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Three critical solutions for variational - hemivariational
inequalities involving p(x)-Kirchhoff type equation
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Abstract. In this paper, we study the existence of three solutions to the p(x)-Kirchhoff type
equations in RN . By means of nonsmooth three critical points theorem and the theory of the

variable exponent Sobolev spaces, we establish the existence of three critical points for the

problem. Moreover, we study the existence of three radially symmetric solutions for a class of
quasilinear elliptic inclusion problem with discontinuous nonlinearities in RN . Our approach

is based on critical point theory for locally Lipschitz functionals due to Iannizzotto.
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1. Introduction

In this paper, we are concerned with the following nonlinear elliptic differential
inclusion with p(x)−Kirchhoff-type problem

M
( ∫

RN
1

p(x) (|∇u|p(x) − |u|p(x))dx
)

[∆p(x)u− |u|p(x)−2u]

∈ −λ∂F (x, u)− µ∂G(x, u) in RN

u = 0 on RN ,

(1)

where p(x) ∈ C(RN ) is continuous function satisfying

1 < p− = inf
x∈RN

p(x) ≤ p(x) ≤ p+ = sup
x∈RN

p(x) < +∞,

and λ, µ > 0. F,G : RN ×R→ R is a function in which F (·, u) is measurable for every
u ∈ R and F (x, ·) is locally Lipschitz for a.e. x ∈ RN . ∂F (x, u) and ∂G(x, u) denotes
the generalized Clarke gradient of F (x, u) and G(x, u) at u ∈ R.

Let X be real Banach space. We assume that it is also given a functional χ :
X → R ∪ {+∞} which is convex, lower semicontinuous, proper whose effective do-
main dom(χ) = {x ∈ X : χ(x) < +∞} is a (nonempty, closed, convex) cone in X.
Our aim is to study the following variational-hemivariational inequality problem:
Find u ∈ B (it is called a weak solution of problem (1)) if for all v ∈ B,

M
(∫

RN

1

p(x)
(|∇u|p(x) − |u(x)|p(x))dx

)∫
RN

(|∇u|p(x)−2∇u∇v − |u|p(x)−2uv)dx
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−λ
∫
RN

F 0(x, u; v)dx− µ
∫
RN

G0(x, u; v)dx ≥ 0, (2)

where B is a closed convex subset of X = W
1,p(·)
0 (RN ), and F 0, G0 are the generalized

directional derivatives of the locally Lipschitz functions F,G.
The operator ∆p(x)u = div(|∇u|p(x)−2∇u) is the so-called p(x)−Laplacian, which
becomes p−Laplacian when p(x) ≡ p is a constant. More recently, the study of
p(x)−Laplacian problems has attracted more and more attention (cf. [2]).
The problem (1) is a generalization of an equation introduced by Kirchhoff (cf. [20]).
The study of Kirchhoff model has already been extended to the case involving the
p-Laplacian (cf. [8], [10]) and p(x)−Laplacian (cf. [6], [15]).

Applications of problems involving the p(x)-Laplace operator is applied to the
modeling of various phenomena such as elastic mechanics, thermorheological and
electrorheological fluids, mathematical mathematical biology and plasma physics (cf.
[10], [30], [31]). In recent years, differential equations and variational problems have
been studied in many papers, we refer to some interesting works (cf. [27], [28]).

Many authors investigated variational methods to a class of non-differentiable func-
tionals to prove some existence theorems for PDE with discontinuous nonlinearities.
In [33] author studied a priori bounds for a class of variational inequalities involv-
ing general elliptic operators of second-order and terms of generalized directional
derivatives; in [4], authors studied variational-hemivariational inequalities involving
the p-Laplace operator and a nonlinear Neumann boundary condition; in [1], authors
studied variational-hemivariational inequality by using the mountain pass theorem.

However, authors appeared some technical difficulties for studying problem on un-
bounded domains (cf. [3]). Therefore, to resolve this issue the space of radially
symmetric functions was introduced. For instance, the existence of radially symmet-
ric solutions for a class of differential inclusion problems was considered by many
authors. In [32] author studied infinitely many radially symmetric solutions for a
class of hemivariational inequalities with the Cerami compactness condition and the
principle of symmetric criticality for locally Lipschitz functions; in [24] author studied
the existence of infinitely many radial respective non-radial solutions for a class of
hemivariational inequalities; in [18] authors studied the existence of infinitely many
radially symmetric solutions for a class of perturbed elliptic equations with discon-
tinuous nonlinearities under some hypotheses on the behavior of the potential.

More recently, the study of the three-critical-points for nonsmooth functionals was
investigated. In [23] authors studied the existence of three critical points which ex-
tends the variational principle of Ricceri [29] to nonsmooth functionals. In [19] author
studied three-critical-points theorem based on a minimax inequality and on a trun-
cation argument which extended to Motreanu-Panagiotopoulos functionals. In [34],
authors studied the existence of at least three critical points for a p(x)-Laplacian
differential inclusion based on the nonsmooth analysis.

