Infinite order of transcendental meromorphic solutions of some nonhomogeneous linear differential equations

Nour el imane Khadidja Cheriet and Karima Hamani

Abstract. In this paper, we investigate the order of growth of transcendental meromorphic solutions of the linear differential equation

$$
f^{(k)}+\sum_{j=0}^{k-1} h_{j}(z) e^{P_{j}(z)} f^{(j)}=F
$$

where $k \geq 2$ is an integer, $P_{j}(z)(j=0, \ldots, k-1)$ are nonconstant polynomials, $h_{j}(z)(j=$ $0, \ldots, k-1)$ and $F(\not \equiv 0)$ are meromorphic functions. Under some conditions, we prove that every transcendental meromorphic solution of the above equation is of infinite order.

2010 Mathematics Subject Classification. 34M10, 30D35.
Key words and phrases. Linear differential equation, meromorphic function, order of growth.

1. Introduction and main results

In this paper, we use the fundamental results and the standard notations of the Nevanlinna's value distribution theory of meromorphic functions (see [8], [12]). In addition, we use the notation $\sigma(f)$ to denote the order of growth of a meromorphic function f and $\sigma_{2}(f)$ to denote the hyper-order of f which is defined by (see [12])

$$
\begin{equation*}
\sigma_{2}(f)=\limsup _{r \rightarrow+\infty} \frac{\log \log T(r, f)}{\log r} \tag{1}
\end{equation*}
$$

We define the linear measure of a set $E \subset[0,+\infty)$ by $m(E)=\int_{0}^{+\infty} \chi_{E}(t) d t$, where χ_{E} is the characteristic function of E.

Many authors ([5], [7], [9]) have studied the second order linear differential equation

$$
\begin{equation*}
f^{\prime \prime}+h_{1}(z) e^{P(z)} f^{\prime}+h_{0}(z) e^{Q(z)} f=0 \tag{2}
\end{equation*}
$$

where $P(z)$ and $Q(z)$ are nonconstant polynomials, $h_{1}(z)$ and $h_{0}(z)(\not \equiv 0)$ are entire functions satisfying $\sigma\left(h_{1}\right)<\operatorname{deg} P$ and $\sigma\left(h_{0}\right)<\operatorname{deg} Q$. Gundersen showed in [7, p. 419] that if $\operatorname{deg} P \neq \operatorname{deg} Q$, then every nonconstant solution of the linear differential equation (2) is of infinite order. If $\operatorname{deg} P=\operatorname{deg} Q$, then equation (2) may have nonconstant solutions of finite order. Indeed, $f(z)=z$ satisfies $f^{\prime \prime}-z^{3} e^{z} f^{\prime}+z^{2} e^{z} f=$ 0.
K. H. Kwon considered the case where $\operatorname{deg} P=\operatorname{deg} Q$ and proved the following result:

Theorem 1.1. ([9]) Let $P(z)$ and $Q(z)$ be nonconstant polynomials such that

$$
\begin{gather*}
P(z)=a_{n} z^{n}+\ldots+a_{1} z+a_{0} \tag{3}\\
Q(z)=b_{n} z^{n}+\ldots+b_{1} z+b_{0} \tag{4}
\end{gather*}
$$

where $a_{i}, b_{i}(i=0,1, \ldots, n)$ are complex numbers, $a_{n} \neq 0$ and $b_{n} \neq 0$. Let $h_{j}(z)$ $(j=0,1)$ be entire functions with $\sigma\left(h_{j}\right)<n$. Suppose that $\arg a_{n} \neq \arg b_{n}$ or $a_{n}=c b_{n}(0<c<1)$. Then every nonconstant solution f of equation (2) is of infinite order and satisfies $\sigma_{2}(f) \geq n$.

In [4], Belaïdi and Abbas have studied some higher order linear differential equations with entire coefficients and have proved the following result:
Theorem 1.2. ([4]) Let $k \geq 2$ be an integer and $P_{j}(z)=\sum_{i=0}^{n} a_{i, j} z^{i}(j=0,1, \ldots, k-$ 1) be nonconstant polynomials with degree $n \geq 1$, where $a_{0, j}, \ldots, a_{n, j}(j=0,1, \ldots, k-1)$ are complex numbers such that $a_{n, j} a_{n, s} \neq 0(j \neq s)(1 \leq s \leq k-1)$. Let $h_{j}(z)(\not \equiv 0)$ $(j=0,1, \ldots, k-1)$ be entire functions with $\sigma\left(h_{j}\right)<n$. Suppose that $\arg a_{n, j} \neq \arg a_{n, s}$ or $a_{n, j}=c_{j} a_{n, s}\left(0<c_{j}<1\right)(j \neq s)$. Then every transcendental solution f of equation

$$
\begin{equation*}
f^{(k)}+\sum_{j=0}^{k-1} h_{j}(z) e^{P_{j}(z)} f^{(j)}=0 \tag{5}
\end{equation*}
$$

is of infinite order and satisfies $\sigma_{2}(f)=n$. Furthermore, if $\max \left\{c_{1}, \ldots, c_{s-1}\right\}<c_{0}$, then every solution $f(\not \equiv 0)$ of equation (5) is of infinite order and satisfies $\sigma_{2}(f)=n$.

In 2008, J. Tu and C. F. Yi have also considered equation (5) and obtained the following result:
Theorem 1.3. ([10]) Let $k \geq 2$ be an integer and $P_{j}(z)=\sum_{i=0}^{n} a_{i, j} z^{i}(j=0,1, \ldots, k-$ 1) be polynomials with degree $n \geq 1$, where $a_{0, j}, \ldots, a_{n, j}(j=0,1, \ldots, k-1)$ are complex numbers. Let $h_{j}(z)(j=0,1, \ldots, k-1)$ be entire functions with $\sigma\left(h_{j}\right)<n$. Suppose that there exist nonzero complex numbers $a_{n, s}$ and $a_{n, l}$ such that $0 \leq s<l \leq k-1$, $a_{n, s}=\left|a_{n, s}\right| e^{i \theta_{s}}, a_{n, l}=\left|a_{n, l}\right| e^{i \theta_{l}}, \theta_{s}, \theta_{l} \in[0,2 \pi), \theta_{s} \neq \theta_{l}, h_{s} h_{l} \not \equiv 0$ and for $j \neq s, l$, $a_{n, j}$ satisfies either $a_{n, j}=d_{j} a_{n, s}\left(0<d_{j}<1\right)$ or $a_{n, j}=d_{j} a_{n, l}\left(0<d_{j}<1\right)$. Then every transcendental solution f of equation (5) satisfies $\sigma(f)=+\infty$. Furthermore, if f is a polynomial solution of equation (5), then $\operatorname{deg} f \leq s-1$; if $s=1$, then every nonconstant solution f of equation (5) satisfies $\sigma(f)=+\infty$.

