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Infinite order of transcendental meromorphic solutions of
some nonhomogeneous linear differential equations

Nour el imane Khadidja Cheriet and Karima Hamani

Abstract. In this paper, we investigate the order of growth of transcendental meromorphic

solutions of the linear differential equation

f (k) +

k−1∑
j=0

hj(z)ePj(z)f (j) = F,

where k ≥ 2 is an integer, Pj (z) (j = 0, ..., k − 1) are nonconstant polynomials, hj (z) (j =

0, ..., k − 1) and F ( 6≡ 0) are meromorphic functions. Under some conditions, we prove that

every transcendental meromorphic solution of the above equation is of infinite order.

2010 Mathematics Subject Classification. 34M10, 30D35.

Key words and phrases. Linear differential equation, meromorphic function, order of growth.

1. Introduction and main results

In this paper, we use the fundamental results and the standard notations of the
Nevanlinna’s value distribution theory of meromorphic functions (see [8] , [12]). In
addition, we use the notation σ(f) to denote the order of growth of a meromorphic
function f and σ2(f) to denote the hyper-order of f which is defined by (see [12])

σ2(f) = lim sup
r→+∞

log log T (r, f)

log r
. (1)

We define the linear measure of a set E ⊂ [0,+∞) by m(E) =
∫ +∞
0

χE(t)dt, where
χE is the characteristic function of E.

Many authors ([5], [7], [9]) have studied the second order linear differential equation

f ′′ + h1(z)eP (z)f ′ + h0(z)eQ(z)f = 0, (2)

where P (z) and Q(z) are nonconstant polynomials, h1(z) and h0(z)( 6≡ 0) are en-
tire functions satisfying σ(h1) < degP and σ(h0) < degQ. Gundersen showed in
[7, p. 419] that if degP 6= degQ, then every nonconstant solution of the linear differ-
ential equation (2) is of infinite order. If degP = degQ, then equation (2) may have
nonconstant solutions of finite order. Indeed, f(z) = z satisfies f ′′−z3ezf ′+z2ezf =
0.

K. H. Kwon considered the case where degP = degQ and proved the following
result:
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Theorem 1.1. ([9]) Let P (z) and Q(z) be nonconstant polynomials such that

P (z) = anz
n + ...+ a1z + a0, (3)

Q(z) = bnz
n + ...+ b1z + b0, (4)

where ai, bi (i = 0, 1, ..., n) are complex numbers, an 6= 0 and bn 6= 0. Let hj(z)
(j = 0, 1) be entire functions with σ (hj) < n. Suppose that arg an 6= arg bn or
an = cbn (0 < c < 1). Then every nonconstant solution f of equation (2) is of infinite
order and satisfies σ2(f) ≥ n.

In [4], Beläıdi and Abbas have studied some higher order linear differential equa-
tions with entire coefficients and have proved the following result:

Theorem 1.2. ([4]) Let k ≥ 2 be an integer and Pj(z) =
∑n
i=0 ai,jz

i (j = 0, 1, ..., k−
1) be nonconstant polynomials with degree n ≥ 1, where a0,j,..., an,j (j = 0, 1, ..., k−1)
are complex numbers such that an,jan,s 6= 0 (j 6= s) (1 ≤ s ≤ k − 1). Let hj(z)( 6≡ 0)
(j = 0, 1, ..., k−1) be entire functions with σ(hj) < n. Suppose that arg an,j 6= arg an,s
or an,j = cjan,s (0 < cj < 1) (j 6= s). Then every transcendental solution f of
equation

f (k) +

k−1∑
j=0

hj(z)e
Pj(z)f (j) = 0 (5)

is of infinite order and satisfies σ2 (f) = n. Furthermore, if max{c1, ..., cs−1} < c0,
then every solution f(6≡ 0) of equation (5) is of infinite order and satisfies σ2 (f) = n.

In 2008, J. Tu and C. F. Yi have also considered equation (5) and obtained the
following result:

Theorem 1.3. ([10]) Let k ≥ 2 be an integer and Pj(z) =
∑n
i=0 ai,jz

i (j = 0, 1, ..., k−
1) be polynomials with degree n ≥ 1, where a0,j,..., an,j (j = 0, 1, ..., k−1) are complex
numbers. Let hj(z) (j = 0, 1, ..., k − 1) be entire functions with σ(hj) < n. Suppose
that there exist nonzero complex numbers an,s and an,l such that 0 ≤ s < l ≤ k − 1,
an,s = |an,s| eiθs , an,l = |an,l| eiθl , θs, θl ∈ [0, 2π), θs 6= θl, hshl 6≡ 0 and for j 6= s, l,
an,j satisfies either an,j = djan,s (0 < dj < 1) or an,j = djan,l (0 < dj < 1). Then
every transcendental solution f of equation (5) satisfies σ (f) = +∞. Furthermore,
if f is a polynomial solution of equation (5), then deg f ≤ s− 1; if s = 1, then every
nonconstant solution f of equation (5) satisfies σ (f) = +∞.

