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Generalized ring-groupoids

Mustafa Habil GÜRSOY

Abstract. In this work, we are going to present the concept of generalized ring-groupoid.
Also, we are going to investigate some characterizations about the generalized ring-groupoids.

We are going to introduce the concept of generalized subring-groupoid. So we construct the

category of generalized ring-groupoids. Furthermore, we are going to discuss a new class of
the generalized ring-groupoids, which we will say it ”M -ring-groupoid”. In the end of the

paper, we are going to give the product of generalized ring-groupoids.
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1. Introduction

The concept of generalized ring was first defined by Molaei [13] in 2003. Later,
some algebraic properties of the generalized ring which is a new concept in literature
have been studied in [7]. There is the concept of generalized group in the structure
of generalized ring. The concept was again defined by Molaei [12] is an interesting
generalization of groups. While there is only one identity element in a group, each
element in a generalized group has a unique identity element. With this property,
every group is a generalized group.

Another algebraic notion covered in the present study is groupoid which was defined
by Brandt [1] in 1926. But, in the category theoretical approach, a groupoid is a small
category whose every morphism is an isomorphism. After introducing of topological
and differentiable groupoids by Ehresmann [4] in 1950s, it has been studied by many
mathematicians with different approaches [3, 9]. One of these different approaches
is structured groupoid which is obtained with adding another algebraic structure
such that the composition of groupoid is compatible with the operation of the added
algebraic structure [2, 5, 10, 14]. The best knowns of the structured groupoids are
the concepts of group-groupoid and ring-groupoid. The group-groupoid which is a
group object in the category of groupoids was defined by Brown and Spencer [2]. The
concept of ring-groupoid defined by [15] has been studied by many mathematicians
[10, 11].

In this study, we extend the concept of ring-groupoid to the concept of generalized
ring-groupoid by adding the structure of generalized ring to a groupoid such that the
composition of the groupoid and the operations of the generalized ring are compatible.
In other words, a generalized ring-groupoid is a generalized ring object in the category
of groupoids. Thus, we construct the category of the generalized ring-groupoids. Also,
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we present two concept related to the generalized ring-groupoids: generalized subring-
groupoid and M -ring-groupoid.

2. Preliminaries

This section of the paper is devoted to give basic definitions and concepts related
to the generalized rings and groupoids. We will consider these concepts under two
headings: generalized rings and groupoids.

2.1. Generalized Rings. In this subsection, it is given some basic recalls of the
concept of generalized ring which was first defined by Molaei. Let us start with the
definition of a generalized group that the existing in the structure of a generalized
ring.

Definition 2.1. [12] A generalized group G is a non-empty set admitting an operation
called multiplication subject to the set of rules given below:
i) (ab)c = a(bc), for all a, b, c ∈ G
ii) For each a ∈ G, there exists a unique e(a) ∈ G such that ae(a) = e(a)a = a
iii) For each a ∈ G, there exists a−1 ∈ G such that aa−1 = a−1a = e(a).

Let us list some properties of generalized groups via following lemma.

Lemma 2.1. [12] Let G be a generalized group. Then,
i) For each a ∈ G, there is a unique element a−1 ∈ G.
ii) For each a ∈ G, we have e(a) = e(a−1) and e(e(a)) = e(a).
iii) For each a ∈ G, we have (a−1)−1 = a.

It is easily from Definition 2.1 that every group is a generalized group. But it is
not true in general that every generalized group is a group.

Let us state the relation between group and generalized group by the following
lemma.

Lemma 2.2. [12] Let G be a generalized group and ab = ba for all a, b ∈ G. Then,
G is a group.

In other words, every abelian generalized group is a group.

Example 2.1. [12] Let G = IR × (IR \ {0}). Then G with the multiplication
(a, b) · (c, d) = (bc, bd) is a generalized group in which for all (a, b) ∈ G, e(a, b) =
(a/b, 1) and (a, b)−1 = (a/b2, 1/b).

Example 2.2. [5] Let G with the multiplication m be a generalized group. Then,
G×G with the multiplication

m1((a, b), (c, d)) = (m(a, c),m(b, d))

is a generalized group. For any element (a, b) ∈ G × G, the identity element is
e1(a, b) = (e(a), e(b)) and the inverse element is (a, b)−1 = (a−1, b−1).

Definition 2.2. [12] If e(ab) = e(a)e(b) for all a, b ∈ G, then G is called normal
generalized group.

