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Generalized co-annihilators in residuated lattices

Saeed Rasouli

Abstract. The aim of this paper is to extend the notion of the generalized co-annihilator of

residuated lattices. We introduce the concept of a generalized co-annihilator of a given subset
of a residuated lattice A. We prove that generalized co-annihilators relative to a filter F of

A are again filters, and moreover pseudocomplements in the lattice Fi(A)[F,A] of all filters
of A containing F . Also, for a given filter F of A we prove that the set Co − AnF (A) of all

generalized co-annihilators relative to F forms a complete Boolean lattice.
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1. Introduction

It is well known that certain information processing, especially inferences based
on certain information, is based on the classical logic. Naturally, it is necessary to
establish some rational logic systems as the logical foundation for uncertain infor-
mation processing. For this reason, various kinds of non-classical logic systems have
been extensively proposed and researched. In fact, non-classical logic has become a
formal and useful tool for computer science to deal with uncertain information and
fuzzy information. On the other hand, various logical algebras have been proposed as
the semantical systems of non-classical logic systems, for example, residuated lattices,
divisible residuated lattices, MTL-algebras, Girard monoids, BL-algebras, Gödel al-
gebras, lattice implication algebras, etc. Among these logical algebras, residuated
lattices are very basic and important algebraic structures because the other logical
algebras are all particular cases of residuated lattices.

Commutative residuated lattices are the algebraic counterpart of logics without
contraction rule. The concept of a commutative residuated lattice firstly introduced
by by W. Krull in [15] who discussed decomposition into isolated component ideals.
After him, they were investigated by M. Ward and R.P. Dilworth in [26], as the
main tool in the abstract study of ideal lattices in ring theory. The properties of a
residuated lattice were presented in [10, 19, 20, 21, 22, 23]. For a survey of residuated
lattices we refer to [14].

Non-commutative residuated lattices, sometimes called pseudo-residuated lattices,
biresiduated lattices or generalized residuated lattices, are the algebraic counterparts
of substructural logics; i.e. logics which lack at least one of the three structural rules,
namely contraction, weakening and exchange. Complete studies on non-commutative
residuated lattices were developed in [2] and [14].
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In ring theory the annihilator of a set is a concept generalizing torsion and orthog-
onality. Also, Baer rings and Rickart rings are various attempts to give an algebraic
analogue of von Neumann algebras, using axioms about annihilators of various sets.
A. Filipoiu in [8] used the notion of annihilator for Baer extensions of MV-algebras.
In [1, 13, 16] the notion of annihiltors studied for BCK-algebras. L. Leuştean [17]
used the notion of co-annihilator for Baer extensions of BL-algebras. The aim of this
paper is to extend results proved by L. Leuştean [17], for the case of Bl-algebras to
the non-commutative residuated lattices.

In Section 2 of the article we recall some definitions and facts about residuated
lattices that we use in the sequel.

Let A be a residuated lattice A and a F be a filter of A. For any subset X of A we
define the generalized co-annihilator (F : X) and we show that (F : X) is a filter of
A containing F . These and some other properties of generalized co-annihilators are
contained in Section 3 of this paper.

2. A brief excursion into residuated lattices

Various logical algebra shave been proposed as the semantical systems of non-
classical logic systems, for example, residuated lattices, MV-algebras, BL-algebras,
Gödel algebras, lattice implicational algebras, MTL-algebras, NM-algebras and R0-
algebras, etc. Among these logical algebras, residuated lattices are very basic and
important algebraic structures because the other logical algebras are all particular
cases of residuated lattices.

In the following, we recall some basic definitions and properties of residuated lat-
tices and give some examples in this concept.

Definition 2.1. [14] A residuated lattice is an algebra A = (A;∨,∧,�,→l,→r, 1) of
type (2, 2, 2, 2, 2, 0) satisfying the following conditions:
RL1 (A;∨,∧, 0, 1) is a bounded lattice;
RL2 (A,�, 1) is a monoid;
RL3 x� y ≤ z iff x ≤ y →l z iff y ≤ x→r z for x, y, z ∈ A.

The operations →l and →r are referred to as the left and right residual of �,
respectively. Note that, in general, 1 is not the top element of the lattice reduct A,
`(A). A residuated lattice with a constant 0 (which can denote any element) is called
a pointed residuated lattice or a full Lambek algebra (FL-algebra). If 1 is a top a
element of `(A), then A is called an integral residuated lattice. A FL-algebra A in
which (A,∨,∧, 0, 1) is a bounded lattice is called a FLw-algebra. A FLw-algebra
is sometimes called a bounded integral residuated lattice. A residuated lattice A is
called commutative if →l=→r. It is obvious that A is a commutative residuated
lattice if and only if � is a commutative binary operation. A residuated lattice A in
which x � y = x ∧ y for all x, y ∈ A is called a Heyting algebra or pseudo-Boolean
algebra [25]. Clearly, a Heyting algebra is a commutative residuated lattice.

In this paper, a residuated lattice will be a FLw-algebra. A residuated lattice A
is nontrivial if and only if 0 6= 1. In a residuated lattice A, for any a ∈ A, we put
¬la := a →l 0 and ¬ra := a →r 0. Also, if X is a non-empty subset of A, we put
¬lX = {¬lx|x ∈ X} and ¬rX = {¬rx|x ∈ X}. Also, ¬l¬lX, ¬l¬rX, ¬r¬lX and
¬r¬rX are denoted by ¬llX, ¬lrX, ¬rlX and ¬rrX, respectively.
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The following proposition provides some rules of calculus in a residuated lattice
(see [2, 3, 6]).

Proposition 2.1. Let A be a residuated lattice. Then the following rules of calculus
hold for any a, b, c, d ∈ A.
(1) a→l (b→l c) = (a� b)→l c;
(2) a→r (b→r c) = (b� a)→r c;
(3) a ≤ b if and only if a→l b = 1 if and only if a→r b = 1.
(4) a� b ≤ a ∧ b. In particular, a� b = 1 implies a = b = 1.
(5) a ≤ b implies a� c ≤ b� c and c� a ≤ c� b.
(6) a→l b ≤ ¬lb→r ¬la, a→r b ≤ ¬rb→l ¬ra.
(7) ¬lrla = ¬la, ¬rlra = ¬ra.
(8) (b→l c)� (a→l b) ≤ a→l c, (a→r b)� (b→r c) ≤ a→r c.
(9) a→l ¬rb = b→r ¬la.