In this paper, we continue the research in this type of problems. The main purpose
of this paper is to extend and improve the above results to some nonhomogeneous
higher order linear differential equations with meromorphic coefficients. We will prove
the following two results:

Theorem 1.4. Let k ≥ 2 be an integer, Pj(z) =
∑n
i=0 ai,jz

i (j = 0, . . . , k − 1)
be polynomials with degree n ≥ 1, where a0,j , ..., an,j (j = 0, ..., k − 1) are complex
numbers. Let hj(z) (j = 0, ..., k − 1) and F (6≡ 0) be meromorphic functions having
only finitely many poles with max{σ (F ) , σ(hj) : j = 0, ..., k − 1} < n. Suppose that
there exists an integer s ∈ {1, 2, ..., k − 1} such that h0hs 6≡ 0 and an,j = cjan,s
(0 < cj < 1) (j 6= s). Then every transcendental meromorphic solution of equation

f (k) +

k−1∑
j=0

hj (z) ePj(z)f (j) = F (6)
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is of infinite order. Furthermore, if max{c1, ..., cs−1} < c0, then every meromorphic
solution f( 6≡ 0) of equation (6) is of infinite order.

Theorem 1.5. Let k ≥ 2 be an integer, Pj(z) =
∑n
i=0 ai,jz

i (j = 0, . . . , k − 1)
be polynomials with degree n ≥ 1, where a0,j , ..., an,j (j = 0, ..., k − 1) are complex
numbers. Let hj(z) (j = 0, ..., k − 1) and F ( 6≡ 0) be meromorphic functions having
only finitely many poles with max{σ (F ) , σ(hj) : j = 0, ..., k − 1} < n. Suppose that
there exist two integers s, d such that 1 ≤ s < d ≤ k−1, hshd 6≡ 0 and an,s 6= an,d. Let
I and J be two sets satisfying I 6= ∅, J 6= ∅, I∩J = ∅ and I∪J = {0, . . . , k−1}/{s, d}
such that for j ∈ I, an,j = αjan,s (0 < αj < 1) and for j ∈ J , an,j = βjan,d (0 <
βj < 1). Set an,l = |an,l| eiθl , θl ∈ [0, 2π) (l = s, d) and α = max{αj : j ∈ I}.
If (θs 6= θd) or (θs = θd and |an,d| < (1 − α) |an,s|), then every transcendental
meromorphic solution of equation (6) is of infinite order. Furthermore, if f is a
polynomial solution of (6), then deg f ≤ s− 1.

2. Preliminary lemmas

Lemma 2.1. ([1]) Let Pj (z) (j = 0, 1, ..., k) be polynomials with degP0(z) = n (n ≥
1) and degPj(z) ≤ n (j = 1, 2, ..., k). Let Aj(z) (j = 0, 1, ..., k) be meromorphic
functions with finite order and max{σ(Aj) : j = 0, 1, ..., k} < n such that A0(z) 6≡ 0.
We denote

F (z) = Ak (z) ePk(z) +Ak−1 (z) ePk−1(z) + ...+A1 (z) eP1(z) +A0 (z) eP0(z). (7)

If deg(P0(z) − Pj(z)) = n for all j = 1, ..., k, then F is a nontrivial meromorphic
function with finite order and satisfies σ(F ) = n.

Lemma 2.2. ([6]) Let f (z) be a transcendental meromorphic function of finite order
σ. Let Γ = {(k1, j1) , (k2, j2) , ..., (km, jm)} denotes a set of distinct pairs of integers
satisfying ki > ji ≥ 0 (i = 1, 2, ...,m) and let ε > 0 be a given constant. Then there
exists a set E1 ⊂ [0, 2π) that has linear measure zero such that if θ ∈ [0, 2π) \ E1,
then there is a constant R1 = R1 (θ) > 1 such that for all z satisfying arg z = θ and
|z| ≥ R1 and for all (k, j) ∈ Γ, we have∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ 6 |z|(k−j)(σ−1+ε) . (8)