Definition 2.3. [12] A non-empty subset H of a generalized group G is a generalized
subgroup of G if and only if for all a, b ∈ H, ab−1 ∈ H.
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Definition 2.4. [12] A generalized subgroup N of the generalized group G is said to
be normal if there exist a generalized group H and a homomorphism f : G→ H such
that for each a ∈ G, Na = kerfa provided that Na 6= ∅, where Na = N ∩Ga.

Example 2.3. [12] Let G be a generalized group of Example 2.1. Then N = {(a, b) :
a = b or a = 3b} is a generalized normal subgroup of G.

Definition 2.5. [12] Let G and H be two generalized groups. A generalized group
homomorphism from G to H is a map f : G→ H such that f(ab) = f(a)f(b) for all
a, b ∈ G.

Theorem 2.3. [12] Let f : G → H be a homomorphism of the distinct generalized
groups G and H. Then,
i) f(e(a)) = e(f(a)) is an identity element in H for all a ∈ G.
ii) f(a−1) = (f(a))−1

iii) If K is a generalized subgroup of G, then f(K) is a generalized subgroup of H.

Now we can give definition of a generalized ring.

Definition 2.6. [13] A generalized ring R is a non-empty set R with two different
operations (x, y) 7→ x+ y and (x, y) 7→ xy with the following axioms:
i) (x+ y) + z = x+ (y + z), where x, y, z ∈ R
ii) For all x ∈ R, there exists a unique e(x) ∈ R such that x+ e(x) = e(x) + x = x
iii) For all x ∈ R, there exists −x ∈ R such that x+ (−x) = (−x) + x = e(x).
iv) (xy)z = x(yz), where x, y, z ∈ R
v) For all x, y, z ∈ R, x(y + z) = xy + xz and (x+ y)z = xz + yz.

The properties (i), (ii) and (iii) mean that (R,+) is a generalized group.

Remark 2.1. Using (iii) and the associavity of +, one easily verifies e(x)+e(x) = e(x)
for every x ∈ R. Hence e(e(x)) = e(x) follows by definitions and so e2 = e for the
corresponding function e : R→ R.

A generalized ring with its operations is a ring iff e is a constant function.

Example 2.4. [7] The two dimensional Euclidean space IR2 with the operations
(a1, b1) + (a2, b2) = (a1, b2) and (a1, b1)(a2, b2) = (a1a2, b1b2) is a generalized ring.

A generalized ring R is called an M -ring if e(xy) = e(x)e(y) and e(x + y) =
e(x) + e(y), for all x, y ∈ R.
R is an M -ring if e(x + y) = e(x) + e(y), for all x, y ∈ R. In other words, the

identity function e is a generalized ring homomorphism if e(x+ y) = e(x) + e(y), for
all x, y ∈ R.

If there is 1 ∈ R such that x.1 = 1.x = x, for all x ∈ R, then R is called a
generalized ring with an identity.

One can easily prove that the identity of a generalized ring is unique.

Theorem 2.4. [7] If R is a generalized ring, then e(ab) = e(a)e(b), for all a, b ∈ R.

Proof. Let a, b ∈ R be given ab+ae(b) = a(b+e(b)) = ab, ae(b)+ab = a(e(b)+b) = ab.
So e(ab) = ae(b), e(a)e(b) + ae(b) = (e(a) + a)e(b) = ae(b), ae(b) + e(a)e(b) =
(a + e(a))e(b) = ae(b). So e(ae(b)) = e(a)e(b). Hence e(e(ab)) = e(a)e(b). Thus
e(ab) = e(a)e(b), because e2 = e. �
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Corollary 2.5. If R is a generalized ring, then e(a)e(b) = ae(b) = e(a)b = e(ab), for
all a, b ∈ R.

Previous theorem implies that a generalized ring R is an M -ring if and only if
(R,+) is a normal generalized group.

Theorem 2.6. [7] If R is a generalized ring, and if there is x ∈ R such that Rx =
{e(y) | y ∈ R}, then R is an M -ring.

Proof. If a, b ∈ R, then there are ax ∈ R and bx ∈ R such that e(a) = axx and
e(b) = bxx. So e(a) + e(b) = (ax + bx)x. Thus e(a) + e(b) = e(z) for some z ∈ R.
Hence e(e(a)+e(b)) = e(e(z)) = e(z) = e(a)+e(b). In Remark 2.3 of [6] it was proved
that e(e(a) + e(b)) = e(a+ b). So e(a+ b) = e(a) + e(b). Thus R is an M -ring. �

A subset I of an M -ring R is called a g-ideal (see [13]) if there exist a generalized
ring D and a generalized ring homomorphism f : R → D such that kerf = I, where
kerf = {r ∈ R | f(r) = f(e(a)) for some a ∈ R}. The set R/I = {x + kerfr | x ∈
Rr and fr = f |Rr

} with the operations (x+ kerfr) + (y+ kerfk) = (x+ y) + kerfr+k

and (x+ kerfr)(y + kerfk) = (xy) + kerfrk is an M -ring (for the proof see Theorem
2.3 of [13]).