(10) 1→l a = 1→r a = a.
(11) b ≤ a→l b and a ≤ b→r b.
(12) If a ≤ b then c→l a ≤ c→l b and c→r a ≤ c→r b.
(13) If a ≤ b then b→l c ≤ a→l c and b→r c ≤ a→r c.
(14) (a ∨ c)� (b ∨ c) ≤ (a� b) ∨ c.
(15) a� (b ∨ c) = (a� b) ∨ (a� c).

In the following, we give some examples of residuated lattice.

Example 2.1. Assume that R is a ring with unit and let I(R) be the collection of
all ideals of R. This set, ordered by inclusion, is a lattice. The meet of two ideals
is their intersection and their join is the ideal generated by the union. We define
multiplication of two ideals I, J in the usual way

I � J := {
∑

x∈X,y∈Y
xy : X,Y are finite subsets of I, J, respectivly.}.

Also, we put I →l J := {k : Ik ⊆ J} and I →r J := {k : kI ⊆ J}. Then
(I(R);∨,∧,�,→l,→r, 0, R) forms a residuated lattice.

Example 2.2. [4] Let A5 = {0, a, b, c, 1} be a lattice whose Hasse diagram is below
(see Figure 1). Define �, →l and →r on A5 as follows:

� 0 a b c 1
0 0 0 0 0 0
a 0 0 0 a a
b 0 a b a b
c 0 0 0 c c
1 0 a b c 1

→l 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b c c 1 c 1
c 0 b b 1 1
1 0 a b c 1

→r 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b 0 c 1 c 1
c b b b 1 1
1 0 a b c 1

Routine calculation shows that A5 = (A5;∨,∧,�,→l,→r, 0, 1) is a residuated lattice.

Example 2.3. [18] Let A7 = {0, a, b, c, d, e, 1} be a lattice whose Hasse diagram is
below (see Figure 2). Define �, →l and →r on A7 as follows:
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Figure 1. The Hasse diagram of A5.

� 0 a b c d e 1

0 0 0 0 0 0 0 0
a 0 a a a a a a
b 0 a a a a a b
c 0 a a c c c c
d 0 a a c c c d
e 0 a b c d e e
1 0 a b c d e 1

→l 0 a b c d e 1

0 1 1 1 1 1 1 1
a 0 1 1 1 1 1 1
b 0 d 1 d 1 1 1
c 0 b b 1 1 1 1
d 0 b b d 1 1 1
e 0 b b d d 1 1
1 0 a b c d e 1

→r 0 a b c d e 1

0 1 1 1 1 1 1 1
a 0 1 1 1 1 1 1
b 0 e 1 e 1 1 1
c 0 b b 1 1 1 1
d 0 b b e 1 1 1
e 0 a b c d 1 1
1 0 a b c d e 1
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b 

a 

c 

1 

d 

e 

Figure 2. The Hasse diagram of A7.

Routine calculation shows that A7 = (A7;∨,∧,�,→l,→r, 0, 1) is a residuated lat-
tice.

Example 2.4. [18] Let A10 = {0, a, b, c, d, e, f, g, h, 1} be a lattice whose Hasse dia-
gram is below (see Figure 3). Define �, →l and →r on A10 as follows:
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� 0 a b c d e f g h 1

0 0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0 a
b 0 0 0 0 0 0 0 b b b
c 0 0 0 0 0 0 c 0 c c
d 0 0 0 0 0 0 c b d d
e 0 0 0 0 0 e e e e e
f 0 0 b 0 b e f e f f
g 0 0 0 c c e e g g g
h 0 0 b c d e f g h h
1 0 a b c d e f g h 1

→l 0 a b c d e f g h 1

0 1 1 1 1 1 1 1 1 1 1
a h 1 1 1 1 1 1 1 1 1
b g g 1 g 1 1 1 1 1 1
c f f f 1 1 1 1 1 1 1
d e e f g 1 1 1 1 1 1
e d d d d d 1 1 1 1 1
f b b b d d g 1 g 1 1
g c c d c d f f 1 1 1
h a a b c d e f g 1 1
1 0 a b c d e f g h 1

→r 0 a b c d e f g h 1

0 1 1 1 1 1 1 1 1 1 1
a h 1 1 1 1 1 1 1 1 1
b f f 1 f 1 1 1 1 1 1
c g g g 1 1 1 1 1 1 1
d e e g f 1 1 1 1 1 1
e d d d d d 1 1 1 1 1
f c c d c d g 1 g 1 1
g b b b d d f f 1 1 1
h a a b c d e f g 1 1
1 0 a b c d e f g h 1
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h 

Figure 3. The Hasse diagram of A10.

Routine calculation shows that A10 = (A10;∨,∧,�,→l,→r, 0, 1) is an involutive residu-
ated lattice.

Let A be a residuated lattice. A non-empty subset F of A is called a filter of A if
it satisfies the following conditions for all x, y ∈ A:

(fi1) x, y ∈ F implies x� y ∈ F ;
(fi2) x ≤ y and x ∈ F imply y ∈ F .

Proposition 2.2. [11] Let A be a residuated lattice. For a subset F of A the following
assertions are equivalent:
(1) F is a filter;
(2) 1 ∈ F and x, x→l y ∈ F , then y ∈ F ;
(3) 1 ∈ F and x, x→r y ∈ F , then y ∈ F .
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Proposition 2.3. Let A be a residuated lattice and F be a non-empty subset of A.
Then, F is a filter of A if and only if F satisfies the following assertions:
(1) x, y ∈ F implies x� y ∈ F ;
(2) x ∈ F and y ∈ F imply x ∨ y ∈ F .

Proof. Let F be a filter of A. Obviously, for any x, y ∈ F , we have x� y ∈ F . Now,
consider x ∈ F and y ∈ A. Thus we have x ≤ x ∨ y and this shows that x ∨ y ∈ F .
Conversely, let x ≤ y and x ∈ F . So we have y = x ∨ y ∈ F . �

Trivial examples of filters are 1 = {1} and A. A filter F of A is called proper if
F 6= A. Clearly, F is a proper filter if and only if 0 /∈ F . A proper filter P of A is
called prime provided that it is prime as a filter of `(A), that is

x ∨ y ∈ P implies that x ∈ P or y ∈ P .

In the sequel, we shall denote the set of filters of A by F (A), and the set of prime
filters of A by Spec(A).

Example 2.5. Consider the residuated lattice A5 in Example 2.2. Then F (A5) =
{F1 = 1, F2 = {b, 1}, F3 = {c, 1}, F4 = A5}.