Lemma 2.3. ([3]) Let P (z) = (α+ iβ) zn+... (α, β are real numbers, |α|+|β| 6= 0) be
a polynomial with degree n ≥ 1 and A (z) be a meromorphic function with σ (A) < n.
Set f (z) = A (z) eP (z), z = reiθ, δ (P, θ) = α cos (nθ)−β sin (nθ). Then for any given
ε > 0, there exists a set E2 ⊂ [0, 2π) that has linear measure zero such that for any
θ ∈ [0, 2π) \ E2 ∪H, where H = {θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite set, there is a
constant R2 > 1 such that for |z| = r > R2, we have
(i) if δ (P, θ) > 0, then

exp {(1− ε) δ (P, θ) rn} ≤
∣∣f (reiθ)∣∣ ≤ exp {(1 + ε) δ (P, θ) rn} , (9)

(ii) if δ (P, θ) < 0, then

exp {(1 + ε) δ (P, θ) rn} ≤
∣∣f (reiθ)∣∣ ≤ exp {(1− ε) δ (P, θ) rn} . (10)
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Lemma 2.4. ([2]) Let p ≥ 1 be an integer, f (z) be a meromorphic function having
only finitely many poles and suppose that

G (z) =
log+

∣∣f (p) (z)
∣∣

|z|ρ

is unbounded on some ray arg z = θ with constant ρ > 0. Then there exists an infinite
sequence of points zm = rme

iθ (m = 1, 2, ...), where rm → +∞ such that G (zm)→∞
and ∣∣∣∣f (j) (zm)

f (p) (zm)

∣∣∣∣ 6 1

(p− j)!
(1 + o (1)) |zm|p−j (j = 0, ..., p− 1) as m→ +∞. (11)

Lemma 2.5. ([11]) Let f (z) be an entire function of finite order. Suppose that
there exists a set E3 ⊂ [0, 2π) that has linear measure zero such that for any ray
arg z = θ ∈ [0, 2π) \ E3,

log+
∣∣f (reiθ)∣∣ ≤Mrσ, (12)

where M (> 0) is a constant depending on θ and σ (> 0) is a constant independent
of θ. Then σ (f) ≤ σ.

3. Proof of Theorem 1.4

Proof. First we prove that every transcendental meromorphic solution f of equation
(6) is of order σ (f) ≥ n. Assume that f is a transcendental meromorphic solution f
of equation (6) of order σ (f) < n. We can write equation (6) as

k−1∑
j=0

hj(z)f
(j)ePj(z) = B (z) , (13)

where B = −f (k) + F and hjf
(j) (j = 0, 1, ..., k − 1) are meromorphic functions of

finite order with σ
(
hjf

(j)
)
< n (j = 0, 1, ..., k−1) and σ (B) < n. We have hsf

(s) 6≡ 0.

Indeed, if hsf
(s) ≡ 0, it follows that f (s) ≡ 0. Then f has to be a polynomial of degree

less than s. This is a contradiction. Since an,j = cjan,s (0 < cj < 1) (j 6= s), we get
that deg(Ps(z)−Pj(z)) = n (j 6= s). Thus by (13) and Lemma 2.1, we have σ(B) = n
and this contradicts the fact that σ(B) < n. Hence every transcendental meromorphic
solution f of equation (6) is of order σ (f) ≥ n.

Now Assume that f is a transcendental meromorphic solution of equation (6) with
σ (f) = σ < +∞. By Lemma 2.2, there exists a set E1 ⊂ [0, 2π) that has linear
measure zero such that if θ ∈ [0, 2π) \ E1, then there is a constant R1 = R1 (θ) > 1
such that for all z satisfying arg z = θ and |z| ≥ R1, we have∣∣∣∣f (j)(z)f (i)(z)

∣∣∣∣ ≤ |z|kσ (0 ≤ i < j ≤ k). (14)

By Lemma 2.3, for any given ε > 0, there exists a set E2 ⊂ [0, 2π) that has
linear measure zero such that if z = reiθ, θ ∈ [0, 2π) \ E2 ∪ H1 and r is suf-
ficiently large, then hje

Pj(z) (j = 0, 1, ..., k − 1) satisfy (9) or (10), where H1 =
{θ ∈ [0, 2π) : δ (Ps, θ) = 0}.

Set ρ = max {σ (F ) , σ (hj) : j = 0, 1, ..., k − 1} and c = max {cj : j 6= s}. Since F
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is a meromorphic function with only finitely many poles, then by Hadamard fac-

torization theorem, we can write F (z) = H(z)
Q(z) , where Q (z) is a polynomial with

degQ(z) = p ≥ 1 and H (z) is an entire function with σ (H) = σ (F ).

For any given θ ∈ [0, 2π) \ E1 ∪ E2 ∪H1, we have

δ (Ps, θ) > 0 or δ (Ps, θ) < 0.