The purpose of this paper is to prove the existence of at least three solutions for a

variational-hemivariational inequality depending on two parameters in W
1,p(x)
0 (RN ).

In fact, the existence result for p(x)−Kirchhoff-type problem with locally Lipschitz
functions under special hypotheses on F and G is investigated. Also, for the second
part under further additional assumptions, the quasilinear elliptic inclusion problem

is considered. A major problem is that the compact embedding for W
1,p(x)
0 (RN ) into
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L∞(RN ) is required. Hence, we overcome this gap by using the subspace of radi-

ally symmetric functions of W
1,p(x)
0 (RN ), denoted by W

1,p(x)
0,r (RN ), can be embedded

compactly into L∞(RN ).
The paper is organized as follows. We prepare the basic definitions and properties

in the framework of the generalized Lebesgue and Sobolev spaces. Besides, some basic
notions about generalized directional derivative and hypotheses on F, G are given.
Next, we give the main results about the existence of three solutions in theorem 3.7.
The final part of this paper is concerned with the existence of three radially symmetric
solutions in theorem 4.5.

2. Preliminaries

We recall some basic facts about the variable exponent Lebesgue-Sobolev (cf.
[11],[13],[16]).
The variable exponent Lebesgue space is defined by

Lp(·)(RN ) = {u : RN −→ R :

∫
RN
|u(x)|p(x)dx <∞}

and is endowed with the Luxemburg norm

‖u‖p(·) = inf { λ > 0 :

∫
RN
|u(x)

λ
|p(x)dx} ≤ 1}.

Note that, when p ≡ Const., the Luxemburg norm ‖·‖p(·) coincides with the standard

norm ‖ · ‖p of the Lebesgue space Lp(RN ).

The generalized Lebesgue-Sobolev space WL,p(·)(RN ) for L = 1, 2, ... is defined as

WL,p(·)(RN ) = {u ∈ Lp(·)(RN ) : Dαu ∈ Lp(·)(RN ), |α| ≤ L},

where Dαu = ∂|α|

∂α1x1···∂αnxn with α = (α1, α2, · · ·, αN ) is a multi-index and |α| =

ΣNi=1αi.
The space WL,p(·)(RN ) with the norm

‖u‖WL,p(·)(RN ) =
∑
|α|≤L

‖Dαu‖p(·),

is a separable reflexive Banach space(cf. [12]).

The spaceW
L,p(·)
0 (RN ) denotes the closure inWL,p(·)(RN ) of the set of allWL,p(·)(RN )

-functions with compact support. Hence, an equivalent norm for the spaceW
L,p(·)
0 (RN )

is given by

‖u‖
W
L,p(·)
0 (Ω)

=
∑
|α|=L

‖Dαu‖p(·).

If Ω ⊂ RN is open bounded domain, let p∗L denote the critical variable exponent
related to p, defined for all x ∈ Ω̄ by the pointwise relation

p∗L(x) =


Np(x)

N−Lp(x) Lp(x) < N,

+∞ Lp(x) ≥ N.
(3)

For every u ∈WL,p(·)
0 (Ω) the Poincaré inequality holds, where Cp > 0 is a constant

‖u‖Lp(·)(Ω) ≤ Cp‖∇u‖Lp(·)(Ω).
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(see (cf. [17])).

Proposition 2.1. (cf. [16]) Let p′ be the function obtained by conjugating the
exponent p pointwise, that is 1

p(x) + 1
p′(x) = 1 for all x ∈ Ω̄, then p′ belongs to C+(Ω).

For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), the following Hölder type inequality valid,∫
Ω

|u(x)v(x)|dx ≤ (
1

p−
+

1

p′−
)‖u‖p(·)‖v‖p′(·),

where Lṕ(·)(Ω) is the conjugate space of Lp(·)(Ω).

Proposition 2.2. For φ(u) =
∫
RN [|∇u|p(x) − |u(x)|p(x)]dx, and u, un ∈ X, we have

(i) ‖u‖ < (=;>)1⇔ φ(u) < (=;>)1,

(ii) ‖u‖ ≤ 1⇒ ‖u‖p
+

≤ φ(u) ≤ ‖u‖p
−
,

(iii) ‖u‖ ≥ 1⇒ ‖u‖p
−
≤ φ(u) ≤ ‖u‖p

+

,

(iv) ‖un‖ → 0⇔ φ(un)→ 0,

(v) ‖un‖ → ∞⇔ φ(un)→∞.

Proof is similar to that in (cf. [16]).

Proposition 2.3. (cf. [16],[21]) For p, q ∈ C+(Ω) in which q(x) ≤ p∗L(x) for all

x ∈ Ω, there is a continuous embedding

WL,p(·)(Ω) ↪→ Lq(·)(Ω).

If we replace ≤ with <, the embedding is compact.

Remark 2.1. (i) By the proposition (2.3) there is a continuous and compact em-

bedding of W
1,p(·)
0 (Ω) into Lq(·)(Ω), where q(x) < p∗(x) for all x ∈ Ω.