In this paper, we continue the research in this type of problems. The main purpose of this paper is to extend and improve the above results to some nonhomogeneous higher order linear differential equations with meromorphic coefficients. We will prove the following two results:
Theorem 1.4. Let $k \geq 2$ be an integer, $P_{j}(z)=\sum_{i=0}^{n} a_{i, j} z^{i}(j=0, \ldots, k-1)$ be polynomials with degree $n \geq 1$, where $a_{0, j}, \ldots, a_{n, j}(j=0, \ldots, k-1)$ are complex numbers. Let $h_{j}(z)(j=0, \ldots, k-1)$ and $F(\not \equiv 0)$ be meromorphic functions having only finitely many poles with $\max \left\{\sigma(F), \sigma\left(h_{j}\right): j=0, \ldots, k-1\right\}<n$. Suppose that there exists an integer $s \in\{1,2, \ldots, k-1\}$ such that $h_{0} h_{s} \not \equiv 0$ and $a_{n, j}=c_{j} a_{n, s}$ $\left(0<c_{j}<1\right)(j \neq s)$. Then every transcendental meromorphic solution of equation

$$
\begin{equation*}
f^{(k)}+\sum_{j=0}^{k-1} h_{j}(z) e^{P_{j}(z)} f^{(j)}=F \tag{6}
\end{equation*}
$$

is of infinite order. Furthermore, if $\max \left\{c_{1}, \ldots, c_{s-1}\right\}<c_{0}$, then every meromorphic solution $f(\not \equiv 0)$ of equation (6) is of infinite order.

Theorem 1.5. Let $k \geq 2$ be an integer, $P_{j}(z)=\sum_{i=0}^{n} a_{i, j} z^{i}(j=0, \ldots, k-1)$ be polynomials with degree $n \geq 1$, where $a_{0, j}, \ldots, a_{n, j}(j=0, \ldots, k-1)$ are complex numbers. Let $h_{j}(z)(j=0, \ldots, k-1)$ and $F(\not \equiv 0)$ be meromorphic functions having only finitely many poles with $\max \left\{\sigma(F), \sigma\left(h_{j}\right): j=0, \ldots, k-1\right\}<n$. Suppose that there exist two integers s, d such that $1 \leq s<d \leq k-1, h_{s} h_{d} \not \equiv 0$ and $a_{n, s} \neq a_{n, d}$. Let I and J be two sets satisfying $I \neq \emptyset, J \neq \emptyset, I \cap J=\emptyset$ and $I \cup J=\{0, \ldots, k-1\} /\{s, d\}$ such that for $j \in I, a_{n, j}=\alpha_{j} a_{n, s}\left(0<\alpha_{j}<1\right)$ and for $j \in J, a_{n, j}=\beta_{j} a_{n, d}(0<$ $\left.\beta_{j}<1\right)$. Set $a_{n, l}=\left|a_{n, l}\right| e^{i \theta_{l}}, \theta_{l} \in[0,2 \pi)(l=s, d)$ and $\alpha=\max \left\{\alpha_{j}: j \in I\right\}$.
If $\left(\theta_{s} \neq \theta_{d}\right)$ or $\left(\theta_{s}=\theta_{d}\right.$ and $\left.\left|a_{n, d}\right|<(1-\alpha)\left|a_{n, s}\right|\right)$, then every transcendental meromorphic solution of equation (6) is of infinite order. Furthermore, if f is a polynomial solution of (6), then $\operatorname{deg} f \leq s-1$.

2. Preliminary lemmas

Lemma 2.1. ([1]) Let $P_{j}(z)(j=0,1, \ldots, k)$ be polynomials with $\operatorname{deg} P_{0}(z)=n(n \geq$ 1) and $\operatorname{deg} P_{j}(z) \leq n(j=1,2, \ldots, k)$. Let $A_{j}(z)(j=0,1, \ldots, k)$ be meromorphic functions with finite order and $\max \left\{\sigma\left(A_{j}\right): j=0,1, \ldots, k\right\}<n$ such that $A_{0}(z) \not \equiv 0$. We denote

$$
\begin{equation*}
F(z)=A_{k}(z) e^{P_{k}(z)}+A_{k-1}(z) e^{P_{k-1}(z)}+\ldots+A_{1}(z) e^{P_{1}(z)}+A_{0}(z) e^{P_{0}(z)} \tag{7}
\end{equation*}
$$

If $\operatorname{deg}\left(P_{0}(z)-P_{j}(z)\right)=n$ for all $j=1, \ldots, k$, then F is a nontrivial meromorphic function with finite order and satisfies $\sigma(F)=n$.

Lemma 2.2. ([6]) Let $f(z)$ be a transcendental meromorphic function of finite order σ. Let $\Gamma=\left\{\left(k_{1}, j_{1}\right),\left(k_{2}, j_{2}\right), \ldots,\left(k_{m}, j_{m}\right)\right\}$ denotes a set of distinct pairs of integers satisfying $k_{i}>j_{i} \geq 0(i=1,2, \ldots, m)$ and let $\varepsilon>0$ be a given constant. Then there exists a set $E_{1} \subset[0,2 \pi)$ that has linear measure zero such that if $\theta \in[0,2 \pi) \backslash E_{1}$, then there is a constant $R_{1}=R_{1}(\theta)>1$ such that for all z satisfying $\arg z=\theta$ and $|z| \geq R_{1}$ and for all $(k, j) \in \Gamma$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leqslant|z|^{(k-j)(\sigma-1+\varepsilon)} \tag{8}
\end{equation*}
$$