Case 1. δ (Ps, θ) > 0. For any given ε
(

0 < 3ε < min
{

1−c
1+c , n− ρ

})
and all z

satisfying arg z = θ and |z| = r sufficiently large, we have∣∣∣hs(z)ePs(z)
∣∣∣ ≥ exp{(1− ε)δ (Ps, θ) r

n} (15)

and ∣∣∣hj(z)ePj(z)
∣∣∣ ≤ exp{(1 + ε)cδ(Ps, θ)r

n} (j 6= s). (16)

Now we prove that

G (z) =
log+

∣∣f (s) (z)
∣∣

|z|ρ+ε

is bounded on some ray arg z = θ. If G (z) is unbounded on the ray arg z = θ, then
by Lemma 2.4, there exists an infinite sequence of points zm = rme

iθ (m = 1, 2, ...),
where rm → +∞ such that G (zm)→∞ and∣∣∣∣f (j) (zm)

f (s) (zm)

∣∣∣∣ 6 1

(s− j)!
(1 + o (1)) |zm|s−j (j = 0, ..., s− 1) as m→ +∞. (17)

Since G (zm)→∞, for sufficiently large number A > 0, we have∣∣∣f (s) (zm)
∣∣∣ > exp

{
A |zm|ρ+ε

}
as m→ +∞. (18)

From (18), we have for m sufficiently large∣∣∣∣ F (zm)

f (s) (zm)

∣∣∣∣ =

∣∣∣∣ H (zm)

Q (zm) f (s) (zm)

∣∣∣∣ ≤ |H (zm)|

λ1r
p
m exp

{
A |zm|ρ+ε

} ≤ |H (zm)|

exp
{
A |zm|ρ+ε

} , (19)

where λ1 (> 0) is a constant. Since σ (H) ≤ ρ, we obtain∣∣∣∣ F (zm)

f (s) (zm)

∣∣∣∣ ≤ |H (zm)|

exp
{
A |zm|ρ+ε

} → 0 as m→ +∞. (20)

By (6), we get∣∣∣hs(z)ePs(z)
∣∣∣ ≤ ∣∣∣∣ f (k)(z)f (s) (z)

∣∣∣∣+
∣∣∣hk−1(z)ePk−1(z)

∣∣∣ ∣∣∣∣f (k−1)(z)f (s)(z)

∣∣∣∣
+...+

∣∣∣hs+1(z)ePs+1(z)
∣∣∣ ∣∣∣∣f (s+1)(z)

f (s)(z)

∣∣∣∣+
∣∣∣hs−1(z)ePs−1(z)

∣∣∣ ∣∣∣∣f (s−1)(z)f (s)(z)

∣∣∣∣
+ · · ·+

∣∣∣h1(z)eP1(z)
∣∣∣ ∣∣∣∣ f ′(z)f (s)(z)

∣∣∣∣+
∣∣∣h0(z)eP0(z)

∣∣∣ ∣∣∣∣ f(z)

f (s)(z)

∣∣∣∣+

∣∣∣∣ F (z)

f (s)(z)

∣∣∣∣ . (21)

Substituting (14)− (17) and (20) into (21), we have for the above zm

exp{(1− ε)δ (Ps, θ) r
n
m}

≤M1r
d1
m exp{(1 + ε)cδ (Ps, θ) r

n
m}, (22)
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where M1 (> 0), d1 (> 0) are constants. From (22) and 0 < ε <
1− c

3(1 + c)
, we get

exp{ (1− c)
3

δ (Ps, θ) r
n
m} ≤M1r

d1
m . (23)

This is a contradiction. Therefore G (z) is bounded on arg z = θ. Hence∣∣∣f (s) (z)
∣∣∣ ≤ exp

{
M |z|ρ+ε

}
(24)

on arg z = θ, where M (> 0) is a constant. By (24) and (s)-fold iterated integration,
we conclude that

|f (z)| ≤ exp
{
M |z|ρ+2ε

}
(25)

on arg z = θ.
Case 2. δ (Ps, θ) < 0. For any given ε (0 < 3ε < min {1, n− ρ}) and all z satisfying
arg z = θ and |z| = r is sufficiently large , we have∣∣∣hj(z)ePj(z)

∣∣∣ ≤ exp{(1− ε)δ(Pj , θ)rn} (j = 0, ..., k − 1) . (26)

By (6), we get

−1 = hk−1(z)ePk−1(z)
f (k−1)(z)

f (k)(z)

+...+ hs(z)e
Ps(z)

f (s)(z)

f (k)(z)
+ ...+ h0(z)eP0(z)

f(z)

f (k)(z)
+

F (z)

f (k)(z)
. (27)

