a constant. The inverse transformation of (7) is
2

)

o [ —(1 21 +u?)\ "~
Z(u)a%( (Ltu)+ <+u>> | ®)
1—u
Lemma 3.2. [15] Let f be a meromorphic function in Q, where 0 < a < f < 2.
For any given ¢ € (O, E_TO‘>, set § = ﬁ_Ta and b = 5msrs. Then the following
statements hold
167 1)
2
To (r,Qe, f(2)) < 3 To (1= b(1 = 7), C, £ (2(u)) + O(1), (10)

where z(u) is the inverse transformation of (7).

Remark 3.1. By applying the formula T (r, f) = Ty (r,C, f) + O(1), Lemma 3.2 and
the definition of [p,q]-order, we immediately obtain that

Ip.g).. (F(2)) S 0oppq (F (2(0) S opp g0 (f(2)-

Lemma 3.3. [15] Let f be a meromorphic function in Q, where 0 < a < 8 < 27
and z(u) be the inverse transformation of (7). Set F(u) = f(z(u)) and ¢ (u) =
O (2 (u)). Then

4
o (u) = 0 FO) (u), (11)
j=1

where the coefficients a; are polynomials (with numerical coefficients) in the variables
V(u) (: ﬁ) LV (W), V" (u),. ... Moreover, we have

1
T(Q,ozj):O(logl_g>, ji=1,2,... ¢ (12)

Using (11) and by simple calculation, we can easily get the following lemma, see
[15, Proof of Theorem 1.6].



(p, 9)-ORDER OF SOLUTIONS OF COMPLEX DIFFERENTIAL EQUATIONS 43

Lemma 3.4. Suppose f # 0 is a solution of (1) in Q. Then F(u) = f(z(u)) is a
solution of

F® (u) + By (w) F* D (u) + - -+ + Bo(u)F(u) = 0 (13)
in A, where Bo(u) = Ag (z (u)) and for j =1,2,...,k—1
k—1
() =Y Y
By = 5+ 215 e ). (14)
Remark 3.2. From (12) and (14), we have for j = 1,2,... k — 1,
k—1 1
T(0.5) < 3T (0. An (=) + 0 (log ). (15)
n=j

Lemma 3.5. [2] Let p > q > 1 be integers. If Bo(u), Bi(u), ..., Bk—1(u) are analytic
functions of [p, qJ-order in the unit disc A, then every solution F' # 0 of (13) satisfies

Ot (F) = outfprrg (F) < | max {ou,fpq) (Bi)} -

Lemma 3.6. Let p > q > 1 be integers. If Ag(z),..., Ar—1(z) are analytic functions

of [p, qj-order in sector Q satisfying max {0, 4.0(A4;)} < n, then for any given
0<j<k—1 i

€€ (O, ﬂ%a) , every solution f £ 0 of (1) satisfies

O[p+1,q],9e (f) < n+ 1.
Furthermore, if p > q then
Olp+1,q.0. (f) <n.

Proof. Let f(z) # 0 be a solution of equation (1). Then by Lemma 3.4, F(u) =
f (2 (w)) is a solution of equation (13) and by Remark 3.1, Remark 3.2 and Lemma
3.5 , we obtain

Tpt1,a,0: () < Tprrg (F) = ompraq (F) < O<I;,ﬂ<al§_1 {UM,[p,q] (Bj)}
< ogr}?/?—l {U[p,q] (Bj)} +1< 031}12?_1 {U[m],ﬂ (Aj)} +1
< n+1

if p > g, we obtain

Op+ghs (f) < Oprrg (F) = o parg (F) < 0<)oho1 {oa1p.q) (Bi)}

= janax {opq (B} < max {opq.0(4)} <.

0

Lemma 3.7. Let p > q > 1 be integers, and let f be a meromorphic function in
such that 0 < opp q.0(f) = 0 < 400 and 0 < 7, g.0(f) = 7 < 4+00. Then for any
given 3 < 7, there exists a subset £ C [0, 1) that satisfies [ 1d_TT = +o00 such that for
all r € E we have

1 g
log,_y To (1,2, f) > 5 <logq_1 1—r> '
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Proof. By the definition of the [p, g]—type in 2, there exists an increasing sequence
+ . . 1 1 -
{rm}n=; C [0,1) satisfying -~ + (1 — R) Tm < Tmt1, (Tm m—>—+><>o 17) and

lim log;’)_—l To (Tmn Qa f)

T
m——+oo 1
(10ng*1 1—7rm )

Then, there exists a positive integer m4 such that for all m > m; and for any given
€ (0 <e <), we have

=T.