Example 2.6. Consider the residuated lattice A7 in Example 2.3. Then F (A7) =
{F1 = 1, F2 = {e, 1}, F3 = {c, d, e, 1}, F4 = {a, b, c, d, e, 1}, F5 = A7}.

Example 2.7. Consider the residuated lattice A10 in Example 2.4. Then F (A10) =
{F1 = 1, F2 = {h, 1}, F3 = {f, h, 1}, F4 = {g, h, 1}, F5 = {e, f, g, h, 1}, F6 = A10}.

Let A be a residuated lattice. It is obvious that (A;F (A)) is an algebraic closed
set system. The closure operator associated with this system is denoted by FiA :
P(A) −→ P(A). Thus for any subset X of A, FiA(X) = ∩{F ∈ F (A)|X ⊆ F} is the
smallest filter of A contains X. FiA(X) is called the filter generated by X. For each
x ∈ A, the filter generated by {x} is denoted by FiA(x) and it is called the principal
filter of A. When there is no ambiguity we will drop the superscript A.

If {Fi}i∈I is a family of all filters of A, we define ∧i∈IFi = ∩i∈IFi and Yi∈IFi =
Fi(∪i∈IFi). According to [4], (F (A),∧,Y) is a complete Browerian algebraic lattice
which its compact elements are exactly the principal filter of A.

Example 2.8. Consider Example 2.7 and let X = {f}. Then Fi(X) = {f, h, 1}.

Proposition 2.4. [4] Let A be a residuated lattice and X be a subset of A. Then we
have

Fi(X) = {a ∈ A|x1 � · · · � xn ≤ a, for some integer n, x1, · · · , xn ∈ X}.

Proposition 2.5. [4] Let A be a residuated lattice and x, y ∈ A. The following
conditions hold.
(1) Fi(F, x) := F Y Fi(x) = {a ∈ A|(f � xn)m ≤ a, f ∈ F, n,m ∈ N};
(2) Fi(x ∨ y) = Fi(x) ∩ Fi(y);
(3) x ≤ y implies Fi(y) ⊆ Fi(x);
(4) Fi(x) Y Fi(y) = Fi(x ∧ y) = Fi(x� y) = Fi(y � x);
(5) Fi(x→l y) Y Fi(x) = Fi(x→r y) Y Fi(x).

Let A be a residuated lattice. We put dl(a, b) = (a→l b)� (b→l a) and dr(a, b) =
(a →r b) � (b →r a), for any a, b ∈ A. With any filter of a residuated lattice A we
associate two binary relations ≡l

F and ≡r
F on A by defining
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(a, b) ∈≡l
F if and only if dl(a, b) ∈ F ,

(a, b) ∈≡r
F if and only if dr(a, b) ∈ F ,

It is easy to check that the binary relations ≡l
F and ≡r

F are equivalence relations
on A. ≡l

F and ≡r
F are called the left equivalence relation and the right equivalence

relation induced by F , respectively. In the following, for any a ∈ A the equivalence
classes a/ ≡l

F and a/ ≡r
F are denoted by [a]lF and [a]lF , respectively.

Definition 2.2. [7] Let A be a residuated lattice. A filter F of A is called normal if
x →l y ∈ F if and only if x →r y ∈ F , for any x, y ∈ A. We shall denote by Fn(A)
the set of normal filters of A.

Example 2.9. Consider the residuated lattice A10 in Example 2.4. Then we have
Fn(A10) = {F1 = 1, F2 = {h, 1}, F5 = {e, f, g, h, 1}, F6 = A10}

Let A be a residuated lattice. The set of all complemented elements in the lattice
reduct A is denoted by B(A) and it is called the Boolean center of A. Complements
are generally not unique unless the lattice is distributive. In residuated lattices how-
ever, although the underlying lattices need not be distributive, according to [5], the
complements are unique.

Proposition 2.6. [5] Let A be a residuated lattice, e ∈ B(A) and a ∈ A. Then we
have
(1) ec = ¬le = ¬re;
(2) en = e, for each integer n;
(3) e� a = a� e = e ∧ a;
(4) ¬rle = ¬lre = e.

Proposition 2.7. [5] Let A be a residuated lattice and e ∈ B(A). Then Fi(e),
Fi(¬le) and Fi(¬re) are normal filters of A and we have

Fi(e) = {a ∈ A|e ≤ a}.

Proposition 2.8. Let A be a residuated lattice, F be a filter of A and e ∈ B(A).
Then we have

F Y Fi(e) = {a ∈ A|f � e ≤ a, f ∈ F, n ∈ N}.

Proof. It is straightforward by Proposition 2.5((1)) and Proposition 2.6(2 and 3). �

Proposition 2.9. Let A be a residuated lattice, e ∈ B(A) and a ∈ A. Then the
following are equivalent.
(1) a ∨ ¬le = 1;
(2) e ≤ a;
(3) a ∈ Fi(e);
(4) a ∨ ¬re = 1.

Proof.
1⇒ 2) If a ∨ ¬le = 1, then

e = e� 1 = e� (a ∨ ¬le)
= (e� a) ∨ (e� ¬le) Proposition 2.1 (15)
= (e� a) ∨ 0 Proposition 2.6 (1)
= e� a ≤ e ∧ a ≤ a.

2⇔ 3) It is obvious by Proposition 2.7.
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2⇒ 1) If e ≤ a, then e∨ a = a, hence a∨¬le = (a∨ e)∨¬le = a∨ (e∨¬le) = a∨ 1 = 1.
Similarly, we can show that 2, 3 and 4 are equivalent.

�

Proposition 2.10. [4] Let A be a residuated lattice and {Fi}i∈I be a non empty
family of normal filters of A. Then ∧i∈IFi and Yi∈IFi are normal filters of A.

As a consequence of Proposition 2.10 we conclude (Fn(A),∧,Y) is a complete sub-
lattice of (F (A),∧,Y).

It is obvious that if F is a normal filter of the residuated lattice A then the right and
the left equivalence relations induced by F are equal and both of them are denoted by
≡F . So (x, y) ∈≡F if and only if dl(x, y) ∈ F if and only if dr(x, y) ∈ F . According to
[11], if F is a normal filter of a residuated lattice A then ≡F is a congruence relation
on A. In this case, For any a ∈ A, let a/F be the equivalence class a/ ≡F and
A/F = {a/F |a ∈ A}. A/F becomes a residuated lattice with the natural operations
induced from those of A and it is denoted by A/F . If a, b ∈ A, then a/F ≤ b/F if
and only if a→l b ∈ F if and only if a→r b ∈ F .