Now we prove that

D (z) =
log+

∣∣f (k) (z)
∣∣

|z|ρ+ε

is bounded on some ray arg z = θ. If D (z) is unbounded on the ray arg z = θ, then
by Lemma 2.4, there exists an infinite sequence of points zm = rme

iθ (m = 1, 2, ...),
where rm → +∞ such that D (zm)→∞ and∣∣∣∣ f (j) (zm)

f (k) (zm)

∣∣∣∣ 6 1

(k − j)!
(1 + o (1)) |zm|k−j (j = 0, ..., k − 1) as m→ +∞. (28)

From D (zm)→∞, for sufficiently large number B > 0, we have∣∣∣f (k) (zm)
∣∣∣ > exp

{
B |zm|ρ+ε

}
as m→ +∞. (29)

By using the same reasoning as above, from (29), we have for m sufficiently large∣∣∣∣ F (zm)

f (k) (zm)

∣∣∣∣ =

∣∣∣∣ H (zm)

Q (zm) f (k) (zm)

∣∣∣∣ ≤ |H (zm)|

exp
{
B |zm|ρ+ε

} . (30)

Since σ (H) ≤ ρ, we obtain∣∣∣∣ F (zm)

f (k) (zm)

∣∣∣∣ ≤ |H (zm)|

exp
{
B |zm|ρ+ε

} → 0 as m→ +∞. (31)

Substituting (14), (26), (28) and (31) into (27), we obtain as rm → +∞

1 ≤ 0.
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This is a contradiction. Therefore D (z) is bounded on arg z = θ. Hence∣∣∣f (k) (z)
∣∣∣ ≤ exp

{
M |z|ρ+ε

}
(32)

on arg z = θ, where M (> 0) is a constant. By (32) and (k)-fold iterated integration,
we obtain (25) on arg z = θ.

From equation (6), we know that the poles of f can only occur at the poles of F
and hj(z) (j = 0, 1, ..., k − 1). Since F and hj(z) (j = 0, 1, ..., k − 1) are meromorphic
functions having only finitely many poles, then f must have only finitely many poles.

Therefore by Hadamard factorization theorem, we can write f (z) = g(z)
R(z) , where R (z)

is a polynomial and g (z) is an entire function with σ (g) = σ (f) ≥ n. From (25), we
have

|g (z)| ≤ λ2rq exp
{
M |z|ρ+2ε

}
(33)

on arg z = θ, where λ2 (> 0) is a constant and q = degR ≥ 1. Hence

|g (z)| ≤ exp
{
M |z|ρ+3ε

}
(34)

on arg z = θ. Therefore for any given θ ∈ [0, 2π)\E1∪E2∪H1, where E1∪E2∪H1 is
a set of linear measure zero, we have (34) on arg z = θ. Then by Lemma 2.5, we have
σ (g) ≤ ρ+ 3ε < n and this contradicts the fact that σ (g) ≥ n. Hence σ (f) = +∞.

Suppose now that max{c1, ..., cs−1} < c0. if f is a rational solution of (6), then
by max{c1, ..., cs−1} < c0 and

f =
F

h0eP0(z)
−(

e−P0(z)

h0
f (k)+

hk−1
h0

ePk−1(z)−P0(z)f (k−1)+...+
h1
h0
eP1(z)−P0(z)f

′
), (35)

we obtain a contradiction since the left side of equation (35) is a rational function but
the right side is a transcendental meromorphic function.

Now we prove that equation (6) cannot have a nonzero polynomial solution. Set
c′ = max{c1, ..., cs−1} < c0 and let f(z) be a nonzero polynomial solution of equa-
tion (6) with deg f(z) = d. We take a ray arg z = θ ∈ [0, 2π) \ H1, where H1 is
defined as above such that δ(Ps, θ) > 0. By Lemma 2.3, for any given ε (0 < 3ε <

min{ 1−c1+c ,
c0−c′
c0+c′

, n−ρ}), there exists a set E2 having linear measure zero such that for

all z with arg z = θ ∈ [0, 2π) \E2 ∪H1 and |z| = r sufficiently large, we have (15) and
(16).

If d ≥ s, by (6), (15) and (16), we obtain for all z with arg z = θ ∈ [0, 2π) \ E2 ∪H1

and |z| = r sufficiently large

B1r
d−s exp{(1−ε)δ (Ps, θ) r

n} ≤ |hs(z)ePs(z)f (s)(z)| ≤
∑
j 6=s

|hj(z)ePj(z)f (j)(z)|+|F (z)|

≤ B2r
d exp{(1 + ε)cδ (Ps, θ) r

n}+
exp{rρ+ε}
λ1rp

, (36)

where B1 (> 0), B2 (> 0) are constants. By (36), we get

exp{ (1− c)
3

δ (Ps, θ) r
n} ≤ B3r

d2 exp{rρ+ε}, (37)
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where B3(> 0) and d2 are constants. Hence (37) is a contradiction.