Lemma 2.3. ([3]) Let $P(z)=(\alpha+i \beta) z^{n}+\ldots(\alpha, \beta$ are real numbers, $|\alpha|+|\beta| \neq 0)$ be a polynomial with degree $n \geq 1$ and $A(z)$ be a meromorphic function with $\sigma(A)<n$. Set $f(z)=A(z) e^{P(z)}, z=r e^{i \theta}, \delta(P, \theta)=\alpha \cos (n \theta)-\beta \sin (n \theta)$. Then for any given $\varepsilon>0$, there exists a set $E_{2} \subset[0,2 \pi)$ that has linear measure zero such that for any $\theta \in[0,2 \pi) \backslash E_{2} \cup H$, where $H=\{\theta \in[0,2 \pi): \delta(P, \theta)=0\}$ is a finite set, there is a constant $R_{2}>1$ such that for $|z|=r \geqslant R_{2}$, we have
(i) if $\delta(P, \theta)>0$, then

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \leq\left|f\left(r e^{i \theta}\right)\right| \leq \exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{9}
\end{equation*}
$$

(ii) if $\delta(P, \theta)<0$, then

$$
\begin{equation*}
\exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \leq\left|f\left(r e^{i \theta}\right)\right| \leq \exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{10}
\end{equation*}
$$

Lemma 2.4. ([2]) Let $p \geq 1$ be an integer, $f(z)$ be a meromorphic function having only finitely many poles and suppose that

$$
G(z)=\frac{\log ^{+}\left|f^{(p)}(z)\right|}{|z|^{\rho}}
$$

is unbounded on some ray $\arg z=\theta$ with constant $\rho>0$. Then there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $G\left(z_{m}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{m}\right)}{f^{(p)}\left(z_{m}\right)}\right| \leqslant \frac{1}{(p-j)!}(1+o(1))\left|z_{m}\right|^{p-j} \quad(j=0, \ldots, p-1) \text { as } m \rightarrow+\infty \tag{11}
\end{equation*}
$$

Lemma 2.5. ([11]) Let $f(z)$ be an entire function of finite order. Suppose that there exists a set $E_{3} \subset[0,2 \pi)$ that has linear measure zero such that for any ray $\arg z=\theta \in[0,2 \pi) \backslash E_{3}$,

$$
\begin{equation*}
\log ^{+}\left|f\left(r e^{i \theta}\right)\right| \leq M r^{\sigma} \tag{12}
\end{equation*}
$$

where $M(>0)$ is a constant depending on θ and $\sigma(>0)$ is a constant independent of θ. Then $\sigma(f) \leq \sigma$.

3. Proof of Theorem 1.4

Proof. First we prove that every transcendental meromorphic solution f of equation (6) is of order $\sigma(f) \geq n$. Assume that f is a transcendental meromorphic solution f of equation (6) of order $\sigma(f)<n$. We can write equation (6) as

$$
\begin{equation*}
\sum_{j=0}^{k-1} h_{j}(z) f^{(j)} e^{P_{j}(z)}=B(z) \tag{13}
\end{equation*}
$$

where $B=-f^{(k)}+F$ and $h_{j} f^{(j)}(j=0,1, \ldots, k-1)$ are meromorphic functions of finite order with $\sigma\left(h_{j} f^{(j)}\right)<n(j=0,1, \ldots, k-1)$ and $\sigma(B)<n$. We have $h_{s} f^{(s)} \not \equiv 0$. Indeed, if $h_{s} f^{(s)} \equiv 0$, it follows that $f^{(s)} \equiv 0$. Then f has to be a polynomial of degree less than s. This is a contradiction. Since $a_{n, j}=c_{j} a_{n, s}\left(0<c_{j}<1\right)(j \neq s)$, we get that $\operatorname{deg}\left(P_{s}(z)-P_{j}(z)\right)=n(j \neq s)$. Thus by (13) and Lemma 2.1, we have $\sigma(B)=n$ and this contradicts the fact that $\sigma(B)<n$. Hence every transcendental meromorphic solution f of equation (6) is of order $\sigma(f) \geq n$.

Now Assume that f is a transcendental meromorphic solution of equation (6) with $\sigma(f)=\sigma<+\infty$. By Lemma 2.2, there exists a set $E_{1} \subset[0,2 \pi)$ that has linear measure zero such that if $\theta \in[0,2 \pi) \backslash E_{1}$, then there is a constant $R_{1}=R_{1}(\theta)>1$ such that for all z satisfying $\arg z=\theta$ and $|z| \geq R_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{(i)}(z)}\right| \leq|z|^{k \sigma} \quad(0 \leq i<j \leq k) \tag{14}
\end{equation*}
$$

By Lemma 2.3, for any given $\varepsilon>0$, there exists a set $E_{2} \subset[0,2 \pi)$ that has linear measure zero such that if $z=r e^{i \theta}, \theta \in[0,2 \pi) \backslash E_{2} \cup H_{1}$ and r is sufficiently large, then $h_{j} e^{P_{j}(z)}(j=0,1, \ldots, k-1)$ satisfy (9) or (10), where $H_{1}=$ $\left\{\theta \in[0,2 \pi): \delta\left(P_{s}, \theta\right)=0\right\}$.

Set $\rho=\max \left\{\sigma(F), \sigma\left(h_{j}\right): j=0,1, \ldots, k-1\right\}$ and $c=\max \left\{c_{j}: j \neq s\right\}$. Since F
is a meromorphic function with only finitely many poles, then by Hadamard factorization theorem, we can write $F(z)=\frac{H(z)}{Q(z)}$, where $Q(z)$ is a polynomial with $\operatorname{deg} Q(z)=p \geq 1$ and $H(z)$ is an entire function with $\sigma(H)=\sigma(F)$.