(ii) Denote by

‖u‖ = inf{λ > 0 :

∫
RN

[|∇u
λ
|p(x) − |u

λ
|p(x)]dx ≤ 1},

which is a norm on W
1,p(·)
0 (RN ).

Here, we recall some definitions and basic notions of the theory of generalized
differentiation for locally Lipschitz functions. We refer the reader to (cf. [5], [7], [25],
[26]).
Let X be a Banach space and X? its topological dual. By ‖ · ‖ we will denote the
norm in X and by < ·, · >X the duality brackets for the pair (X,X?).
A function h : X → R is said to be locally Lipschitz continuous, when to every x ∈ X
there correspond a neighborhood Vx of x and a constant Lx ≥ 0 such that

|h(z)− h(w)| ≤ Lx‖z − w‖, ∀z, w ∈ Vx.

For a locally Lipschitz function h : X → R, the generalized directional derivative of
h at u ∈ X in the direction γ ∈ X is defined by

h0(u; γ) = lim sup
w→u,t→0+

h(w + tγ)− h(w)

t
.
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The generalized gradient of h at u ∈ X is

∂h(u) = {x? ∈ X? : < x?, γ >X≤ h0(u; γ), ∀γ ∈ X},

which is non-empty, convex and w?−compact subset of X?, where < ·, · >X is the
duality pairing between X? and X.

Proposition 2.4. (cf. [7]) Let h, g : X → R be locally Lipschitz functionals. Then,
for any u, v ∈ X the following hold:
(1) h0(u; ·) is subadditive, positively homogeneous;
(2) ∂h is convex and weak∗ compact;
(3) (−h)0(u; v) = h0(u;−v);
(4) the set-valued mapping h : X → 2X

∗
is weak∗ u.s.c.;

(5) h0(u; v) = maxu∗∈∂h(u) < u∗, v >;
(6) ∂(λh)(u) = λ∂h(u) for every λ ∈ R;
(7) (h+ g)0(u; v) ≤ h0(u; v) + g0(u; v);
(8) the function m(u) = minν∈∂h(u) νX∗ exists and is lower semicontinuous; i.e.,
lim infu→u0 m(u) ≥ m(u0);
(9) h0(u; v) = maxu∗∈∂h(u)〈u∗, v〉 ≤ L‖v‖.

Proposition 2.5. (cf. [7])(Lebourg’s mean value theorem) Let h : X → R be a locally
Lipschitz functional. Then, for every u, v ∈ X there exists w ∈ [u, v], w∗ ∈ ∂h(u)
such that h(u)− h(v) = 〈w∗, u− v〉.

Definition 2.1. (cf. [26]) Let X be a Banach space, I : X → (−∞,+∞] is called a
Motreanu-Panagiotopoulos-type functional, if I = h+ χ, where h : X → R is locally
Lipschitz and χ : X → (−∞,+∞] is convex, proper and lower semicontinuous.

Definition 2.2. (cf. [19]) An element u ∈ X is called a critical point for I = h+χ if

h0(u; v − u) + χ(v)− χ(u) ≥ 0, ∀v ∈ X.

The Euler-Lagrange functional associated to problem (1) is given by

I(u) = M̂
(∫

RN

1

p(x)
(|∇u|p(x) − |u|p(x))dx

)
−
∫
RN

F (x, u)dx−
∫
RN

G(x, u)dx,

where M̂(t) =
∫ t

0
M(τ)dτ and M(t) is supposed to verify the following assumptions:

(M1) There exist m1 and m0 in which m1 ≥ m0 > 0 and for all t ∈ R+, m0 ≤
M(t) ≤ m1;

(M2) For all t ∈ R+, M̂(t) ≥M(t)t.

Denote Φ : W
1,p(·)
0 (RN )→ R, as follows

Φ(u) =

∫
RN

1

p(x)
[|∇u|p(x) − |u|p(x)]dx.

The next lemma characterizes some properties of Φ (cf. [14]).

Proposition 2.6. Let Φ(u) =
∫
RN

1
p(x) [|∇u|p(x) − |u|p(x)]dx. Then

(i) Φ : X → R is sequentially weakly lower semicontinuous.
(ii) Φ′ is of (S+) type.
(iii) Φ′ is a homeomorphism.
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Proposition 2.7. (cf. [7]) Let F,G : RN × R→ R be locally Lipschitz function and
set F(u) =

∫
RN F (x, u(x))dx, G(u) =

∫
RN G(x, u(x))dx. Then F , G are well-defined

and

F0(u; v) ≤
∫
RN

F 0(u(x); v(x))dx, G0(u; v) ≤
∫
RN

G0(u(x); v(x))dx,∀u, v ∈ X.

3. Three solutions for a differential inclusion problem

For the reader’s convenience, we recall the nonsmooth three critical points theorem.

Theorem 3.1. [19] Let X be a separable and reflexive Banach space, Λ a real interval
and B a nonempty, closed, convex subset of X. Φ ∈ C1(X,R) a sequentially weakly
l.s.c. functional and bounded on any bounded subset of X such that Φ′ is of type
(S)+, suppose that F : X → R is a locally Lipschitz functional with compact gradient.
Assume that:
(i) lim‖u‖→+∞[Φ− λF ] = +∞, ∀λ ∈ Λ,
(ii)There exists ρ0 ∈ R such that

sup
λ∈Λ

inf
u∈X

[Φ + λ(ρ0 −F(u))] < inf
u∈X

sup
λ∈Λ

[Φ + λ(ρ0 −F(u))].