Definition 2.7. [7] If R and K are generalized rings, then a mapping f : R→ K is
called an embedding if f is a monomorphism.

2.2. Groupoids. In this section, we introduce the elementary concepts of the groupoid
theory. Then, it is given some recalls about the concept of ring-groupoid which is a
ring object in the category of groupoids.

Definition 2.8. [3, 9] A groupoid consists of two sets G and G0, called respectively
the groupoid and the base, together with two maps α and β from G to G0, called

respectively the source and the target maps, a map ε : G0 → G, x 7→ ε(x) =
∼
x = 1x,

called the object inclusion map, a map i : G → G, x 7→ i(x) = x−1, called the
inversion, and a partial multiplication (x, y) 7→ m(x, y) = xy in G defined on the set
G2 = G ∗G = {(x, y) | β(x) = α(y)}. These maps verify the following conditions:

G1) (associativity): x(yz) = (xy)z for all x, y, z ∈ G such that α(x) = β(y) and
α(y) = β(x).
G2) (units): For each x ∈ G, we have (ε (α (x)) , x) ∈ G2, (x, ε (β (x))) ∈ G2and
ε (α (x))x = xε (β (x)) = x.
G3) (inverses): For each x ∈ G, we have (x, i(x)) ∈ G2, (i(x), x) ∈ G2and xi(x) =
ε (α (x)), i(x)x = ε (β (x)).

The maps α, β,m, ε, i are called structure maps of groupoid. For a groupoid G on
G0 and x, y ∈ G0, we will write StGx for α−1(x), CoStGy for β−1(y) and G(x, y)
for StGx ∩ CoStGy. The set StGx is the star of G at x and CoStGy is the co-star
of G at y. The set G(x, x), obviously a group under the restriction of the partial
multiplication in G, is called the vertex group at x.

The following examples of groupoids are well-known.

Example 2.5. [3, 9] A group can be regarded as a groupoid with only one object.

Example 2.6. [3, 9] Any set G can be regarded as a groupoid on itself with α = β =
idG and every element a unity.
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Example 2.7. [3] For a set X, the cartesian product X ×X is a groupoid over X,
called the Banal groupoid. The maps α and β are the natural projections onto the
second and first factors, respectively. The object inclusion map is x 7→ (x, x) and the
partial multiplication is given by (x, y)(y, z) = (x, z). The inverse of (x, y) is simply
(y, x).

Definition 2.9. [3, 9] Let G and G
′

be groupoids on B and B
′
, respectively. A

homomorphism G → G
′

is a pair of (f, f0) of maps f : G → G
′
, f0 : B → B

′
such

that α
′ ◦ f = f0 ◦ α, β

′ ◦ f = f0 ◦ β and f(ab) = f(a)f(b) ∀(a, b) ∈ G2.

We denote the groupoid homomorphism (f, f0) by f for brevity.
Thus, we can construct the category Gpd of the groupoids and their homomor-

phisms.
Now let us recall the concept of ring-groupoid which is a ring object in the category

of groupoids.

Definition 2.10. [15] A ring-groupoid R is a groupoid endowed with a structure of
ring such that following ring structure maps are groupoid homomorphisms.

i) m : R×R→ R, (a, b) 7→ a+ b, group operation
ii) n : R×R→ R, (a, b) 7→ ab, ring operation
iii) u : R→ R, a 7→ −a, inverse in group
iv) e : ∗ → R.
Also, there exist following interchange laws in a ring-groupoid R.

(1) (c ◦ a) + (d ◦ b) = (c+ d) ◦ (a+ b),
(2) (c ◦ a)(d ◦ b) = (cd) ◦ (ab).

A ring groupoid homomorphism is a groupoid homomorphism preserving ring struc-
ture.

Example 2.8. Given a ring R, we can construct a ring-groupoid R×R over R. In this
ring-groupoid we define the ring operation by (a, b)(c, d) = (ac, bd) for all a, b, c, d ∈ R
(for more details, see [15]).