For any given $\theta \in[0,2 \pi) \backslash E_{1} \cup E_{2} \cup H_{1}$, we have

$$
\delta\left(P_{s}, \theta\right)>0 \text { or } \delta\left(P_{s}, \theta\right)<0
$$

Case 1. $\delta\left(P_{s}, \theta\right)>0$. For any given $\varepsilon\left(0<3 \varepsilon<\min \left\{\frac{1-c}{1+c}, n-\rho\right\}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have

$$
\begin{equation*}
\left|h_{s}(z) e^{P_{s}(z)}\right| \geq \exp \left\{(1-\varepsilon) \delta\left(P_{s}, \theta\right) r^{n}\right\} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|h_{j}(z) e^{P_{j}(z)}\right| \leq \exp \left\{(1+\varepsilon) c \delta\left(P_{s}, \theta\right) r^{n}\right\} \quad(j \neq s) \tag{16}
\end{equation*}
$$

Now we prove that

$$
G(z)=\frac{\log ^{+}\left|f^{(s)}(z)\right|}{|z|^{\rho+\varepsilon}}
$$

is bounded on some ray $\arg z=\theta$. If $G(z)$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.4, there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $G\left(z_{m}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{m}\right)}{f^{(s)}\left(z_{m}\right)}\right| \leqslant \frac{1}{(s-j)!}(1+o(1))\left|z_{m}\right|^{s-j} \quad(j=0, \ldots, s-1) \text { as } m \rightarrow+\infty \tag{17}
\end{equation*}
$$

Since $G\left(z_{m}\right) \rightarrow \infty$, for sufficiently large number $A>0$, we have

$$
\begin{equation*}
\left|f^{(s)}\left(z_{m}\right)\right|>\exp \left\{A\left|z_{m}\right|^{\rho+\varepsilon}\right\} \text { as } m \rightarrow+\infty \tag{18}
\end{equation*}
$$

From (18), we have for m sufficiently large

$$
\begin{equation*}
\left|\frac{F\left(z_{m}\right)}{f^{(s)}\left(z_{m}\right)}\right|=\left|\frac{H\left(z_{m}\right)}{Q\left(z_{m}\right) f^{(s)}\left(z_{m}\right)}\right| \leq \frac{\left|H\left(z_{m}\right)\right|}{\lambda_{1} r_{m}^{p} \exp \left\{A\left|z_{m}\right|^{\rho+\varepsilon}\right\}} \leq \frac{\left|H\left(z_{m}\right)\right|}{\exp \left\{A\left|z_{m}\right|^{\rho+\varepsilon}\right\}} \tag{19}
\end{equation*}
$$

where $\lambda_{1}(>0)$ is a constant. Since $\sigma(H) \leq \rho$, we obtain

$$
\begin{equation*}
\left|\frac{F\left(z_{m}\right)}{f^{(s)}\left(z_{m}\right)}\right| \leq \frac{\left|H\left(z_{m}\right)\right|}{\exp \left\{A\left|z_{m}\right|^{\rho+\varepsilon}\right\}} \rightarrow 0 \text { as } m \rightarrow+\infty \tag{20}
\end{equation*}
$$

By (6), we get

$$
\begin{gather*}
\left|h_{s}(z) e^{P_{s}(z)}\right| \leq\left|\frac{f^{(k)}(z)}{f^{(s)}(z)}\right|+\left|h_{k-1}(z) e^{P_{k-1}(z)}\right|\left|\frac{f^{(k-1)}(z)}{f^{(s)}(z)}\right| \\
+\ldots+\left|h_{s+1}(z) e^{P_{s+1}(z)}\right|\left|\frac{f^{(s+1)}(z)}{f^{(s)}(z)}\right|+\left|h_{s-1}(z) e^{P_{s-1}(z)}\right|\left|\frac{f^{(s-1)}(z)}{f^{(s)}(z)}\right| \\
+\cdots+\left|h_{1}(z) e^{P_{1}(z)}\right|\left|\frac{f^{\prime}(z)}{f^{(s)}(z)}\right|+\left|h_{0}(z) e^{P_{0}(z)}\right|\left|\frac{f(z)}{f^{(s)}(z)}\right|+\left|\frac{F(z)}{f^{(s)}(z)}\right| \tag{21}
\end{gather*}
$$

Substituting (14) - (17) and (20) into (21), we have for the above z_{m}

$$
\begin{gather*}
\exp \left\{(1-\varepsilon) \delta\left(P_{s}, \theta\right) r_{m}^{n}\right\} \\
\leq M_{1} r_{m}^{d_{1}} \exp \left\{(1+\varepsilon) c \delta\left(P_{s}, \theta\right) r_{m}^{n}\right\} \tag{22}
\end{gather*}
$$

where $M_{1}(>0), d_{1}(>0)$ are constants. From (22) and $0<\varepsilon<\frac{1-c}{3(1+c)}$, we get

$$
\begin{equation*}
\exp \left\{\frac{(1-c)}{3} \delta\left(P_{s}, \theta\right) r_{m}^{n}\right\} \leq M_{1} r_{m}^{d_{1}} \tag{23}
\end{equation*}
$$

This is a contradiction. Therefore $G(z)$ is bounded on $\arg z=\theta$. Hence

$$
\begin{equation*}
\left|f^{(s)}(z)\right| \leq \exp \left\{M|z|^{\rho+\varepsilon}\right\} \tag{24}
\end{equation*}
$$

on $\arg z=\theta$, where $M(>0)$ is a constant. By (24) and (s)-fold iterated integration, we conclude that

$$
\begin{equation*}
|f(z)| \leq \exp \left\{M|z|^{\rho+2 \varepsilon}\right\} \tag{25}
\end{equation*}
$$

on $\arg z=\theta$.
Case 2. $\delta\left(P_{s}, \theta\right)<0$. For any given $\varepsilon(0<3 \varepsilon<\min \{1, n-\rho\})$ and all z satisfying $\arg z=\theta$ and $|z|=r$ is sufficiently large, we have

$$
\begin{equation*}
\left|h_{j}(z) e^{P_{j}(z)}\right| \leq \exp \left\{(1-\varepsilon) \delta\left(P_{j}, \theta\right) r^{n}\right\} \quad(j=0, \ldots, k-1) \tag{26}
\end{equation*}
$$

By (6), we get

$$
\begin{gather*}
-1=h_{k-1}(z) e^{P_{k-1}(z)} \frac{f^{(k-1)}(z)}{f^{(k)}(z)} \\
+\ldots+h_{s}(z) e^{P_{s}(z)} \frac{f^{(s)}(z)}{f^{(k)}(z)}+\ldots+h_{0}(z) e^{P_{0}(z)} \frac{f(z)}{f^{(k)}(z)}+\frac{F(z)}{f^{(k)}(z)} . \tag{27}
\end{gather*}
$$