Let A and B be residuated lattices. A mapping h : A −→ B is called a homo-
morphism, in symbols h : A −→ B, if it preserves the fundamental operations. If
h : A −→ B is a homomorphism we put coker(h) = h←(1). It is easy to check that
coker(h) is a normal filter of A. Also, it is obvious that h is a monomorphism if and
only if coker(h) = {1}.

Proposition 2.11. Let h : A −→ B be a homomorphism.
(1) If h is onto and F ∈ F (A)(F ∈ Fn(A)) such that coker(h) ⊆ F then h(F ) ∈

F (B)(h(F ) ∈ Fn(B)).
(2) If F ∈ F (B)(F ∈ Fn(B)) then h←(F ) ∈ F (A)(h←(F ) ∈ Fn(A)) and coker(h) ⊆

h←(F ).

Proof. It is straightforward. �

3. Generalized co-annihilators

In this section, we introduce and investigate the notion of generalized co-annihilator
of residuated lattices. Let A be a residuated lattice and F be a filter of A and X be a
subset of A. The generalized co-annihilator of X relative to F is denoted by (F : X)
and defined as follow:

(F : X) = {a ∈ A|x ∨ a ∈ F,∀x ∈ X}.
If X = {x}, then (F : {x}) is denoted by (F : x). Also, (1, X) is called the

co-annihilator of X and it is denoted by X⊥. It is easy to see that A⊥ = {1} and
∅⊥ = {1}⊥ = A. If X = {x}, then X⊥ is denoted by x⊥. In the following proposition,
we collect the properties of generalized co-annihilators.

Proposition 3.1. Let A be a residuated lattice, F,G be filters of A and X,Y be
subsets of A. Then the following assertions hold:
(1) (F : X) is a filter of A;
(2) F ⊆ (F : X);
(3) X ⊆ Y implies (F : Y ) ⊆ (F : X);
(4) (F : X) = (F : Fi(X)). In particular, (F : 0) = (F : A) = F ;
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(5) F ⊆ G implies (F : X) ⊆ (G : X);
(6) (F : X) = A if and only if X ⊆ F ;
(7) X ⊆ (F : (F : X));
(8) (F : X) = (F : (F : (F : X)));
(9)

⋂
i∈I(F : Xi) = (F :

⋃
i∈I Xi);

(10) (F : X) = (F : X − F );
(11) (F : X) =

⋂
x∈X(F : x). In particular, X⊥ =

⋂
x∈X x⊥;

(12)
⋂

i∈I(Fi : X) = (
⋂

i∈I Fi : X);
(13) if X contains F then X ∩ (F : X) = F ;
(14) ((F : X) : Y ) = ((F : Y ) : X) = (F : X∨Y ), where X∨Y = {x∨y|x ∈ X, y ∈ Y }.

Proof. (1): It is obvious that 1 ∈ (F : X). Let a, b ∈ (F : X). Thus for any x ∈ X
we have a∨x, b∨x ∈ F and it implies that (a∨x)� (b∨x) ∈ F . By Proposition
2.1(14), we have (a∨x)�(b∨x) ≤ (a�b)∨x. Therefore, we have (a�b)∨x ∈ F ,
for any x ∈ X. It shows that a� b ∈ (F : X). Also, it is easy to check that a ≤ b
and a ∈ (F : X) implies b ∈ (F : X). Hence, (F : X) is a filter of A.

(2): Let a ∈ F . Then a ∨ x ≥ a ∈ F and it implies a ∈ (F : X).
(3): Let a ∈ (F : Y ). Then for any x ∈ X we have x ∈ Y and it implies a ∨ x ∈ F .

Hence, a ∈ (F : X).
(4): Since Fi(X) is the smallest filter of A containing X so by part (3) we have

(F : Fi(X)) ⊆ (F : X). Now, assume that a ∈ (F : X) and b ∈ Fi(X). By
Proposition 2.4, there are x1, · · · , xn ∈ X such that x1 � · · · � xn ≤ b. For each
1 ≤ i ≤ n we have a ∨ xi ∈ F . Hence, a ∈ (F : Fi(X)) and this shows that
(F : X) ⊆ (F : Fi(X)).

(5): Let F ⊆ G and a ∈ (F : X). Then for any x ∈ X we have a ∨ x ∈ F ⊆ G and it
implies that a ∈ (G : X).

(6): Let (F : X) = A and x ∈ X. So we have x = x ∨ x ∈ F and it shows that
X ⊆ F . Now, assume that X ⊆ F and a ∈ A. For each x ∈ X we have x ≤ a∨x
and it means that a ∈ (F : X). Hence, (F : X) = A.

(7): Let x ∈ X and a ∈ (F : X). So we have a ∨ x ∈ F and it implies that
x ∈ (F : (F : X)).

(8): By (3) and (7) we have (F : (F : (F : X))) ⊆ (F : X). On the other hand by (7)
we have (F : X) ⊆ (F : (F : (F : X))) and it shows that the equality holds.

(9): By (3) we have (F :
⋃

i∈I Xi) ⊆
⋂

i∈I(F : Xi). Now, assume that a ∈
⋂

i∈I(F :
Xi) and x ∈

⋃
i∈I Xi. Thus for some i ∈ I we have x ∈ Xi and it states that

a ∨ x ∈ F . Hence, a ∈ (F :
⋃

i∈I Xi) and it shows that
⋂

i∈I(F : Xi) ⊆ (F :⋃
i∈I Xi).

(10): Since we have X = (X − F ) ∪ (X ∩ F ) so by (6) and (9) we obtain that (F :
X) = (F : (X −F )∪ (X ∩F )) = (F : X −F )∩ (F : X ∩F ) = (F : X −F )∩A =
(F : X − F ).

(11): It is straightforward by (9).
(12): By (5) we have (

⋂
i∈I Fi : X) ⊆

⋂
i∈I(Fi : X). Let a ∈

⋂
i∈I(Fi : X) and x ∈ X.

Therefore, a ∨ x ∈ Fi , for each i ∈ I and it implies that a ∨ x ∈
⋂

i∈I Fi. Thus
a ∈ (

⋂
i∈I Fi : X) and it results

⋂
i∈I(Fi : X) ⊆ (

⋂
i∈I Fi : X).