Definition 2.11. [15] Let R and S be two ring-groupoids. A homomorphism f :
R→ S of ring-groupoids is a homomorphism of underlying groupoids preserving ring
structure.

Thus, the ring-groupoids and their homomorphisms form a category which is de-
noted by RGd.

3. Generalized Ring-Groupoids

In this section we present the concept of generalized ring-groupoid which is a
generalized ring object in the category of groupoids. In addition, we construct the
category of generalized ring-groupoids. From [8] with this aim, let us recall the
concept of generalized group-groupoid which is lie in the structure of a generalized
ring-groupoid.

Definition 3.1. A generalized group-groupoid is a groupoid (G,G0) such that the
following conditions are hold:
i) (G,w, v, σ) and (G0, w0, v0, σ0) are generalized groups.
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ii) The maps (w,w0) : (G × G,G0 × G0) → (G,G0), v : {λ} → G and (σ, σ0) :
(G,G0)→ (G,G0) are groupoid homomorphisms.

Also, there exists an interchange law between the groupoid composition and the
generalized group operation:

w (m (b, a) ,m (d, c)) = m (w (b, d) , w (a, c)) .

We shall denote a generalized group-groupoid by (G,G0, ◦,+).

We use the following equality for interchange law:

(b ◦ a) + (d ◦ c) = (b+ d) ◦ (a+ c) .

In other words, a generalized group-groupoid is a groupoid endowed with a struc-
ture of generalized group such that the structure maps of groupoid are generalized
group homomorphisms.

Example 3.1. [8] Let G be a generalized group. Then we constitute a generalized
group-groupoid G×G with object set G. For each object (x, y) ∈ G×G, the identity
arrow is (e(x), e(y)), and the inverse is (−x,−y).

A generalized group homomorphism f : G → H between the generalized group-
groupoids G and H is a groupoid homomorphism preserving the structure of gener-
alized group [8].

Therefore, the generalized group-groupoids and their homomorphisms form a cat-
egory denoted by GG−Gd.

Now let us give definition of a generalized ring-groupoid.

Definition 3.2. A generalized ring-groupoid R is a groupoid R endowed with a struc-
ture of generalized ring such that the following maps are groupoid homomorphisms:
1) m : R×R→ R, (a, b) 7→ a+ b, generalized group operation,
2) u : R→ R, a 7→ −a,
3) e : ∗ → R, where ∗ is a singleton,
4) n : R×R→ R, (a, b) 7→ ab, generalized ring operation.

Also, there exist two interchange laws between the groupoid composition and the
operations of the generalized ring:

(c ◦ a) + (d ◦ b) = (c+ d) ◦ (a+ b)

(c ◦ a) · (d ◦ b) = (c · d) ◦ (a · b).
We shall denote a generalized ring-groupoid by (R,R0, ◦,+, ·).

In a generalized ring-groupoid, if e is the identity of R0, then 1e is that of R.
We can rewrite the definition of a generalized ring-groupoid in terms of the gener-

alized group-groupoid as follows:

Definition 3.3. A generalized ring-groupoid R is a generalized group-groupoid R
endowed with a structure of generalized ring such that the map n : R × R → R,
defined by (a, b) 7→ ab, is a homomorphism of groupoids. Also, in a generalized
ring-groupoid, we have the following interchange law:

(c ◦ a)(d ◦ b) = (cd) ◦ (ab).

Proposition 3.1. Let R be a generalized ring-groupoid. Then, the maps of source,
target and object are generalized ring homomorphisms.
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Proof. Since R = ((R,R0, ◦,+) is a generalized group-groupoid, the maps of source,
target and object are generalized group homomorphisms. Let a, b ∈ R and x, y ∈
R0. Since n is a groupoid homomorphism, the equalities αn(a, b) = f0(α × α)(a, b),
βn(a, b) = f0(β×β)(a, b) and εf0(x, y) = n(ε×ε)(x, y) imply to be α(a, b) = α(a)α(b),
β(a, b) = β(a)β(b) and ε(x, y) = ε(x)ε(y), respectively.

Thus, the maps of source, target and object are generalized ring homomorphisms.
�

Example 3.2. Let R be a generalized ring. Then R×R is a generalized ring-groupoid
with the object set R. We know from [8] that R×R with the operation (x, y)+(z, t) =
(x+z, y+t) is a generalized group-groupoid over R. So it is enough to show that R×R
is a generalized ring, and then the generalized ring map n : (R×R)×(R×R)→ R×R
is a groupoid homomorphism. We also must verify the second interchange law.