Now we prove that

$$
D(z)=\frac{\log ^{+}\left|f^{(k)}(z)\right|}{|z|^{\rho+\varepsilon}}
$$

is bounded on some ray $\arg z=\theta$. If $D(z)$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.4, there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $D\left(z_{m}\right) \rightarrow \infty$ and

$$
\begin{equation*}
\left|\frac{f^{(j)}\left(z_{m}\right)}{f^{(k)}\left(z_{m}\right)}\right| \leqslant \frac{1}{(k-j)!}(1+o(1))\left|z_{m}\right|^{k-j} \quad(j=0, \ldots, k-1) \text { as } m \rightarrow+\infty \tag{28}
\end{equation*}
$$

From $D\left(z_{m}\right) \rightarrow \infty$, for sufficiently large number $B>0$, we have

$$
\begin{equation*}
\left|f^{(k)}\left(z_{m}\right)\right|>\exp \left\{B\left|z_{m}\right|^{\rho+\varepsilon}\right\} \text { as } m \rightarrow+\infty \tag{29}
\end{equation*}
$$

By using the same reasoning as above, from (29), we have for m sufficiently large

$$
\begin{equation*}
\left|\frac{F\left(z_{m}\right)}{f^{(k)}\left(z_{m}\right)}\right|=\left|\frac{H\left(z_{m}\right)}{Q\left(z_{m}\right) f^{(k)}\left(z_{m}\right)}\right| \leq \frac{\left|H\left(z_{m}\right)\right|}{\exp \left\{B\left|z_{m}\right|^{\rho+\varepsilon}\right\}} \tag{30}
\end{equation*}
$$

Since $\sigma(H) \leq \rho$, we obtain

$$
\begin{equation*}
\left|\frac{F\left(z_{m}\right)}{f^{(k)}\left(z_{m}\right)}\right| \leq \frac{\left|H\left(z_{m}\right)\right|}{\exp \left\{B\left|z_{m}\right|^{\rho+\varepsilon}\right\}} \rightarrow 0 \text { as } m \rightarrow+\infty \tag{31}
\end{equation*}
$$

Substituting (14), (26), (28) and (31) into (27), we obtain as $r_{m} \rightarrow+\infty$

$$
1 \leq 0
$$

This is a contradiction. Therefore $D(z)$ is bounded on $\arg z=\theta$. Hence

$$
\begin{equation*}
\left|f^{(k)}(z)\right| \leq \exp \left\{M|z|^{\rho+\varepsilon}\right\} \tag{32}
\end{equation*}
$$

on $\arg z=\theta$, where $M(>0)$ is a constant. By (32) and (k)-fold iterated integration, we obtain (25) on $\arg z=\theta$.

From equation (6), we know that the poles of f can only occur at the poles of F and $h_{j}(z)(j=0,1, \ldots, k-1)$. Since F and $h_{j}(z)(j=0,1, \ldots, k-1)$ are meromorphic functions having only finitely many poles, then f must have only finitely many poles. Therefore by Hadamard factorization theorem, we can write $f(z)=\frac{g(z)}{R(z)}$, where $R(z)$ is a polynomial and $g(z)$ is an entire function with $\sigma(g)=\sigma(f) \geq n$. From (25), we have

$$
\begin{equation*}
|g(z)| \leq \lambda_{2} r^{q} \exp \left\{M|z|^{\rho+2 \varepsilon}\right\} \tag{33}
\end{equation*}
$$

on $\arg z=\theta$, where $\lambda_{2}(>0)$ is a constant and $q=\operatorname{deg} R \geq 1$. Hence

$$
\begin{equation*}
|g(z)| \leq \exp \left\{M|z|^{\rho+3 \varepsilon}\right\} \tag{34}
\end{equation*}
$$

on $\arg z=\theta$. Therefore for any given $\theta \in[0,2 \pi) \backslash E_{1} \cup E_{2} \cup H_{1}$, where $E_{1} \cup E_{2} \cup H_{1}$ is a set of linear measure zero, we have (34) on $\arg z=\theta$. Then by Lemma 2.5, we have $\sigma(g) \leq \rho+3 \varepsilon<n$ and this contradicts the fact that $\sigma(g) \geq n$. Hence $\sigma(f)=+\infty$.

Suppose now that $\max \left\{c_{1}, \ldots, c_{s-1}\right\}<c_{0}$. if f is a rational solution of (6), then by $\max \left\{c_{1}, \ldots, c_{s-1}\right\}<c_{0}$ and

$$
\begin{equation*}
f=\frac{F}{h_{0} e^{P_{0}(z)}}-\left(\frac{e^{-P_{0}(z)}}{h_{0}} f^{(k)}+\frac{h_{k-1}}{h_{0}} e^{P_{k-1}(z)-P_{0}(z)} f^{(k-1)}+\ldots+\frac{h_{1}}{h_{0}} e^{P_{1}(z)-P_{0}(z)} f^{\prime}\right) \tag{35}
\end{equation*}
$$

we obtain a contradiction since the left side of equation (35) is a rational function but the right side is a transcendental meromorphic function.

Now we prove that equation (6) cannot have a nonzero polynomial solution. Set $c^{\prime}=\max \left\{c_{1}, \ldots, c_{s-1}\right\}<c_{0}$ and let $f(z)$ be a nonzero polynomial solution of equation (6) with $\operatorname{deg} f(z)=d$. We take a ray $\arg z=\theta \in[0,2 \pi) \backslash H_{1}$, where H_{1} is defined as above such that $\delta\left(P_{s}, \theta\right)>0$. By Lemma 2.3, for any given $\varepsilon(0<3 \varepsilon<$ $\left.\min \left\{\frac{1-c}{1+c}, \frac{c_{0}-c^{\prime}}{c_{0}+c^{\prime}}, n-\rho\right\}\right)$, there exists a set E_{2} having linear measure zero such that for all z with $\arg z=\theta \in[0,2 \pi) \backslash E_{2} \cup H_{1}$ and $|z|=r$ sufficiently large, we have (15) and (16).