If d < s, by (6), (15) and (16), we obtain for all z with arg z = θ ∈ [0, 2π) \ E2 ∪H1,
and |z| = r sufficiently large

B4r
s−1 exp{(1−ε)c0δ (Ps, θ) r

n} ≤ |h0(z)eP0(z)||f(z)| ≤
s−1∑
j=1

|hj(z)ePjf (j)(z)|+ |F (z)|

≤ B5r
s−2 exp{(1 + ε)c′δ (Ps, θ) r

n}+
exp{rρ+ε}
λ1rp

, (38)

where B4 (> 0), B5 (> 0) are constants. By (38), we get

exp{ (c0 − c′)
2

δ (Ps, θ) r
n} ≤ B6

r
exp{rρ+ε}, (39)

where B6(> 0) is a constant. This is a contradiction. Therefore, if
max{c1, ..., cs−1} < c0, then every meromorphic solution of equation (6) is of infinite
order. �

4. Proof of Theorem 1.5

Proof. First we prove that every transcendental meromorphic solution f of equation
(6) is of order σ (f) ≥ n. Assume that f is a transcendental meromorphic solution f
of equation (6) of order σ (f) < n. We can write equation (6) in the form (13), where
B = −f (k) + F and hj(z)f

(j) (j = 0, 1, ..., k − 1) are meromorphic functions of finite

order with hsf
(s) 6≡ 0, hdf

(d) 6≡ 0, σ
(
hjf

(j)
)
< n (j = 0, 1, ..., k − 1) and σ (B) < n.

We have deg(Ps(z)− Pj(z)) = n (j 6= s). Thus by (13) and Lemma 2.1, we obtain
σ(B) = n and this contradicts the fact that σ(B) < n. Hence every transcendental
meromorphic solution f of equation (6) is of order σ (f) ≥ n.

Assume f is a transcendental solution of equation (6) with σ (f) = σ < +∞. By
Lemma 2.2, there exists a set E1 ⊂ [0, 2π) that has linear measure zero such that
if θ ∈ [0, 2π) \ E1, then there is a constant R1 = R1 (θ) > 1 such that for all z
satisfying arg z = θ and |z| ≥ R1, we have (14). By Lemma 2.3, for any given ε > 0,
there exists a set E2 ⊂ [0, 2π) that has linear measure zero such that if z = reiθ,
θ ∈ [0, 2π) \ E2 ∪ H2 and r is sufficiently large, then hje

Pj(z) (j = 0, 1, ..., k − 1)
satisfy (9) or (10), where H2 = {θ ∈ [0, 2π) : δ (Ps, θ) = 0 or δ (Pd, θ) = 0}. Set ρ =
max {σ (F ) , σ (hj) : j = 0, 1, ..., k − 1}. Since F is a meromorphic function with only
finitely many poles, then by Hadamard factorization theorem, we can write F (z) =
H(z)
Q(z) , where Q (z) is a polynomial with degQ = p ≥ 1 and H (z) is an entire function

with σ (H) = σ (F ).
Case 1. Suppose that θs 6= θd. Set H3 = {θ ∈ [0, 2π) : δ (Ps, θ) = δ(Pd, θ)}. Since θs
6= θd, then H3 has linear measure zero. For any given θ ∈ [0, 2π) \E1 ∪E2 ∪H2 ∪H3,
we have

δ (Ps, θ) 6= 0, δ (Pd, θ) 6= 0 and δ (Ps, θ) > δ (Pd, θ) or δ (Ps, θ) < δ (Pd, θ) .

Set δ1 = δ (Ps, θ) and δ2 = δ (Pd, θ).
Subcase 1.1. δ1 > δ2. Here we also divide our proof into three subcases:
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(a) δ1 > δ2 > 0. Set δ3 = max {δ(Pj , θ) : j 6= s}. Then 0 < δ3 < δ1. Thus for

any given ε
(

0 < 3ε < min
{
δ1−δ3
δ1+δ3

, n− ρ
})

and all z satisfying arg z = θ and |z| = r

sufficiently large, we have ∣∣∣hs(z)ePs(z)
∣∣∣ ≥ exp{(1− ε)δ1rn} (40)

and ∣∣∣hj(z)ePj(z)
∣∣∣ ≤ exp{(1 + ε)δ3r

n} (j 6= s) (41)