1 o
log;'_1 To (rim, Q, f) > (7 —¢€) (log;q_1 1—7“) . (16)

For € [rm, = 4+ (1 — L) ], we have

gy Lt ()
(logq% ﬁ)

Then for any given 0 < 8 < 7 — ¢, there exists a positive integer ms such that for all
m > me, and for all r € [rm, % + (1 — %) rm], we have

(o, 1-3) () 5
(logq_l l—ir)a T—e

By (16) and (17), for all m > m3 = max {m1;ma} and for all

s (5) ]
TE |Tm, — + 1—-— Tm|,
m m

(17)

we have
log Ty (r, 2, f) > logy 1 Ty (rm, 2, f)
1 o
> (T — 5) <10gq1 1_7‘"1)
1 1 7
> =9 (o (1) (7))
1 o
> ﬂ <10gq1 1—7") .
Set
“+o0
1 1
E= U {r,n,m—F(l—m)rm]
m=ms
Then
dt 2 pmt-m)rm g =
7 T 1 _
o1t mmg/rm 1 ¢ m; B 1t
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Lemma 3.8. [1] Let g : (0,1) = R and h : (0,1) — R be monotone increasing
functions such that g (r) < h(r) holds outside of an exceptional set E C [0,1) for
which [ 1‘% < +4o00. Then there exists a constant d € (0,1) such that if s(r) =

1—d(1—r), then g(r) < h(s(r)) for allT €[0,1).

4. Proofs of theorems

Proof of Theorem 2.4.

Proof. Suppose that f # 0 is a solution of (1) in the sector 2. From Lemma 3.4, the
function F (u) = f (2 ((u)) is a solution of (13), where z (u) is defined by (8). Then,
by the formula T (r, f) = To (r,C, f) + O(1) and (10), we have

)

T (0, Bo(u)) = T (e, A0 (z(u))) =To(0,C, A (z(u))) +O(1)

1_
> M (112 0, a00). (18)
2 b
By (9), (15) and the formula T (r, f) = To (r,C, f) + O(1), for j = 1,2,...,k — 1 we
obtain
1
T(0.B,(w) < ZT pr (2 1) 40 (1o )

k—1
= ZTQ(Q,C,An(Z(u)))+O<1Og1i >

n=j 0

167 i3 5 1
< E - (1- ,
< 3 2 Ty (1 . (1-09),0 A, (z)) +0 (log = Q) (19)

Now, as |u| = ¢ = 17, u € E (E is a set, image of E by the transformation (7)
satisfying densE; = dens {|u| =p:uc E} > 0), it follows from (2), (3), (18) and

(19) that
b XP log b
expy, { nlogg | 7 .

1
0 (expp (n log, (1—Q>)> (20)
and for j=1,2,...,k—1

P = S don (o (7)) <0 ()

,
= (o, (18, (1)) o) o

By (13), we can write

e k )
T (0, Bo) = m (0, Bo) < Z )+ Zm <g, FF) +O(1). (22)

T (97 BO)

Y

IN
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It follows by (20),(21),(22) and lemma of logarithmic derivative Tsuji [12, page 213]

that
1 1 1
o (mom, (7)) = 0 (om (10 (1)) +1ou 1)

+0 (log" T (0, F)) (23)

holds for all u satisfying |u| = ¢ € E1\H as o — 17 (Ey = {|u| =p:u€ E} and
H C (0,1) is a set with [, 1%"9 < +00). By using Lemma 3.8 and (23), for all u
satisfying |u| = o € E; as ¢ — 17, we obtain

oty (ot (1)) < 0 (o (o, () ) o )

+0 (log" T(1—d(1-0),F)), (24)
where d € (0,1). Thus, from (24) we get oy, g (F') = +00 and op41,4 (F) > 7. Then,
by Remark 3.1, we get that

O[p,q], (f (Z)) = +00 and O[p+1,q],2 (f (Z)) > .

Proof of Theorem 2.5.

Proof. Suppose that f # 0 is a solution of (1) in the sector Q. Then for any given
€ > 0, by the result of Theorem 2.4, we have o7y, .o (f (2)) = +00 and

Op+1,q],Q (f (Z)) > n—¢ (25)
Since € > 0 is arbitrary we get from (25) that o,41,4.0 (f (2)) > 7 = 0pp.q,0. (o).
On the other hand, by Lemma 3.6 we have oj,41,q.,0. (f (2)) < 0,40 (o) + 1, and
if p > q, we have 0,11 0. (f (2)) < oppq.0 (Ao) - O

Proof of Theorem 2.6.

Proof. Suppose that f # 0 is a solution of (1) in the sector 2. From Lemma 3.4, the
function F' (u) = f (2 ((u)) is a solution of (13), where z (u) is defined by (8). As in
proof of Theorem 2.4, we obtain (18) and (19) . It follows from (18) that

Olp.q (Bo) 2 0pp,q.0. (Ao) - (26)
Then, from (19), (4) and (26) we get

\ax {0 (By)} < max {opq.0(4)} <opag.a. (Ao) <o (Bo). (27)

From (27), by using Theorem 2.3, we get oy, 4 (F') = +00, and

Op.a) (Bo) < Opi1q) (F) < max {onrjpg (By)} < max {ojpq (By)} +1,

then by Remark 3.1, Lemma 3.6 we see that o[, q.o (f) = +o0 and oy, 4.0, (Ao) <
Ipt1.q.2 (F) s Opirg.0. (f) < op g0 (o) +1.