Then, there exist λ1, λ2 ∈ Λ (λ1 < λ2) and σ > 0 such that for every λ ∈ [λ1, λ2]
and every locally Lipschitz functional G : X → R with compact derivative, there exists
µ1 > 0 such that for every µ ∈]0, µ1[ the functional Φ − λF + µG has at least three
critical points whose norms are less than σ.

Let us introduce the following conditions of our problem.
We assume that F : RN × R → R is a Carathéodory function, which is locally Lips-
chitz in the second variable and satisfies the following properties:
(F1) |ξ| ≤ K(|s|t(x)−1 + |s|z(x)−1) for all ξ ∈ ∂F (x, s) with (x, s) ∈ RN × R
(1 ≤ p− ≤ p(x) ≤ p+ < z− ≤ z(x) ≤ z+ < t− ≤ t(x) ≤ t+ < p∗(x));
(F2) |F (x, s)| ≤ H(|s|α(x) + |s|β(x)) for all (x, s) ∈ RN ×R (H > 0, 1 ≤ α− ≤ α(x) ≤
α+ < β− ≤ β(x) ≤ β+ < p− ≤ p(x) ≤ p+ < p∗(x));

(F3) F (x, 0) = 0 for a.e. x ∈ RN and there exists û ∈ W
1,p(·)
0 (RN ) such that∫

RN F (x, û)dx > 0 for a.e. x ∈ RN ;

(G) |ξ| ≤ K ′(1 + |s|r(x)−1) for all ξ ∈ ∂G(x, s) with (x, s) ∈ RN × R (1 ≤ p− ≤
p(x) ≤ p+ < r− ≤ r(x) ≤ r+ < p∗(x)).

We need the following lemmas in the proof of our main result.

Lemma 3.2. If (F1) holds, then F : X → R is locally Lipschitz functional with
compact gradient.

Proof. First we prove that F is Lipschitz continuous on each bounded subset of X.
Let u, v ∈ B(0,M) (M > 0) and ‖u‖, ‖v‖ ≤ 1. From proposition 2.5, the Hölder
inequality and the embedding of X in Lt(x)(RN ) and Lz(x)(RN )

|F(u)−F(v)| ≤
∫
RN
|F (x, u(x))− F (x, v(x))|dx

≤
∫
RN

K(|u(x)|t(x)−1 + |v(x)|t(x)−1 + |u(x)|z(x)−1 + |v(x)|z(x)−1)|u(x)− v(x)|dx
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≤ K(‖|u(x)|t(x)−1 + |v(x)|t(x)−1‖)Lt′(x)(RN )‖u− v‖Lt(x)(RN )

+K(‖|u(x)|z(x)−1 + |v(x)|z(x)−1‖)Lz′(x)(RN )‖u− v‖Lz(x)(RN )

≤ 2K(c1M
z−−1 + c2M

t−−1)‖u− v‖,
where c1, c2 are positive constants.
We prove that ∂F is compact. Let {un} be a sequence in X such that ‖un‖ ≤M and
choose u∗n ∈ ∂F(un) for any n ∈ N. From (F1) it follows that for any n ∈ N, v ∈ X,

< u∗n, v > ≤
∫
RN
|u∗n(x)||v(x)|dx ≤

∫
RN

K(|u(x)|t(x)−1 + |u(x)|z(x)−1)|v(x)|dx

≤ (c3M
t−−1 + c4M

z−−1)‖v‖,
where c3, c4 are positive constants.
Consequently,

‖u∗n‖X∗ ≤ (c3M
t−−1 + c4M

z−−1).

The sequence {u∗n} is bounded and hence, up to a subsequence, u∗n ⇀ u∗.
Suppose on the contrary; we assume that there exists ε > 0 for which ‖u∗n−u∗‖X∗ > ε
(choose a subsequence if necessary). For every n ∈ N, we can find {vn} ∈ X with
‖vn‖ < 1 and

〈u∗n − u∗, vn〉 > ε. (4)

Then, {vn} is a bounded sequence and up to a subsequence, vn ⇀ v, ‖vn−v‖Lt(x)(Ω) →
0 and ‖vn − v‖Lz(x)(Ω) → 0. Hence,

|〈u∗n − u∗, v〉| <
ε

4
, |〈u∗, vn − v〉| <

ε

4
,

‖vn − v‖Lt(x) <
ε

4Kc3M t−−1
, ‖vn − v‖Lz(x) <

ε

4Kc4Mz−−1
.