Now we prove that

G (z) =
log+

∣∣f (s) (z)
∣∣

|z|ρ+ε

is bounded on some ray arg z = θ. If G (z) is unbounded on the ray arg z = θ, then
by Lemma 2.4, there exists an infinite sequence of points zm = rme

iθ (m = 1, 2, ...),
where rm → +∞ such that G (zm)→∞ and (17) holds. From (18), we have (19) for
m sufficiently large. Since σ (H) ≤ ρ, we obtain (20). Substituting (14), (17), (20),
(40) and (41) into (21), for the above zm, we obtain

exp{(1− ε)δ1rnm} ≤M2r
d3
m exp{(1 + ε)δ3r

n
m}, (42)

where M2 (> 0), d3 (> 0) are constants. From (42) and 0 < ε < δ1−δ3
3(δ1+δ3)

, we get

exp{ (δ1 − δ3)

3
rnm} ≤M2r

d3
m . (43)

This is a contradiction. Therefore G (z) is bounded on arg z = θ. Hence (25) holds
on arg z = θ.

(b) δ1 > 0 > δ2. Thus for any given ε (0 < 3ε < min

{
1− α
1 + α

, n− ρ
}

) and all z

satisfying arg z = θ and |z| = r sufficiently large, we have (40),∣∣∣hd(z)ePd(z)
∣∣∣ ≤ exp{(1− ε)δ2rn} < 1, (44)∣∣∣hj(z)ePj(z)

∣∣∣ ≤ exp{(1 + ε)αδ1r
n} (j ∈ I) (45)

and ∣∣∣hj(z)ePj(z)
∣∣∣ ≤ exp{(1− ε)δ(Pj , θ)rn} < 1 (j ∈ J) . (46)

Now we prove that

G (z) =
log+

∣∣f (s) (z)
∣∣

|z|ρ+ε

is bounded on some ray arg z = θ. If G (z) is unbounded on the ray arg z = θ, then
by Lemma 2.4, there exists an infinite sequence of points zm = rme

iθ (m = 1, 2, ...),
where rm → +∞ such that G (zm) → ∞ and (17) holds. Substituting (14), (17),
(20), (40), (44)− (46) into (21), for the above zm, we obtain

exp{(1− ε)δ1rnm} ≤M3r
d4
m exp{(1 + ε)αδ1r

n
m}, (47)

where M3 (> 0) and d4 (> 0) are constants. From (47) and 0 < ε <
1− α

3(1 + α)
, we get

exp{ (1− α)

3
δ1r

n
m} ≤M3r

d4
m . (48)
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This is a contradiction. Therefore G (z) is bounded on arg z = θ. Hence (25) holds
on arg z = θ.
(c) 0 > δ1 > δ2. For any given ε (0 < 3ε < min {1, n− ρ}) and all z satisfying
arg z = θ and |z| = r sufficiently large, we have (26). Using similar reasoning as in
case 2 in the proof of Theorem 1.4, (25) holds on arg z = θ.
Subcase 1.2. δ1 < δ2. Using the same reasoning as in subcase 1.1, we can also
obtain (25) on arg z = θ.
Case 2. Suppose that θs = θd and |an,d| < (1− α) |an,s|. For any given θ ∈
[0, 2π) \ E1 ∪ E2 ∪H2, where E1, E2 and H2 are defined above, we have

δ (Ps, θ) > 0 or δ (Ps, θ) < 0.

Subcase 2.1. δ (Ps, θ) > 0. For any given ε (0 < 3ε < min
{

(1−α)|an,s|−|an,d|
(1+α)|an,s|+|an,d| , n− ρ

}
)

and all z satisfying arg z = θ and |z| = r sufficiently large, we have (15),∣∣∣hj(z)ePj(z)
∣∣∣ ≤ exp{(1 + ε)αδ(Ps, θ)r

n} (j ∈ I) , (49)

and ∣∣∣hj(z)ePj(z)
∣∣∣ ≤ exp{(1 + ε)βδ(Pd, θ)r

n} (j ∈ J ∪ {d}) (50)

Now we prove that

G (z) =
log+

∣∣f (s) (z)
∣∣

|z|ρ+ε

is bounded on some ray arg z = θ. If G (z) is unbounded on the ray arg z = θ, then
by Lemma 2.4, there exists an infinite sequence of points zm = rme

iθ (m = 1, 2, ...),
where rm → +∞ such that G (zm) → ∞ and (17) holds. Substituting (14), (15),
(17), (20), (49) and (50) into (21), for the above zm, we obtain

exp{(1− ε)δ(Ps, θ)rn}

≤M4r
d5
m exp{(1 + ε)αδ(Ps, θ)r

n
m} exp{(1 + ε)δ(Pd, θ)r

n
m}, (51)

where M4, d5 (> 0) are constants. By (51), we have

exp{γrnm} ≤M4r
d5
m , (52)

where

γ = (1− ε)δ(Ps, θ)− (1 + ε)δ(Pd, θ)− (1 + ε)αδ(Ps, θ). (53)