If we show that the conditions (iv) and (v) in Definition 3.2 are hold, we conclude
that R×R is a generalized ring. Now let us control these conditions.

We define the generalized ring operation of R×R as follows:

(x, y)(z, t) = (xz, yt).

iv) We have

((x, y)(z, t))(p, s) = (xz, yt)(p, s)

= ((xz)p, (yt)s)

= (x(zp), y(ts))

= (x, y)(zp, ts)

= (x, y)((z, t)(p, s)).

So, fourth condition is hold.
v)

(x, y)[(z, t) + (p, s)] = (x, y)(z + p, t+ s)

= (x(z + p), y(t+ s))

= (xz + xp, yt+ ys)

= (xz, yt) + (xp, ys)

= (x, y)(z, t) + (x, y)(p, s))

and

[(x, y) + (z, t)](p, s) = (x+ z, y + t)(p, s)

= ((x+ z)p), (y + t)s)

= (xp+ zp, ys+ ts)

= (xp, ys) + (zp, ts)

= (x, y)(p, s) + (z, t)(p, s)).

Hence, the condition (v) also is hold. Therefore, R×R is a generalized ring.
Now let us show that the second interchange law is satisfied.

[(z, y) ◦ (y, x)][(z
′
, y

′
) ◦ (y

′
, x

′
)] = (z, x)(z

′
, x

′
)

= (zz
′
, xx

′
)
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and

[(z, y)(z
′
, y

′
)] ◦ [(y, x)(y

′
, x

′
)] = (zz

′
, yy

′
) ◦ (yy

′
, xx

′
)

= (zz
′
, xx

′
).

Hence, we have the equality

[(z, y) ◦ (y, x)][(z
′
, y

′
) ◦ (y

′
, x

′
)] = [(z, y)(z

′
, y

′
)] ◦ [(y, x)(y

′
, x

′
)].

Consequently, R×R is a generalized ring-groupoid.

Definition 3.4. Let R and S be two generalized ring-groupoids. A generalized ring-
groupoid homomorphism f : R → S is a groupoid homomorphism satisfying the
generalized ring structure.

Therefore, the generalized ring-groupoids and their homomorphisms form a cate-
gory denoted by GR−Gd.

Proposition 3.2. There is a functor from the category GR of the generalized rings
to the category GR−Gd of the generalized ring-groupoids.

Proof. Let R be a generalized ring. Then, from Example 3.2, the cartesian product
R × R is a generalized ring-groupoid. If f : R → S is a homomorphism of the
generalized rings, then

Γ(f) : R×R −→ S × S
(a, b) 7−→ (f(a), f(b))

is a homomorphism of the generalized ring-groupoids. Thus, Γ is a functor from the
category GR to the category GR−Gd. �

Now let us define the concept of generalized subring-groupoid.

Definition 3.5. Let R be a generalized ring-groupoid and be S ⊂ R. S is called
a generalized subring-groupoid if (S, S0, ◦,+, .) has a structure of generalized ring-
groupoid.

Furthermore, S is wide, if S0 = R0, and S is full, if S(x, y) = R(x, y) for all
x, y ∈ S0.

Proposition 3.3. Let R be a generalized ring-groupoid. Then, the set of identities
ε(R0) is a wide generalized subring-groupoid.

Proof. Denote by A the set of identities ε(R0) for brevity. If 1x, 1y ∈ A, then 1x+1y ∈
A. Hence (A,A0) is a wide subgroupoid of R. It remains to prove that A is closed
under the generalized ring operation.

Since the object map ε preserves the generalized ring structure, we have

1x1y = (1x ◦ 1x)(1y ◦ 1y) = (1x1y) ◦ (1x1y) = 1xy ◦ 1xy = 1xy.

This implies that 1x1y ∈ A.
On the other hand, for 1z ∈ A

1x(1y + 1z) = 1x1y+z = 1x(y+z) = 1xy+xz = 1xy + 1xz = 1x1y + 1x1z.

Therefore, A = ε(R0) is a wide generalized subring-groupoid. �

We define a special class of the generalized ring-groupoids.
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Definition 3.6. A generalized ring-groupoid R is called an M -ring-groupoid if R has
a structure of M -ring.

It is obvious that the category of M -ring-groupoids is a subcategory of the category
of generalized ring-groupoids. Also, every M -ring-groupoid is a generalized ring-
groupoid.