(13): By (2) and hypothesis we have F ⊆ X ∩ (F : X). Now, assume that x ∈ X ∩ (F :
X). Thus for each y ∈ X we have x∨y ∈ F . Let y = x and so x ∈ F . Therefore,
X ∩ (F : X) ⊆ F .
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(14): Let a ∈ ((F : X) : Y ) and z ∈ X ∨ Y . So there are x ∈ X and y ∈ Y
such that z = x ∨ y. Now, we have a ∨ y ∈ (F : X) and it implies that
(a∨x)∨y ∈ F . Hence, a∨z ∈ F and it means that a ∈ (F : X ∨Y ). Conversely,
let a ∈ (F : X ∨ Y ) and y ∈ Y . Thus for any x ∈ X we have a ∨ (x ∨ y) ∈ F
and so a∨ y ∈ (F : X) and it shows that a ∈ ((F : X) : Y ). Analogously, we can
show that ((F : Y ) : X) = (F : X ∨ Y ).

�

Let A be a residuated lattice and F be a filter of A. An F -divisor in A is an element
a for which there exists x ∈ A − F such that a ∨ x ∈ F . The set of all F -divisor
in A is denoted by DF (A). Obviously, we have F ⊆ DF (A). Also, one can see that
DF (A) = F if F ∈ Spec(A).

Proposition 3.2. Let A be a residuated lattice and F be a filter of A. Then

DF (A) = ∪x∈A−F (F : x).

Proof. Let a ∈ DF (A). So there is x ∈ A− F such that a ∨ x ∈ F and it shows that
a ∈ (F : x) ⊆ ∪x∈A−F (F : x). Now, assume that a ∈ ∪x∈A−F (F : x). Hence there is
x ∈ A− F such that a ∈ (F : x) and it means a ∨ x ∈ F . Thus a ∈ DF (A). �

Proposition 3.3. Let A be a residuated lattice, F be a filter of A and X a be filter
of `(A). If X is linearly ordered and X * F , then (F : X) ∈ Spec(A). In particular,

if X 6= 1 is linearly ordered, then X⊥ ∈ Spec(A).

Proof. Since X * F so by Proposition 3.1(6), (F : X) is a proper filter. Now, suppose
that a∨b ∈ (F : X), a /∈ (F : X) and b /∈ (F : X). It implies that there are xa, xb ∈ X
such that a ∨ xa /∈ F and b ∨ xb /∈ F . Let x = xa ∧ xb. Since X is a filter of the
lattice `(A), so x ∈ X and consequently a ∨ x, b ∨ x ∈ X. Now, by linearity of X let
a∨x ≤ b∨x. Thus we have b∨xb ≥ b∨x = b∨ (b∨x) ≥ b∨ (a∨x) = (a∨ b)∨x ∈ F .
IT implies b ∨ xb ∈ F and this contradiction proves the proposition. Also, if we let
F = 1 and X 6= 1 is linearly ordered , we can conclude that X⊥ ∈ Spec(A). �

Lemma 3.4. Let A be a residuated lattice, F be a filter of A and X be a filter of
`(A) such that for each x1, x2 ∈ X we have x1 ∨ x2 ∈ F . If (F : X) ∈ Spec(A), then
X * F and for any x1, x2 ∈ G we have x1 →l x2 ∈ F , x2 →l x1 ∈ F , x1 →r x2 ∈ F
or x2 →r x1 ∈ F .

Proof. Since (F : X) is a proper filter so by Proposition 3.1(6) we have X * F .
Assume that x1, x2 ∈ X. By Proposition 2.1(11) we get that x1 →l x2, x1 →r

x2, x2 →l x1, x2 →r x1 ∈ X. Also, by hypothesis and Proposition 3.1(2) we conclude
that (x1 →l x2) ∨ (x1 →r x2) ∨ (x2 →l x1) ∨ (x2 →r x1) ∈ F ⊆ (F : X). Since,
(F : X) is a prime filter of A then we can assume that x1 →l x2 ∈ (F : X). By
Proposition 3.1(11), we can conclude that x1 →l x2 ∈ (F : x1 →l x2) and it shows
that x1 →l x2 = (x1 →l x2) ∨ (x1 →l x2) ∈ F . �

A residuated lattice A is called a pseudo-MTL algebra if it satisfies the pseudo-
prelinearity condition (a→l b) ∨ (b→l a) = (a→r b) ∨ (b→r a) = 1.

Corollary 3.5. Let A be a pseudo-MTL algebra and X be a filter of `(A). Then
X⊥ ∈ Spec(A) if and only if X is linearly ordered and X 6= 1.
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Proof. Let X⊥ ∈ Spec(A) and consider x1, x2 ∈ X. Similar to the proof of Lemma
3.4, we can show that x1 →l x2, x2 →l x1, x1 →r x2, x2 →r x1 ∈ X. Also, since
A satisfies the pseudo-prelinearity condition so (x1 →l x2) ∨ (x2 →l x1) = (x1 →r

x2)∨ (x2 →r x1) = 1 ∈ X⊥. Similar to the proof of Lemma 3.4, it results that either
x1 →l x2 = 1, x2 →l x1 = 1, x1 →r x2 = 1 or x2 →r x1 = 1 and it shows that X is
linearly ordered. Also, since X⊥ is a proper filter so by Proposition 3.1(6) we obtain
that X 6= 1. Conversely, it is obvious by Proposition 3.3. �

Proposition 3.6. Let A be a residuated lattice and F be a linearly ordered filter of A
such that it contains an element x 6= 1 and either x ∨ ¬lx = 1 or x ∨ ¬rx = 1. Then
x is the least element of F .

Proof. Let x∨¬lx = 1 and a ∈ F . Then a = a∨0 = a∨(x�¬lx) ≥ (a∨x)�(a∨¬lx)
where the last inequality follows by Proposition 2.1(14). By Corollary 3.5, F⊥ is a
prime filter. Since x ∨ ¬lx = 1, either x ∈ F⊥ or ¬lx ∈ F⊥ and as x ∨ x = x 6= 1, we
necessarily have ¬lx ∈ F⊥. Now a ∈ F , hence a ∨ ¬lx = 1, whence a ∨ x ≤ a and it
implies a ∨ x = a. Thus x ≤ a and the proof is complete. �

Corollary 3.7. Let A be a residuated lattice and F be a linearly ordered filter of A.
Then card(F ∩B(A)) ≤ 2.

Proof. Let a1, a2 ∈ F ∩ B(A) − {1}. So by Proposition 3.6, we have a1 ≤ a2 and
a2 ≤ a1 and it shows that a1 = a2. �

Proposition 3.8. Let h : A −→ B be an epimorphism.
(1) If F is a filter of A containing coker(h) and X ⊆ A, then h(F : X) = (h(F ) :

h(X));
(2) if F is a filter of B and Y ⊆ B, then h←(F : Y ) = (h←(F ) : h←(Y )).