If p > ¢, then we have o[, 4 (Bo) = 0[p41,q (F) thus opp, g.0. (Ao) < 0ppr1,q.0 (f) and
Ipt1.q.u (f) < oppgr (Ao) - U
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Proof of Theorem 2.7.

Proof. Suppose that f # 0 is a solution of (1) in the sector . From Lemma 3.4,
the function F (u) = f(z((w)) is a solution of (13), where z (u) is defined by (8).
If op.q.0 (45) < 0 g0 (Ao) for all j =1,---k — 1, then Theorem 2.7 reduces to
Theorem 2.6. Thus, we assume that at least one of A; (j = 1,--- ,k — 1) satisfies
a0 (A5) = 0p.q.,0. (Ao) = 0. So, there exists a set [ C {1,--- ,k—1} such that for
J € I we have oy, g0 (A4;) = 0pp.q.0. (Ao) = 0 and Tp, g0 (A5) < Tpg.0. (Ao) =T
and for j € {1,--- ,k —1}\I we have oy, .0 (45) < 0pp.q.0. (Ao) = 0. Hence, we can
choose ay, ay satisfying 71, 4.0 (A;) < a1 < ag < 7 (j € I) such that for any given e
(O <e< “2%‘11) and for sufficiently large r, we have

1 [ea
Th (T7 QvAj(Z)) < CXPp—1 {(T[P,Q]’Q (Aj) + 6) (Iqu—l 1— 7") }

< exp, {(oz1 +o) <logq_1 11T>U} jel (28)
and
Ty (1.2 A;(2)) < exp, <(01 + ) log, (1:)) el k1N, (29)

where 01 + € < 0. By Lemma 3.7, there exists a subset G C [0,1) that satisfies
dr. — 4 o0 such that for all 7 € G we have

G l—r
1 o
To (r,Qc, Ag(2)) > exp,_1 <a2 (logq1 17") ) . (30)

Now, as |u| = 0 — 17, o € G (G is a set, image of G by the transformation (7)
satisfying |- 1dg = +00). Then, by (18) and (30)

T (0, Bo(u)) = T (e, Ao (2 (u))) = To (¢, C, Ao (2 (u))) + O(1)

b 1-0 1\’
> §To (1 - b7Qe,A0(Z)) >0 (expp—l (O@ (10gq—1 1_9) )) . (31)

Also, by (19), (28) and (29) for j =1,2,...,k—1

¢ ofemfme s )
+0 (expp ((m + ) log, (119)» +0 <log : ! Q)
—0 (exppl {(a1 +e) (10gq1 119)0} +log - ! Q) . (32)

By (13), we can write

k= k @)
T (0. Bo) = Q,Bosz o8+ 3om (o) vow. e

Jj=1
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It follows by (31),(32), (33) and lemma of logarithmic derivative Tsuji [12, page 213]
that

L \° 1\’
XPp1 <a2 (log‘” 1- 9) ) =0 (eprl {(al o (logql 19) })

c><mg1:fg>-+c>uog+T(gzw) (34)

holds for all u satisfying |u| = ¢ € G\H as ¢ — 17, where H C (0,1) is a set with
H % < 4o00. By using Lemma 3.8 and (34), for all u satisfying |u| = ¢ € G as
o — 17, we obtain

exp,_1 <a2 (10&11 11@)") <0 (eprl {(al +e) <1qu1 d(11—0)>0}>

1
+0 <10g _—
d(1-o)
where d € (0,1). Thus, from (35) we get oy, 4 (F') = +00 and o114 (F) > 0. Then,
by Remark 3.1, we get that

>+OO%+TﬂdUg%F», (35)

v

Tp,g.0 (f(2)) = +oo and oy 11,90 (f (2)) > 0.

On the other hand, by Lemma 3.6 we have 0,41 q,0. (f (2)) < 0 g0 (o) + 1, and
if p > q, we have o1 1.0, (f (2)) < opq.0 (Ao). O

5. Conclusion

Throughout this article, we have investigated the properties of growth of solutions
of linear complex differential equations by using the concept of [p,q]-order in a sector of
the unit disc instead of the whole unit disc. We have obtained similar results as in the
case of the unit disc. Recently, several authors [2, 3, 9, 13, 14] have studied the growth
of solutions of linear complex differential equations with analytic coefficients of [p,q]-
order in the unit disc. So, it is interesting to investigate the growth of solutions when
the coeflicients of linear complex differential equations are meromorphic of [p,q]-order
in a sector of the unit disc.
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