It follows that,

〈u∗n − u∗, vn〉 ≤ 〈u∗n, vn − v〉+ 〈u∗n − u∗, v〉+ 〈u∗, v − vn〉

≤
∫
RN
|u∗n(x)||vn(x)− v(x)|dx+ 〈u∗n − u∗, v〉+ 〈u∗, v − vn〉

≤ K(c3M
t−−1‖vn − v‖Lt(x) + c4M

z−−1‖vn − v‖Lz(x))
+〈u∗n − u∗, v〉+ 〈u∗, v − vn〉 → 0,

which contradicts (15). �

Lemma 3.3. Let G be satisfied. Then G is a locally Lipschitz functional with compact
gradient.

The proof is similar to lemma (3.2).
The next lemma points out the relationship between the critical points of I(u) and

solutions of Problem (2).

Lemma 3.4. Every critical point of the functional I is a solution of Problem (1).

Proof. Let u ∈ X be a critical point of I(u) = Φ(u) − λF(u) − µG(u) + χ(u). Then
u ∈ B and by definition 2.2

〈Φ′u, v − u〉+ λ(−F)0(u; v − u) + µ(−G)0〈u; v − u〉 ≥ 0, ∀v ∈ X.
Using proposition 2.7 and proposition 2.4, we obtain the desired inequality. �
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Lemma 3.5. (cf. [19]) Let (F1) and (F3) be satisfied. Then, there exists û ∈ B such
that F(û) > 0.

Lemma 3.6. If (F2) holds, then for any λ ∈ (0,+∞), the function Φ−λF is coercive.

Proof. For u ∈ X such that ‖u‖ ≥ 1

F(u) =

∫
RN

F (x, u)dx ≤
∫
RN

H(|u|α(x)+|u|β(x))dx ≤ H(‖u‖α
+

Lα(x)(RN )+‖u‖β
+

Lβ(x)(RN )
).

By the embedding theorem for suitable positive constant c5, c6 it implies that

F(u) ≤ H(c5‖u‖α
+

X + c6‖u‖β
+

X ).

Consequently, by using proposition 2.2, for any λ > 0,

Φ(u)− λF(u) ≥ 1

p+
‖u‖p

−

X −H(c5‖u‖α
+

X + c6‖u‖β
+

X ).

Since p− > min{α+, β+}, it follows that

lim
‖u‖→+∞

[Φ− λF ] = +∞, ∀u ∈ X, λ ∈ (0,+∞).

�

Theorem 3.7. Let F1, F2, F3 are satisfied. Then there exist λ1, λ2 > 0(λ1 < λ2) and
σ > 0 such that for every λ ∈ [λ1, λ2] and every G satisfying G, there exists µ1 > 0
such that for every µ ∈]0, µ1[ problem (1) admits at least three solutions whose norms
are less than σ.

Proof. Due to Lemma 3.4, we are going to prove the existence of a critical point
of functional I. First, we check if I satisfies the conditions of the nonsmooth three
critical points theorem 3.1. It is clear that Lemma 2.6 shows that Φ satisfies the
weakly sequentially lower semicontinuous property and Φ′ is of type (S+). Moreover,
according to Lemma 3.2, the functional F is weakly sequentially semicontinuous.
Since Lemma 3.6, implies that Φ − λF is coercive on X for all λ ∈ Λ =]0,+∞[, so,
the assumption (i) of theorem 3.1, satisfies.

Case 1. Let us assume that ‖u‖ ≤ 1.
Set for every r > 0,

θ1(r) = sup{F(u);u ∈ X, m1

p−
‖u‖p

−
≤ r},

we indicate that

lim
r→0+

θ1(r)

r
= 0. (5)

From (F1), it is follows that for every ε > 0, there exists c(ε) > 0 such that for every
x ∈ Ω, u ∈ R and ξ ∈ ∂F (x, u)

|ξ| ≤ ε|u|t(x)−1 + c(ε)|u|z(x)−1. (6)

Applying Lebourgs mean value theorem and using the Sobolev embedding theorem
for every u ∈ X, there exist suitable positive constants c7 and c8

F(u) =

∫
RN

F (x, u)dx ≤
∫
RN

K(|u|t(x) + |u|z(x))dx ≤ K(‖u‖t
+

Lt(x)(RN ) + ‖u‖z
+

Lz(x)(RN ))

≤ Kc7(‖u‖t
+

X + ‖u‖z
+

X ) ≤ Kc8(r
t+

p− + r
z+

p− ).
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It follows from min{t+, z+} > p− that

lim
r→0+

θ1(r)

r
= 0.

From Lemma (3.5), û 6= 0. Hence, in view of (5), there is r ∈ R in which

0 < r < m1

p− ‖û‖
p− , 0 < θ1(r)

r < F(û)
m1
p−
‖û‖p−

.

Choose ρ0 > 0 such that

θ1(r) < ρ0 <
rF(û)

m1

p− ‖û‖p
− , (7)

especially, ρ0 < F(û).
We claim that

sup
λ∈Λ

inf
u∈B

[Φ(u) + λ(ρ0 −F(u))] < r. (8)

It is obvious that the mapping

λ 7→ sup
λ∈Λ

inf
u∈B

[Φ(u) + λ(ρ0 −F(u))]

is upper semicontinuous on Λ and

lim
λ→+∞

inf
u∈B

[Φ(u) + λ(ρ0 −F(u))] ≤ lim
λ→+∞

[
m1

p−
‖û‖p

−
+ λ(ρ0 −F(û))] = −∞.