Proof. (1): By Proposition 2.11(1), h(F ) is a filter of B. If X = ∅ then by Proposition
3.1(6) we have (F : X) = A and (h(F ) : h(X)) = B. Since h is onto so the
equality holds. Let X be a nonempty subset of A. Assume that b ∈ (h(F ) :
h(X)). So for each y ∈ h(X) we have b ∨ y ∈ h(F ). Hence, there are x ∈ X,
a ∈ A and f ∈ F such that h(x) = y, h(a) = b and b ∨ y = h(f). It means
that h(a) ∨ h(x) = h(f). By Proposition 2.1(3), we have h(f) →l h(a ∨ x) = 1
and it results h(f →l (a ∨ x)) = 1. Thus f →l (a ∨ x) ∈ coker(h) ⊆ F and
by Proposition 2.2(2) we can conclude that a ∨ x ∈ F . So a ∈ (F : X) and it
implies that b ∈ h(F : X). Now, let b ∈ h(F : X) and y ∈ h(X). So there are
a ∈ (F : X) and x ∈ X such that h(a) = b and h(x) = y and it results a∨x ∈ F .
Therefore, h(a) ∨ y ∈ h(F ) and it implies that b ∈ (h(F ) : h(X)).

(2): By Proposition 2.11(2), h(F ) is a filter of A. If Y = ∅ then we have (F : Y ) = B
and (h←(F ) : h←(Y )) = A. Since h is onto so the equality holds. Suppose that
a ∈ (h←(F ) : h←(Y )). We want to show that h(a) ∈ (F : Y ). Consider y ∈ Y . So
there is x ∈ A such that h(x) = y. Thus we have h(a)∨y = h(a)∨h(x) = h(a∨x).
On the other hand, we have x ∈ h←(Y ) and it implies that a ∨ x ∈ h←(F ).
Therefore, h(a ∨ x) ∈ F and it means h(a) ∈ (F : Y ). Now, assume that
a ∈ h←(F : Y ) and x ∈ h←(Y ). Hence, h(a) ∈ (F : Y ) and h(x) ∈ Y and
it implies that h(a ∨ x) = h(a) ∨ h(x) ∈ F . Therefore, a ∨ x ∈ h←(F ) and it
concludes that a ∈ (h←(F ) : h←(Y )).

�
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Let A be a residuated lattice and F be a normal filter of A. The mapping πA
F :

A −→ A/F defined by πA
F (a) = a/F is called the natural homomorphism. It is

obvious that the natural homomorphism πA
F is onto and coker(πA

F ) = F . Therefore,
by Proposition 2.11 we have

F (A/F ) = {H/F |F ⊆ H ∈ F (A)}.

Lemma 3.9. Let A be a residuated lattice and F be a normal filter of A. Then for
any filter G of A which contains F and for any subset X of A (G : X)/F is a filter
of A/F .

Proof. Let G be a filter of A contains F and X be a subset of A. By Proposition
3.1(2) we have F ⊆ (G : X) and it shows that (G : X)/F is a filter of A/F . �

Corollary 3.10. Let A be a residuated lattice, F be a normal filter of A, G be a filter
of A which contains F and X be a subset of A which contains F . Then we have

(G/F : X/F ) = (G : X)/F.

Proof. Consider the natural epimorphism πF in Proposition 3.8. Then we have
π←F (G/F : X/F ) = (G : π←F (πF (X))). By Proposition 3.1(3), we have

(G : π←F (πF (X))) ⊆ (G : X) so (G/F : X/F ) ⊆ (G : X)/F.

Now, assume that a/F ∈ (G : X)/F . By Lemma 3.9, (G : X)/F is a filter of A/F
and it implies that a ∈ (G : X). Consider y/F ∈ X/F . So there is x ∈ X such that
y/F = x/F and it implies that a/F ∨ y/F = a/F ∨ x/F = a ∨ x/F ∈ G/F . Hence,
a/F ∈ (G/F : X/F ) and it shows that (G : X)/F ⊆ (G/F : X/F ). �

Let A be a residuated lattice and F be a filter of A. We define

Co−AnF (A) = {(F : G)|G ∈ Fi(A)[F,A]}.

In the sequel, the set Co−An1(A) will be denoted by Co−An(A).

Lemma 3.11. Let A be a residuated lattice and F be a filter of A. Then for each
H,K ∈ Co − AnF (A) and for any family {Hi}i∈I ⊆ Co − AnF (A) the following
conditions hold:
(1) Let L be a filter of A. Then L ∈ Co−AnF (A) if and only if L = (F : (F : L));
(2) Co−AnF (A) = {(F : X)|X ⊆ A};
(3) ∩i∈IHi ∈ Co−AnF (A);
(4) F,A ∈ Co−AnF (A);
(5) we define ti∈IHi = (F : (F : ∪i∈IHi)). Then ti∈IHi is the lowest upper bound

of ∪i∈IHi in the poset Co−AnF (A);
(6) H tK = (F : (F : H) ∩ (F : K));
(7) H YK ⊆ H tK.

Proof. (1): If L ∈ Co−AnF (A) then there is G ∈ Fi(A)[F,A] such that L = (F : G).
So by Proposition 3.1(8) the equality holds. Also, if L = (F : (F : L)) let G =
(F : L). It is obvious that G ∈ Fi(A)[F,A] and it implies that L ∈ Co−AnF (A).

(2): It is obvious that Co − AnF (A) ⊆ {(F : X)|X ⊆ A}. Now, let L ∈ {(F :
X)|X ⊆ A}. Therefore, exists X ⊆ A such that L = (F : X) and it implies that
L = (F : (F : L)). Hence, by (1) we conclude that L ∈ Co − AnF (A) and it
shows that the result holds.
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(3): For each i ∈ I, let Gi be a filter of A contains F such that Hi = (F : Gi). By
Proposition 3.1(9) and (2) we have

∩i∈IHi = ∩i∈I(F : Gi) = (F : ∪i∈IGi) ∈ Co−AnF (A).

(4): By Proposition 3.1((4) and (6)), we have (F : A) = F and (F : F ) = A and it
shows that F,A ∈ Co−AnF (A).