If $d \geq s$, by (6), (15) and (16), we obtain for all z with $\arg z=\theta \in[0,2 \pi) \backslash E_{2} \cup H_{1}$ and $|z|=r$ sufficiently large

$$
\begin{gather*}
B_{1} r^{d-s} \exp \left\{(1-\varepsilon) \delta\left(P_{s}, \theta\right) r^{n}\right\} \leq\left|h_{s}(z) e^{P_{s}(z)} f^{(s)}(z)\right| \leq \sum_{j \neq s}\left|h_{j}(z) e^{P_{j}(z)} f^{(j)}(z)\right|+|F(z)| \\
\leq B_{2} r^{d} \exp \left\{(1+\varepsilon) c \delta\left(P_{s}, \theta\right) r^{n}\right\}+\frac{\exp \left\{r^{\rho+\varepsilon}\right\}}{\lambda_{1} r^{p}} \tag{36}
\end{gather*}
$$

where $B_{1}(>0), B_{2}(>0)$ are constants. By (36), we get

$$
\begin{equation*}
\exp \left\{\frac{(1-c)}{3} \delta\left(P_{s}, \theta\right) r^{n}\right\} \leq B_{3} r^{d_{2}} \exp \left\{r^{\rho+\varepsilon}\right\} \tag{37}
\end{equation*}
$$

where $B_{3}(>0)$ and d_{2} are constants. Hence (37) is a contradiction.
If $d<s$, by (6), (15) and (16), we obtain for all z with $\arg z=\theta \in[0,2 \pi) \backslash E_{2} \cup H_{1}$, and $|z|=r$ sufficiently large

$$
\begin{gather*}
B_{4} r^{s-1} \exp \left\{(1-\varepsilon) c_{0} \delta\left(P_{s}, \theta\right) r^{n}\right\} \leq\left|h_{0}(z) e^{P_{0}(z)}\right||f(z)| \leq \sum_{j=1}^{s-1}\left|h_{j}(z) e^{P_{j}} f^{(j)}(z)\right|+|F(z)| \\
\leq B_{5} r^{s-2} \exp \left\{(1+\varepsilon) c^{\prime} \delta\left(P_{s}, \theta\right) r^{n}\right\}+\frac{\exp \left\{r^{\rho+\varepsilon}\right\}}{\lambda_{1} r^{p}} \tag{38}
\end{gather*}
$$

where $B_{4}(>0), B_{5}(>0)$ are constants. By (38), we get

$$
\begin{equation*}
\exp \left\{\frac{\left(c_{0}-c^{\prime}\right)}{2} \delta\left(P_{s}, \theta\right) r^{n}\right\} \leq \frac{B_{6}}{r} \exp \left\{r^{\rho+\varepsilon}\right\} \tag{39}
\end{equation*}
$$

where $B_{6}(>0)$ is a constant. This is a contradiction. Therefore, if
$\max \left\{c_{1}, \ldots, c_{s-1}\right\}<c_{0}$, then every meromorphic solution of equation (6) is of infinite order.

4. Proof of Theorem 1.5

Proof. First we prove that every transcendental meromorphic solution f of equation (6) is of order $\sigma(f) \geq n$. Assume that f is a transcendental meromorphic solution f of equation (6) of order $\sigma(f)<n$. We can write equation (6) in the form (13), where $B=-f^{(k)}+F$ and $h_{j}(z) f^{(j)}(j=0,1, \ldots, k-1)$ are meromorphic functions of finite order with $h_{s} f^{(s)} \not \equiv 0, h_{d} f^{(d)} \not \equiv 0, \sigma\left(h_{j} f^{(j)}\right)<n(j=0,1, \ldots, k-1)$ and $\sigma(B)<n$.

We have $\operatorname{deg}\left(P_{s}(z)-P_{j}(z)\right)=n(j \neq s)$. Thus by (13) and Lemma 2.1, we obtain $\sigma(B)=n$ and this contradicts the fact that $\sigma(B)<n$. Hence every transcendental meromorphic solution f of equation (6) is of order $\sigma(f) \geq n$.

Assume f is a transcendental solution of equation (6) with $\sigma(f)=\sigma<+\infty$. By Lemma 2.2, there exists a set $E_{1} \subset[0,2 \pi)$ that has linear measure zero such that if $\theta \in[0,2 \pi) \backslash E_{1}$, then there is a constant $R_{1}=R_{1}(\theta)>1$ such that for all z satisfying $\arg z=\theta$ and $|z| \geq R_{1}$, we have (14). By Lemma 2.3, for any given $\varepsilon>0$, there exists a set $E_{2} \subset[0,2 \pi)$ that has linear measure zero such that if $z=r e^{i \theta}$, $\theta \in[0,2 \pi) \backslash E_{2} \cup H_{2}$ and r is sufficiently large, then $h_{j} e^{P_{j}(z)}(j=0,1, \ldots, k-1)$ satisfy (9) or (10), where $H_{2}=\left\{\theta \in[0,2 \pi): \delta\left(P_{s}, \theta\right)=0\right.$ or $\left.\delta\left(P_{d}, \theta\right)=0\right\}$. Set $\rho=$ $\max \left\{\sigma(F), \sigma\left(h_{j}\right): j=0,1, \ldots, k-1\right\}$. Since F is a meromorphic function with only finitely many poles, then by Hadamard factorization theorem, we can write $F(z)=$ $\frac{H(z)}{Q(z)}$, where $Q(z)$ is a polynomial with $\operatorname{deg} Q=p \geq 1$ and $H(z)$ is an entire function with $\sigma(H)=\sigma(F)$.
Case 1. Suppose that $\theta_{s} \neq \theta_{d}$. Set $H_{3}=\left\{\theta \in[0,2 \pi): \delta\left(P_{s}, \theta\right)=\delta\left(P_{d}, \theta\right)\right\}$. Since θ_{s} $\neq \theta_{d}$, then H_{3} has linear measure zero. For any given $\theta \in[0,2 \pi) \backslash E_{1} \cup E_{2} \cup H_{2} \cup H_{3}$, we have

$$
\delta\left(P_{s}, \theta\right) \neq 0, \delta\left(P_{d}, \theta\right) \neq 0 \text { and } \delta\left(P_{s}, \theta\right)>\delta\left(P_{d}, \theta\right) \text { or } \delta\left(P_{s}, \theta\right)<\delta\left(P_{d}, \theta\right)
$$