Therefore, there exists λ̄ ∈ Λ in which

sup
λ∈Λ

inf
u∈B

[Φ(u) + λ(ρ0 −F(u))] = inf
u∈B

[
m1

p−
‖u‖p

−
+ λ̄(ρ0 −F(u))].

We consider two cases:
(I) If λ̄ρ0 < r, we obtain

inf
u∈B

[
m1

p−
‖u‖p

−
+ λ̄(ρ0 −F(u))] ≤ λ̄ρ0 < r.

(II) If λ̄ρ0 ≥ r, from (7) we obtain

inf
u∈B

[
m1

p−
‖u‖p

−
+ λ̄(ρ0 −F(u))] ≤ m1

p−
‖û‖p

−
+ λ̄(ρ0 −F(û)) ≤

≤ m1

p−
‖û‖p

−
+

r

ρ0
(ρ0 −F(û)) ≤ r.

We claim that

inf
u∈B

sup
λ∈Λ

[Φ(u) + λ(ρ0 −F(u))] ≥ r. (9)

Infact, for every u ∈ B there are two cases:
(I) If F(u) < ρ0,

sup
λ∈Λ

[Φ(u) + λ(ρ0 −F(u))] = +∞.

(II) If F(u) ≥ ρ0, by (7)

sup
λ∈Λ

[Φ(u) + λ(ρ0 −F(u))] = Φ(u) ≥ m0

p+
‖u‖p

+

≥ r.

From (8), (9) and the assumption (ii) of Theorem 3.1, this case verified.
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Case 2. Assume that ‖u‖ ≥ 1.
Similar to case 1:
Set for every r > 0

θ2(r) = sup{F(u);u ∈ X, m1

p−
‖u‖p

+

≤ r}.

We claim that

lim
r→0+

θ2(r)

r
= 0. (10)

In order to Proposition 2.3, for every u ∈ X by continuous and compact embedding,
it implies the existence of c9 and c10 such that

F(u) =

∫
RN

F (x, u)dx ≤
∫
RN

K(|u|t(x) + |u|z(x))dx ≤ K(‖u‖t
+

Lt(x)(RN ) + ‖u‖z
+

Lz(x)(RN ))

≤ Kc9(‖u‖t
+

X + ‖u‖z
+

X ) ≤ Kc10(r
t+

p+ + r
z+

p+ ).

It follows from min{t+, z+} > p+ that

lim
r→0+

θ2(r)

r
= 0.

Using Lemma 3.5 û 6= 0, therefore, due to (10), there is some r ∈ R such that

0 < r <
m1

p−
‖û‖p

+

, 0 <
θ2(r)

r
<

F(û)
m1

p− ‖û‖p
+ .

Let ρ0 > 0 such that

θ2(r) < ρ0 <
rF(û)
m1

p− ‖û‖p
+ . (11)

We claim that

sup
λ∈Λ

inf
u∈B

[Φ(u) + λ(ρ0 −F(u))] < r. (12)

Because of the mapping

λ 7→ sup
λ∈Λ

inf
u∈B

[Φ(u) + λ(ρ0 −F(u))]

is upper semicontinuous on Λ, so

lim
λ→+∞

inf
u∈B

[Φ(u) + λ(ρ0 −F(u))] ≤ lim
λ→+∞

[
m1

p−
‖û‖p

+

+ λ(ρ0 −F(û))] = −∞.

Therefore, there exists λ̄ ∈ Λ

sup
λ∈Λ

inf
u∈B

[Φ(u) + λ(ρ0 −F(u))] = inf
u∈B

[
m1

p−
‖u‖p

+

+ λ̄(ρ0 −F(u))].

We consider two cases:
(I) If λ̄ρ0 < r, we obtain

inf
u∈B

[
m1

p−
‖u‖p

+

+ λ̄(ρ0 −F(u))] ≤ λ̄ρ0 < r.

(II) If λ̄ρ0 ≥ r, from (11) we obtain

inf
u∈B

[
m1

p−
‖u‖p

+

+ λ̄(ρ0 −F(u))] ≤ m1

p−
‖û‖p

+

+ λ̄(ρ0 −F(û)) ≤
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≤ 1

p−
‖û‖p

+

+
r

ρ0
(ρ0 −F(û)) ≤ r.

Next, we claim that

inf
u∈B

sup
λ∈Λ

[Φ(u) + λ(ρ0 −F(u))] ≥ r. (13)

For every u ∈ B two cases can occur:
(I) If F(u) < ρ0 we have

sup
λ∈Λ

[Φ(u) + λ(ρ0 −F(u))] = +∞.

(II) If F(u) ≥ ρ0 we have by (11)

sup
λ∈Λ

[Φ(u) + λ(ρ0 −F(u))] = Φ(u) ≥ m0

p+
‖u‖p

−
≥ r.