(5): By Proposition 3.1(2), we have F ⊆ (F : ∪i∈IHi). So by (2), we have ti∈IHi ∈
Co − AnF (A). For each i ∈ I, we have Hi ⊆ ∪i∈IHi. Hence, by Proposition
3.1(3), we get that (F : ∪i∈IHi) ⊆ (F : Hi), for each i ∈ I. Again by Proposition
3.1(3) and (1), we can conclude that Hi ⊆ (F : (F : ∪i∈IHi)) and it shows that
(F : (F : ∪i∈IHi)) is an upper bound of the set ∪i∈IHi in the poset Co−AnF (A).
Now, let K be an upper bound of the set ∪i∈IHi in the poset Co − AnF (A).
Thus (F : K) ⊆ (F : ∪i∈IHi) and it concludes that (F : (F : ∪i∈IHi)) ⊆ K.
Hence, ti∈IHi is the lowest upper bound of ∪i∈IHi in the poset Co−AnF (A).

(6): By (5) we have H t K = (F : (F : H ∪ K)). Also, by 3.1(9) we have (F :
H) ∩ (F : K) = (F : H ∪K) and this shows that the equality holds.

(7): Since H ∪K ⊆ H tK, it is clear.
�

Proposition 3.12. Let A be a residuated lattice and F be a filter of A. Then the
interval Fi(A)[F,A] is a pseudocomplemented lattice. In particular, the lattice Fi(A)
is a pseudocomplemented lattice.

Proof. Let G be a filter of A containing F . By Proposition 3.1((1) and (2)), we
can obtain that (F : G) ∈ Fi(A)[F,A]. Thus, by Proposition 3.1(13), we have
G ∧Fi(A)[F,A] (F : G) = G ∩ (F : G) = F . Now, we show that (F : G) is the greatest
element of the interval Fi(A)[F,A] such that its meet with G is F . Let K be a filter
of A contains F such that G ∩K = F . Assume that k ∈ K and g ∈ G. Therefore,
g, k ≤ g ∨ k and it shows that g ∨ k ∈ G ∩K = F . Hence, for each g ∈ G we have
g ∨ k ∈ F and it shows that k ∈ (F : G). One can see that if we let F = 1 then
the lattice Fi(A) is a pseudocomplemented lattice such that for any filter F of A, its
pseudocomplement is F⊥. �

Proposition 3.13. Let A be a residuated lattice and F be a filter of A. Then
Co-AnF (A) = (Co−AnF (A),∩,t, (F : −), F,A) is a complete Boolean lattice.

Proof. By Lemma 3.11((3),(4), and (5)), Co-AnF (A) is a bounded complete lattice.

Now, we need prove that Co-AnF (A) is distributive. Consider H,K,L ∈ Co −
AnF (A). It is obvious that

H t (K ∩ L) ⊆ (H tK) ∩ (H t L). (1)

Also, H ∩ L ⊆ H t (K ∩ L) and K ∩ L ⊆ H t (K ∩ L). Therefore, by Proposition
3.1(13) we get that (H∩L)∩(F : Ht(K∩L)) = F and (K∩L)∩(F : Ht(K∩L)) = F .
By Proposition 3.12, we conclude that L ∩ (F : H t (K ∩L)) ⊆ (F : H) and L ∩ (F :
Ht(K∩L)) ⊆ (F : K). Consequently, L∩(F : Ht(K∩L)) ⊆ (F : H)∩(F : K) and by
Proposition 3.1(13) we obtain that (L∩(F : Ht(K∩L)))∩(F : (F : H)∩(F : K)) = F .
Hence, ((F : (F : H) ∩ (F : K)) ∩ L) ∩ (F : H t (K ∩ L)) = F and by Proposition
3.12, it implies that (F : (F : H) ∩ (F : K)) ∩ L ⊆ (F : (F : H t (K ∩ L))). Now, the
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left-hand side is (HtK)∩L by Lemma 3.11(6), and the right-hand side is Ht(K∩L)
by Lemma 3.11(1). Thus we obtain

(H tK) ∩ L ⊆ H t (K ∩ L). (2)

Now, by 2 we get

(H tK) ∩ (H t L) ⊆ H t (K ∩ (H t L))
= H t ((H t L) ∩K)
⊆ H t (H t (K ∩ L))
= (H tH) t (K ∩ L)
H t (K ∩ L).

(3)

Now, we conclude distributivity by (1) and (3).
Also, for any H ∈ Co−AnF (A) we have H ∩ (F : H) = F and

H t (F : H) = (F : (F : H) ∩ (F : (F : H)))
= (F : (F : H) ∩H)
= (F : F )
= A.

It shows that Co-AnF (A) is a complete Boolean algebra. �

Corollary 3.14. Let A be a residuated lattice. Then

Co-An(A) = (Co−An(A),∩,t,⊥ ,1, A)

is a complete Boolean lattice.

Proof. By taking F = 1, it follows by Proposition 3.13. �

Proposition 3.15. Let A be a residuated lattice and F be a filter of A. The following
assertions hold for any x, y ∈ A and e ∈ B(A):
(1) x ≤ y implies (F : x) ⊆ (F : y);
(2) (F : x) = A if and only if x ∈ F ;
(3) (F : x) ∩ (F : y) = (F : x� y);
(4) (F : (F : x)) ∩ (F : (F : y)) = (F : (F : x ∨ y));
(5) (F : x) Y (F : y) ⊆ (F : x) t (F : y) = (F : x ∨ y);
(6) if F is a normal filter of A, then (F : x/F ) = (F : x);
(7) (F : e) = F Y Fi(¬le) = F Y Fi(¬re). In particular, e⊥ = Fi(¬le) = Fi(¬re).

Proof. (1): It follows by Proposition 2.5(3) and Proposition 3.1((3) and (4)).
(2): It is evident by Proposition 3.1(6).
(3): It follows by Proposition 2.5(4) and Proposition 3.1((4) and (9)).
(4): Since x, y ≤ x ∨ y so by Proposition 3.1(3) and (1) follows that (F : (F :

x ∨ y)) ⊆ (F : (F : x)) ∩ (F : (F : y)). Let a ∈ (F : (F : x)) ∩ (F : (F : y)) and
b ∈ (F : x ∨ y). It states that b ∨ x ∈ (F : y) and it means that a ∨ (b ∨ x) ∈ F .
Hence a ∨ b ∈ (F : x) and it implies that a ∨ b = a ∨ (a ∨ b) ∈ F . Therefore,
a ∈ (F : (F : x ∨ y)).