Set $\delta_{1}=\delta\left(P_{s}, \theta\right)$ and $\delta_{2}=\delta\left(P_{d}, \theta\right)$.
Subcase 1.1. $\delta_{1}>\delta_{2}$. Here we also divide our proof into three subcases:
(a) $\delta_{1}>\delta_{2}>0$. Set $\delta_{3}=\max \left\{\delta\left(P_{j}, \theta\right): j \neq s\right\}$. Then $0<\delta_{3}<\delta_{1}$. Thus for any given $\varepsilon\left(0<3 \varepsilon<\min \left\{\frac{\delta_{1}-\delta_{3}}{\delta_{1}+\delta_{3}}, n-\rho\right\}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have

$$
\begin{equation*}
\left|h_{s}(z) e^{P_{s}(z)}\right| \geq \exp \left\{(1-\varepsilon) \delta_{1} r^{n}\right\} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|h_{j}(z) e^{P_{j}(z)}\right| \leq \exp \left\{(1+\varepsilon) \delta_{3} r^{n}\right\} \quad(j \neq s) \tag{41}
\end{equation*}
$$

Now we prove that

$$
G(z)=\frac{\log ^{+}\left|f^{(s)}(z)\right|}{|z|^{\rho+\varepsilon}}
$$

is bounded on some ray $\arg z=\theta$. If $G(z)$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.4, there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $G\left(z_{m}\right) \rightarrow \infty$ and (17) holds. From (18), we have (19) for m sufficiently large. Since $\sigma(H) \leq \rho$, we obtain (20). Substituting (14), (17), (20), (40) and (41) into (21), for the above z_{m}, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta_{1} r_{m}^{n}\right\} \leq M_{2} r_{m}^{d_{3}} \exp \left\{(1+\varepsilon) \delta_{3} r_{m}^{n}\right\} \tag{42}
\end{equation*}
$$

where $M_{2}(>0), d_{3}(>0)$ are constants. From (42) and $0<\varepsilon<\frac{\delta_{1}-\delta_{3}}{3\left(\delta_{1}+\delta_{3}\right)}$, we get

$$
\begin{equation*}
\exp \left\{\frac{\left(\delta_{1}-\delta_{3}\right)}{3} r_{m}^{n}\right\} \leq M_{2} r_{m}^{d_{3}} \tag{43}
\end{equation*}
$$

This is a contradiction. Therefore $G(z)$ is bounded on $\arg z=\theta$. Hence (25) holds on $\arg z=\theta$.
(b) $\delta_{1}>0>\delta_{2}$. Thus for any given $\varepsilon\left(0<3 \varepsilon<\min \left\{\frac{1-\alpha}{1+\alpha}, n-\rho\right\}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have (40),

$$
\begin{gather*}
\left|h_{d}(z) e^{P_{d}(z)}\right| \leq \exp \left\{(1-\varepsilon) \delta_{2} r^{n}\right\}<1 \tag{44}\\
\left|h_{j}(z) e^{P_{j}(z)}\right| \leq \exp \left\{(1+\varepsilon) \alpha \delta_{1} r^{n}\right\} \quad(j \in I) \tag{45}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|h_{j}(z) e^{P_{j}(z)}\right| \leq \exp \left\{(1-\varepsilon) \delta\left(P_{j}, \theta\right) r^{n}\right\}<1 \quad(j \in J) \tag{46}
\end{equation*}
$$

Now we prove that

$$
G(z)=\frac{\log ^{+}\left|f^{(s)}(z)\right|}{|z|^{\rho+\varepsilon}}
$$

is bounded on some ray $\arg z=\theta$. If $G(z)$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.4, there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $G\left(z_{m}\right) \rightarrow \infty$ and (17) holds. Substituting (14), (17), (20), (40), (44) - (46) into (21), for the above z_{m}, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta_{1} r_{m}^{n}\right\} \leq M_{3} r_{m}^{d_{4}} \exp \left\{(1+\varepsilon) \alpha \delta_{1} r_{m}^{n}\right\} \tag{47}
\end{equation*}
$$

where $M_{3}(>0)$ and $d_{4}(>0)$ are constants. From (47) and $0<\varepsilon<\frac{1-\alpha}{3(1+\alpha)}$, we get

$$
\begin{equation*}
\exp \left\{\frac{(1-\alpha)}{3} \delta_{1} r_{m}^{n}\right\} \leq M_{3} r_{m}^{d_{4}} \tag{48}
\end{equation*}
$$

This is a contradiction. Therefore $G(z)$ is bounded on $\arg z=\theta$. Hence (25) holds on $\arg z=\theta$.
(c) $0>\delta_{1}>\delta_{2}$. For any given $\varepsilon(0<3 \varepsilon<\min \{1, n-\rho\})$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have (26). Using similar reasoning as in case 2 in the proof of Theorem 1.4, (25) holds on $\arg z=\theta$.
Subcase 1.2. $\delta_{1}<\delta_{2}$. Using the same reasoning as in subcase 1.1, we can also obtain (25) on $\arg z=\theta$.
Case 2. Suppose that $\theta_{s}=\theta_{d}$ and $\left|a_{n, d}\right|<(1-\alpha)\left|a_{n, s}\right|$. For any given $\theta \in$ $[0,2 \pi) \backslash E_{1} \cup E_{2} \cup H_{2}$, where E_{1}, E_{2} and H_{2} are defined above, we have

$$
\delta\left(P_{s}, \theta\right)>0 \text { or } \delta\left(P_{s}, \theta\right)<0
$$

Subcase 2.1. $\delta\left(P_{s}, \theta\right)>0$. For any given $\varepsilon\left(0<3 \varepsilon<\min \left\{\frac{(1-\alpha)\left|a_{n, s}\right|-\left|a_{n, d}\right|}{(1+\alpha)\left|a_{n, s}\right|+\left|a_{n, d}\right|}, n-\rho\right\}\right)$ and all z satisfying $\arg z=\theta$ and $|z|=r$ sufficiently large, we have (15),

$$
\begin{equation*}
\left|h_{j}(z) e^{P_{j}(z)}\right| \leq \exp \left\{(1+\varepsilon) \alpha \delta\left(P_{s}, \theta\right) r^{n}\right\} \quad(j \in I) \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|h_{j}(z) e^{P_{j}(z)}\right| \leq \exp \left\{(1+\varepsilon) \beta \delta\left(P_{d}, \theta\right) r^{n}\right\} \quad(j \in J \cup\{d\}) \tag{50}
\end{equation*}
$$