For function G which satisfies (G), it follows from Lemma 3.3, that the functional G :
X → R is locally Lipschitz with weakly sequentially semicontinuous. From Theorem
3.1 there exist λ1, λ2 ∈ Λ (without loss of generality we may assume 0 < λ1 < λ2)
and σ > 0 with the following property that, for λ ∈ [λ1, λ2] there exists µ1 > 0 in
which: for every µ1 ∈]0, µ[, the functional Φ− λF − µG admits at least three critical
points u0, u1, u2 ∈ B with ‖ui‖ < σ. So by Lemma 3.4 u0, u1, u2 are three solutions of
the problem (1). �

4. Three radially symmetric solutions for a differential inclusion problem

In this part we apply Theorem 3.1 to show the existence of at least three radially
symmetric solutions for a variational-hemivariational inequality. The main difficulty

in studying our problem is that there is no compact embedding of W
1,p(x)
0 (Ω) to

L∞(RN ). However, the subspace of radially symmetric functions of W
1,p(x)
0 (RN ),

denoted by W
1,p(x)
0,r (RN ) can be embedded compactly into L∞(RN ) whenever N <

p− ≤ p+ < +∞.
Choosing X = W

1,p(·)
0,r (RN ) and applying the nonsmooth version of the principle

of symmetric criticality we consider the differential inclusion problem{
−∆p(x)u+ |u|p(x)−2u ∈ λ∂a(x)F (x, u) + µ∂b(x)G(x, u) on RN

u(x)→ 0 as |x| → ∞,
(14)

where λ, µ are positive parameters and F,G : R→ R are locally Lipschitz functions.
a, b ∈ L∞(RN ), are radially symmetric and a, b ≥ 0.

Let O(N) be the group of orthogonal linear transformations in RN . We say that
a function l : RN → R is radially symmetric if l(gx) = l(x) for every g ∈ O(N) and

x ∈ RN . The action of the group O(N) on W
1,p(·)
0 (RN ) can be defined by (gu)(x) :=

u(g−1x), for every g ∈ O(N) and u ∈ W
1,p(·)
0 (RN ). We can define the subspace of

radially symmetric functions of W
1,p(·)
0 (RN ) by

W
1,p(·)
0,r (RN ) = {u ∈W 1,p(·)

0 (RN ) : gu = u,∀g ∈ O(N)}.

Proposition 4.1. [9] The embedding W
1,p(·)
0,r (RN ) ↪→ L∞(RN ), is compact whenever

N < p− ≤ p+ < +∞.
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The energy functional Ĩ : W
1,p(·)
0,r (RN )→ R associated to problem (14) is given by

Ĩ = Φ(u)− λF̃(u)− µG̃(u) + χ(u)

such that

F̃(u) =

∫
RN

a(x)F (x, u)dx, G̃(u) =

∫
RN

b(x)G(x, u)dx, ∀u ∈W 1,p(·)
0,r (RN ),

where χ(u) is the indicator function of the set B.
By the principle of symmetric criticality of Krawcewicz and Marzantowicz (cf. [22]),

u is a critical point of I if and only if u is a critical point of Ĩr = I|
W

1,p(·)
0,r (RN )

.

Lemma 4.2. Assuming (F1) satisfies, F : X → R will be locally Lipschitz functional
and sequentially weakly semicontinuous.

Proof. By similar argument of Lemma 3.2 we show that F is Lipschitz continuous
on each bounded subset of X. Let u, v ∈ B(0,M) (M > 0), and ‖u‖, ‖u‖ ≤ 1. From
proposition 2.5 and thanks to proposition 2.3

|F(u)−F(v)| ≤
∫
RN
|a(x)(F (x, u(x))− F (x, v(x)))|dx

≤
∫
RN

Ka(x)(|u(x)|t(x)−1 + |v(x)|t(x)−1 + |u(x)|z(x)−1 + |v(x)|z(x)−1)

×|u(x)− v(x)|dx

≤ K‖a‖∞‖u− v‖∞
∫
RN
|u(x)|t(x)−1dx+

∫
RN
|v(x)|t(x)−1dx

+

∫
RN
|u(x)|z(x)−1dx+

∫
RN
|v(x)|z(x)−1dx

≤ K‖a‖∞‖u− v‖∞
(
‖u‖t

−−1
Lt(x)

+ ‖v‖t
−−1
Lt(x)

+ ‖u‖z
−−1
Lz(x)

+ ‖v‖z
−−1
Lz(x)

)
≤ K‖a‖∞‖u− v‖X

(
‖u‖t

−−1
X + ‖v‖t

−−1
X + ‖u‖z

−−1
X + ‖v‖z

−−1
X

)
≤ 2K‖u− v‖X(c11M

t−−1 + c12M
z−−1)

where c11, c12 are positive constants.
We show ∂F is compact. Let {un} be a sequence in X such that ‖un‖ ≤ M and
choose u∗n ∈ ∂F(un) ⊆

∫
RN a(x)∂F (x, un(x))dx for any n ∈ N. From (F1) it follows

that for any n ∈ N, v ∈ X,

< u∗n, v > ≤
∫
RN
|u∗n(x)||v(x)|dx ≤

∫
RN

K|a(x)|(|u(x)|t(x)−1 + |u(x)|z(x)−1)|v(x)|dx

≤ K‖a‖L∞(c13M
t−−1 + c14M

z−−1)‖v‖,
where c13, c14 are positive constants.
Therefore,

‖u∗n‖X∗ ≤ K‖a‖L∞(c13M
t−−1 + c14M

z−−1).