Since the set of arrows and the set of objects in an M -ring-groupoid are M -rings,
then we can define the concept of a g-ideal ring-groupoid as follows:

Definition 3.7. A generalized subgroup-groupoid S of an M -ring-groupoid R is a
left g-ideal ring-groupoid if

l : R× S → S

(r, s) 7→ rs,∀r ∈ R,∀s ∈ S

is a groupoid homomorphism. Similarly, S is a right g-ideal ring-groupoid if

k : S ×R→ S

(s, r) 7→ sr, ∀r ∈ R,∀s ∈ S

is a groupoid homomorphism. Furthermore, S is a g-ideal ring-groupoid if it is both
left and right g-ideal ring-groupoid.

From Definition 3.7, the sets of arrows and objects of S are left g-ideal rings,
because l is a groupoid homomorphism. Also, every left (right) g-ideal ring-groupoid
is a generalized subring-groupoid.

Proposition 3.4. Let S be a generalized subgroup-groupoid of an M -ring groupoid
R. If the set of arrows of S is a left g-ideal ring, then S0 is also a left g-ideal of R0.

Proof. Let x ∈ S0 and y ∈ R0. Then, we have 1x ∈ S and 1y ∈ R. Since the set
of arrows of S is a left g-ideal ring, then we have 1y1x = 1yx ∈ S. Since S is a
generalized subgroup-groupoid, then we have yx ∈ S0. Thus, S0 is a left g-ideal of
R0. �

The interchange law in a g-ideal ring-groupoid is hold as follows: Let R be an M -
ring-groupoid and I be a left g-ideal ring-groupoid such that a, c ∈ I. For b, d ∈ R, if
a◦c and b◦d are defined, then we have (b◦d)(a◦c) = (ba)◦(dc). Since the set of arrows
of I is a left g-ideal, then ba, dc ∈ I. Also, since I is a generalized subgroup-groupoid,
which means that ba and dc are defined in I, then we have (ba) ◦ (dc) ∈ I.

A similar result to Proposition 3.4 can also be given for a right g-ideal ring-
groupoid.

Finally, let us present the product of generalized ring-groupoids.

Proposition 3.5. Let {Ri : i ∈ I} be a family of generalized ring-groupoids. Then,
(R =

∏
Ri, R0 =

∏
(Ri)0, ◦,+, .) is a generalized ring-groupoid.

Proof. The arrows of R are all tuples (ri)i∈I for each ri ∈ Ri and its objects are all
tuples (xi)i∈I for each xi ∈ (Ri)0. It is easily proved that (R,R0, ◦,+) is a generalized
group-groupoid. We define the generalized ring operation on R as follows:

(ri)i∈I(si)i∈I = (risi)i∈I , for each (ri, si) ∈ Ri ×Ri

(xi)i∈I(yi)i∈I = (xiyi)i∈I , for each (xi, yi) ∈ (Ri)0 × (Ri)0
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For the source map α, since

α((ri)i∈I + (si)i∈I) = α((ri + si)i∈I)

= (αi(ri + si))i∈I

= (αi(ri))i∈I + (αi(si))i∈I

= α((ri)i∈I) + α((si)i∈I)

and

α((ri)i∈I(si)i∈I) = α((risi)i∈I)

= (αi(risi)i∈I

= (αi(ri))i∈I(αi(si))i∈I

= α((ri)i∈I)α((si)i∈I),

then α is a generalized ring homomorphism. Similarly, it can be easily shown that β
and ε are also generalized ring homomorphisms.

Let us show that the interchange law is hold. Let us take any elements (r)i∈I ,
(s)i∈I , (t)i∈I and (v)i∈I ∈ R such that α((r)i∈I) = β((s)i∈I) and α((t)i∈I) =
β((v)i∈I). Then,

[(ri)i∈I ◦ (si)i∈I ][(ti)i∈I ◦ (vi)i∈I ] = (ri ◦ si)i∈I(ti ◦ vi)i∈I
= ((ri ◦ si)(ti ◦ vi))i∈I
= ((riti) ◦ (sivi))i∈I

= (riti)i∈I ◦ (sivi)i∈I

= (ri)i∈I(ti)i∈I ◦ (si)i∈I(vi)i∈I .

Thus, the interchange law between the groupoid composition and the generalized ring
operation is satisfied. Moreover, we have

(ri)i∈I [(si)i∈I + (ti)i∈I ] = (ri)i∈I [(si + ti)i∈I

= (ri(si + ti)i∈I

= (risi + riti)i∈I

= (risi)i∈I + (riti)i∈I .

Consequently, R is a generalized ring-groupoid.
�
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