(5): By Proposition 3.1(8), Lemma 3.11(6) and (3) we have the following sequence of
formulas:

(F : x) t (F : y) = (F : ((F : (F : x)) ∩ (F : (F : x))))
= (F : (F : (F : x ∨ y))) = (F : x ∨ y).
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Also, by (1) we have (F : x), (F : y) ⊆ (F : x ∨ y) and it implies (F : x) Y (F :
y) ⊆ (F : x ∨ y) since (F : x ∨ y) is a filter.

(6): By Proposition 3.1(3), it is obvious that (F : x/F ) ⊆ (F : x). Now, let a ∈ (F :
X) and y ∈ x/F . Therefore, dl(x, y) ∈ F and this means dl(a ∨ x, a ∨ y) ∈ F .
On the other hand, we have a ∨ x ∈ F and this implies that a ∨ y ∈ F . Thus
a ∈ (F : x/F ) and this shows the equality.

(7): Let a ∈ (F : e). So a ∨ e ∈ F and by Proposition 2.1(15), we conclude that
(a∨e)�¬le = (a�¬le)∨(e�¬le) = a�¬le ≤ a. Now, by Proposition 2.8 we get
that a ∈ F YFi(¬le). Conversely, let a ∈ F YFi(¬le). By Proposition 2.6 and 2.8,
there exist f ∈ F and an integer n such that f �¬le ≤ a. So (f �¬le)∨e ≤ a∨e
and by Proposition 2.1(14) we obtain (f ∨ e)� (¬le ∨ e) ≤ (f � ¬le) ∨ e. Since,
f � e ∈ F and ¬le ∨ e = 1 we have a ∨ e ∈ F and it means a ∈ (F : e).
Analogously, we can show that (F : e) = F Y Fi(¬re). Also, if we let F = 1,
then we have e⊥ = Fi(¬le) = Fi(¬re).

�

Let A be a residuated lattice and F be a filter of A. We define

Co−AnuF (A) = {(F : x)|x ∈ A},
and instead of Co−Anu1(A) we write Co−Anu(A). The elements of Co−Anu(A)
will be called coannulets of A.

Theorem 3.16. Let A be a residuated lattice and F be a filter of A. Then

Co-AnuF (A) = (Co−AnuF (A),∩,t, F = (F : 0), A = (F : 1))

is a sublattice of Co-AnF (A).

Proof. It is a direct consequence of Proposition 3.15. �

Let A be a residuated lattice and x, y ∈ A. We shall denote by (x : y) the co-
annihilator (Fi(x) : y).

Proposition 3.17. Let A be a residuated lattice. The following assertions hold for
any x, y ∈ A:
(1) (x : x) = A;
(2) (x : y) = (x : x ∧ y) = (x : x� y) = (x : y � x) = (x : {x, y});
(3) (x : y) = (x ∨ y : y).

Proof. (1): Apply Proposition 3.15(2).
(2): By Proposition 3.15(3) and (1), it follows that (x : y) = (x : y)∩A = (x : y)∩(x :

x) = (x : x ∧ y) = (x : x� y) = (x : y � x) = (x : {x, y}).
(3): By Proposition 2.5(2), Proposition 3.1(12) and (1), it follows that (x ∨ y : y) =

(Fi(x ∨ y) : y) = (Fi(x) ∩ Fi(y) : y) = (Fi(x) : y) ∩ (Fi(y) : y) = (x : y) ∩ (y :
y) = (x : y) ∩A = (x : y).

�

Proposition 3.18. Let A be a residuated lattice and F be a filter of A. The following
assertions hold for any x, y ∈ A:
(1) x ∈ (F : (F : x));
(2) x ≤ y implies (F : (F : y)) ⊆ (F : (F : x));
(3) y ∈ (F : x) implies (F : (F : x)) ⊆ (F : y).
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Proof. (1): It is an immediate consequence of Proposition 3.1(7).
(2): By Proposition 3.15(1), we have (F : x) ⊆ (F : y) and by Proposition 3.1(3) we

get the result.
(3): Apply Proposition 3.1(3).

�

Proposition 3.19. Let A be a residuated lattice and F be a filter of A. The maximal
element in the set of {(F : X)|X ⊆ A,F ∩X = ∅} is a prime filter.

Proof. Let U = {(F : X)|X ⊆ A,F ∩X = ∅} and (F : X) be the maximal element of
U. Applying Proposition 3.1(6), it follows that (F : X) is a proper filter. Assume that
a ∨ b ∈ (F : X) and b /∈ (F : X). Therefore, (a ∨ b) ∨ x ∈ F and b ∨ x /∈ F , for some
x ∈ X. It states that a ∈ (F : b ∨ x) and by Proposition 3.15(2) and 3.18(2) we can
conclude (F : X) ⊆ (F : x) ⊆ (F : b∨x) 6= A. It implies that a ∈ (F : b∨x) = (F : X)
and it shows that (F : X) is a prime filter of A. �

There is a natural question whether the equation (F : x)Y(F : y) ⊆ (F : x)t(F : y)
in Proposition 3.15(5) holds or not. It follows from two examples below that this
equation does not hold in general.

Example 3.1. Let A6 = {0, a, b, c, d, 1} be a lattice whose Hasse diagram is below
(see Figure 4). Define � = ∧ and → on A5 as follows:

→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 1 1 1 1
b 0 c 1 c 1 1
c 0 b b 1 1 1
d 0 a b c 1 1
1 0 a b c d 1

 

 

0 

b 

a 

c 

1 

d 

Figure 4. The Hasse diagram of A6.

Routine calculation shows that A6 = (A6;�,→, 1) is a Heyting algrbra. One
can see that F = {d, 1} is a filter of A6. Now, we have (F : b) = {c, d, 1} and
(F : c) = {b, d, 1}. Therefore, (F : b)Y (F : c) = {a, b, c, d, 1} and (F : b∨ c) = A6 and
it shows that (F : b ∨ c) is not a subset of (F : b) Y (F : c).

Example 3.2. Let B5 = {0, a, b, c, 1} be a lattice whose Hasse diagram is below (see
Figure 5). Define � = ∧ and → on B5 as follows:
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→l 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

 

0 

b 

a 

c 

1 

Figure 5. The Hasse diagram of B5.

Routine calculation shows that B5 = (B6;�,→, 1) is a Heyting algrbra. Now, we
have b⊥ = {c, 1} and c⊥ = {b, 1}. Therefore, b⊥ Y c⊥ = {a, b, c, 1} and (b ∨ c)⊥ = B5

and it shows that (b ∨ c)⊥ is not a subset of b⊥ Y c⊥.
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