The sequence {u∗n} is bounded and hence, up to a subsequence, u∗n ⇀ u∗.
Suppose on the contrary; there exists ε > 0 for which ‖u∗n − u∗‖X∗ > ε (choose a
subsequence if necessary). For every n ∈ N, we can find vn ∈ X with ‖vn‖ < 1 and

〈u∗n − u∗, vn〉 > ε. (15)
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Then, {vn} is a bounded sequence and up to a subsequence, {vn} be a sequence in

W
1,p(·)
r,0 (Ω) which converges weakly to v ∈ W

1,p(·)
r,0 (Ω). By proposition 4.1, vn → v

strongly in L∞(Ω). Therefore,

|〈u∗n−u∗, v〉| <
ε

4
, |〈u∗, vn−v〉| <

ε

4
, ‖vn−v‖L∞ <

ε

2K‖a‖L∞(c3M t−−1 + c4Mz−−1)
.

It follows that,

〈u∗n − u∗, vn〉 ≤ 〈u∗n, vn − v〉+ 〈u∗n − u∗, v〉+ 〈u∗, v − vn〉

≤
∫
RN
|u∗n(x)||vn(x)− v(x)|dx+ 〈u∗n − u∗, v〉+ 〈u∗, v − vn〉

≤ K‖a‖L∞(c13M
t−−1 + c14M

z−−1)‖vn − v‖L∞

+〈u∗n − u∗, v〉+ 〈u∗, v − vn〉 → 0,

which contradicts (15). �

Lemma 4.3. If G satisfies, then G is a locally Lipschitz functional with compact
gradient.

The proof is similar to Lemma (4.2).

Lemma 4.4. If (F2) holds, then for any λ ∈ (0,+∞), the function Φ−λF is coercive.

Proof. For u ∈ X such that ‖u‖ ≥ 1

F(u) =

∫
RN

a(x)F (x, u)dx ≤
∫
RN

H|a(x)|(|u|α(x) + |u|β(x))dx

≤ H‖a‖L∞(‖u‖α
+

Lα(x)(RN ) + ‖u‖β
+

Lβ(x)(RN )
).

By the embedding theorem for suitable positive constant c15, c16

F(u) ≤ H‖a‖L∞(c15‖u‖α
+

X + c16‖u‖β
+

X ).

Hence, from Proposition 2.2, for any λ > 0,

Φ(u)− λF(u) ≥ 1

p+
‖u‖p

−

X −H‖a‖L∞(c15‖u‖α
+

X + c16‖u‖β
+

X ).

Since p− > min{α+, β+}, it implies that

lim
‖u‖→+∞

[Φ− λF ] = +∞, ∀u ∈ X, λ ∈ (0,+∞).

�

Theorem 4.5. Let a, b ∈ L∞(Ω) be two radial functions and F1, F2, F3 are satisfied.
Then there exist λ1, λ2 > 0(λ1 < λ2) and σ̃ > 0 such that for every λ ∈ [λ1, λ2] and
every G satisfying G, there exists µ1 > 0 such that for every µ ∈]0, µ1[ problem (14)
admits at least three distinct, radially symmetric solutions whose norms are less than
σ̃.



THREE CRITICAL SOLUTIONS FOR VARIATIONAL ... 113

Proof. Case 1. Let us assume that ‖u‖ < 1.
Put for every r > 0,

θ1(r) = sup{F(u);u ∈ X, m1

p−
‖u‖p

−
≤ r},

we prove that

lim
r→0+

θ1(r)

r
= 0. (16)

In view of (F1), it is follows that for every ε > 0, there exists c(ε) > 0 such that for
every x ∈ RN , u ∈ R and ξ ∈ ∂F (x, u)

|ξ| ≤ ε|u|t(x)−1 + c(ε)|u|z(x)−1. (17)

Applying Lebourgs mean value theorem and using the Sobolev embedding theorem
for every u ∈ X, there exist suitable positive constants c17 and c18

F(u) =

∫
RN

F (x, u)dx ≤
∫
RN

Ka(x)(|u|t(x) + |u|z(x))dx

≤ K‖a‖L∞(‖u‖t
+

Lt(x)(RN ) + ‖u‖z
+

Lz(x)(RN ))

≤ K‖a‖L∞c17(‖u‖t
+

X + ‖u‖z
+

X ) ≤ K‖a‖L∞c18(r
t+

p− + r
z+

p− ).

By using min{t+, z+} > p− we conclude that

lim
r→0+

θ1(r)

r
= 0.

The remainder proof for the existence of three radially symmetric solutions of problem
(14) is similarly to Theorem 3.7. �
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