Since 0 < ε <
(1− α) |an,s| − |an,d|

3 [(1 + α) |an,s|+ |an,d|]
, θs = θd and cos(θs + nθ) > 0, we obtain

γ = {(1− α) |an,s| − |an,d| − ε [(1 + α) |an,s|+ |an,d|]} cos(θs + nθ)

>
((1− α) |an,s| − |an,d|)

3
cos(θs + nθ) > 0.

Since γ > 0, then (52) is a contradiction. Therefore G (z) is bounded on arg z = θ.
Hence (25) holds on arg z = θ.
Subcase 2.2 δ (Ps, θ) < 0. Using the same reasoning as in case 2 in the proof of
Theorem 1.4, (25) holds on arg z = θ.
From equation (6), we know that the poles of f can only occur at the poles of F
and hj(z) (j = 0, 1, ..., k − 1). Since F and hj(z) (j = 0, 1, ..., k − 1) are meromorphic
functions having finitely many poles, then f must have only finitely many poles.
Therefore by Hadamard factorization theorem, using similar arguments as in the proof
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of Theorem 1.4, we can write f (z) = g(z)
R(z) , where R (z) is a polynomial and g (z) is

an entire function with σ (g) = σ (f) ≥ n. From (25), we have (34) on arg z = θ.
Then by Lemma 2.5, we have σ (g) ≤ ρ + 3ε < n and this contradicts the fact that
σ (g) ≥ n. Hence σ (f) = +∞.

In the following, we show that if f(z) is a polynomial solution of (6), then deg f ≤
s− 1. Assume that f is a polynomial solution of (6) with deg f = b ≥ s.
(a) Assume that θs 6= θd.
(i) If θs 6= θd + π or θd 6= θs + π, set H4 = {θ ∈ [0, 2π) : δ(Ps, θ) > δ(Pd, θ) > 0}.

Then m(H4) > 0. We can choose a curve Γ = {z : arg z = θ ∈ H4}.
By (6), (40) and (41), for all z ∈ Γ and |z| = r sufficiently large, we obtain

B7r
b−s exp{(1− ε)δ1rn} ≤ |hs(z)ePs(z)f (s)(z)|

≤
∑
j 6=s

|hj(z)ePj(z)f (j)(z)|+
∣∣∣∣H(z)

Q(z)

∣∣∣∣
≤ B8r

d6 exp{(1 + ε)δ3r
n}exp{rρ+ε}

λ1rp
, (54)

where B7(> 0), B8(> 0),d6 and λ1 are constants.
By (54), we obtain

exp

{
(δ1 − δ3)

3
rn
}
≤ B9r

d6 exp{rρ+ε}, (55)

where B9(> 0) and d6 are constants. This is a contradiction.
(ii) If θs = θd + π or θd = θs + π, set H5 = {θ ∈ [0, 2π) : δ(Ps, θ) > 0 > δ(Pd, θ)}.

Then m(H5) > 0. We can choose a curve G = {z : arg z = θ ∈ H5}.
By (6), (40) and (44)−(46), for all z ∈ G and |z| = r sufficiently large, we obtain

B10r
b−s exp{(1− ε)δ1rn} ≤ B11r

d7 exp{(1 + ε)αδ1r
n} exp{rρ+ε}, (56)

where B10(> 0), B11(> 0) and d7 are constants.
By (56), we obtain

exp

{
(1− α)

3
δ1r

n

}
≤ B12r

d8 exp{rρ+ε}, (57)

where B12(> 0) and d8 are constants. This is a contradiction.
(b) Assume that θs = θd and |an,d| < (1−α)|an,s|. We can take a ray arg z = θ such

that δ(Ps, θ) > 0. Thus δ(Ps, θ) > δ(Pd, θ) > 0.
By (6), (40) and (41), for all z with arg z = θ and |z| = r sufficiently large, we
obtain (55) which is a contradiction.

Hence every polynomial solution f of (6) satisfies deg f ≤ s− 1. �
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[3] B. Beläıdi, A.El. Farissi, Differential polynomials generated by some complex linear differential

equations with meromorphic coefficients, Glas. Math. Ser. III 43 (2008), no. 2, 363–373.



INFINITE ORDER OF TRANSCENDENTAL MEROMORPHIC SOLUTIONS 219
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