Now we prove that

$$
G(z)=\frac{\log ^{+}\left|f^{(s)}(z)\right|}{|z|^{\rho+\varepsilon}}
$$

is bounded on some ray $\arg z=\theta$. If $G(z)$ is unbounded on the ray $\arg z=\theta$, then by Lemma 2.4, there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \ldots)$, where $r_{m} \rightarrow+\infty$ such that $G\left(z_{m}\right) \rightarrow \infty$ and (17) holds. Substituting (14), (15), (17), (20), (49) and (50) into (21), for the above z_{m}, we obtain

$$
\begin{gather*}
\exp \left\{(1-\varepsilon) \delta\left(P_{s}, \theta\right) r_{n}\right\} \\
\leq M_{4} r_{m}^{d_{5}} \exp \left\{(1+\varepsilon) \alpha \delta\left(P_{s}, \theta\right) r_{m}^{n}\right\} \exp \left\{(1+\varepsilon) \delta\left(P_{d}, \theta\right) r_{m}^{n}\right\} \tag{51}
\end{gather*}
$$

where $M_{4}, d_{5}(>0)$ are constants. By (51), we have

$$
\begin{equation*}
\exp \left\{\gamma r_{m}^{n}\right\} \leq M_{4} r_{m}^{d_{5}} \tag{52}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=(1-\varepsilon) \delta\left(P_{s}, \theta\right)-(1+\varepsilon) \delta\left(P_{d}, \theta\right)-(1+\varepsilon) \alpha \delta\left(P_{s}, \theta\right) \tag{53}
\end{equation*}
$$

Since $0<\varepsilon<\frac{(1-\alpha)\left|a_{n, s}\right|-\left|a_{n, d}\right|}{3\left[(1+\alpha)\left|a_{n, s}\right|+\left|a_{n, d}\right|\right]}, \theta_{s}=\theta_{d}$ and $\cos \left(\theta_{s}+n \theta\right)>0$, we obtain

$$
\begin{aligned}
\gamma & =\left\{(1-\alpha)\left|a_{n, s}\right|-\left|a_{n, d}\right|-\varepsilon\left[(1+\alpha)\left|a_{n, s}\right|+\left|a_{n, d}\right|\right]\right\} \cos \left(\theta_{s}+n \theta\right) \\
& >\frac{\left((1-\alpha)\left|a_{n, s}\right|-\left|a_{n, d}\right|\right)}{3} \cos \left(\theta_{s}+n \theta\right)>0
\end{aligned}
$$

Since $\gamma>0$, then (52) is a contradiction. Therefore $G(z)$ is bounded on $\arg z=\theta$. Hence (25) holds on $\arg z=\theta$.
Subcase $2.2 \delta\left(P_{s}, \theta\right)<0$. Using the same reasoning as in case 2 in the proof of Theorem 1.4, (25) holds on $\arg z=\theta$.
From equation (6), we know that the poles of f can only occur at the poles of F and $h_{j}(z)(j=0,1, \ldots, k-1)$. Since F and $h_{j}(z)(j=0,1, \ldots, k-1)$ are meromorphic functions having finitely many poles, then f must have only finitely many poles. Therefore by Hadamard factorization theorem, using similar arguments as in the proof
of Theorem 1.4, we can write $f(z)=\frac{g(z)}{R(z)}$, where $R(z)$ is a polynomial and $g(z)$ is an entire function with $\sigma(g)=\sigma(f) \geq n$. From (25), we have (34) on $\arg z=\theta$. Then by Lemma 2.5, we have $\sigma(g) \leq \rho+3 \varepsilon<n$ and this contradicts the fact that $\sigma(g) \geq n$. Hence $\sigma(f)=+\infty$.

In the following, we show that if $f(z)$ is a polynomial solution of (6), then $\operatorname{deg} f \leq$ $s-1$. Assume that f is a polynomial solution of (6) with $\operatorname{deg} f=b \geq s$.
(a) Assume that $\theta_{s} \neq \theta_{d}$.
(i) If $\theta_{s} \neq \theta_{d}+\pi$ or $\theta_{d} \neq \theta_{s}+\pi$, set $H_{4}=\left\{\theta \in[0,2 \pi): \delta\left(P_{s}, \theta\right)>\delta\left(P_{d}, \theta\right)>0\right\}$.

Then $m\left(H_{4}\right)>0$. We can choose a curve $\Gamma=\left\{z: \arg z=\theta \in H_{4}\right\}$.
By (6), (40) and (41), for all $z \in \Gamma$ and $|z|=r$ sufficiently large, we obtain

$$
\begin{gather*}
B_{7} r^{b-s} \exp \left\{(1-\varepsilon) \delta_{1} r^{n}\right\} \leq\left|h_{s}(z) e^{P_{s}(z)} f^{(s)}(z)\right| \\
\quad \leq \sum_{j \neq s}\left|h_{j}(z) e^{P_{j}(z)} f^{(j)}(z)\right|+\left|\frac{H(z)}{Q(z)}\right| \\
\leq B_{8} r^{d_{6}} \exp \left\{(1+\varepsilon) \delta_{3} r^{n}\right\} \frac{\exp \left\{r^{\rho+\varepsilon}\right\}}{\lambda_{1} r^{p}}, \tag{54}
\end{gather*}
$$

where $B_{7}(>0), B_{8}(>0), d_{6}$ and λ_{1} are constants.
By (54), we obtain

$$
\begin{equation*}
\exp \left\{\frac{\left(\delta_{1}-\delta_{3}\right)}{3} r^{n}\right\} \leq B_{9} r^{d_{6}} \exp \left\{r^{\rho+\varepsilon}\right\} \tag{55}
\end{equation*}
$$

where $B_{9}(>0)$ and d_{6} are constants. This is a contradiction.
(ii) If $\theta_{s}=\theta_{d}+\pi$ or $\theta_{d}=\theta_{s}+\pi$, set $H_{5}=\left\{\theta \in[0,2 \pi): \delta\left(P_{s}, \theta\right)>0>\delta\left(P_{d}, \theta\right)\right\}$.

Then $m\left(H_{5}\right)>0$. We can choose a curve $G=\left\{z: \arg z=\theta \in H_{5}\right\}$.
By (6), (40) and (44) - (46), for all $z \in G$ and $|z|=r$ sufficiently large, we obtain

$$
\begin{equation*}
B_{10} r^{b-s} \exp \left\{(1-\varepsilon) \delta_{1} r^{n}\right\} \leq B_{11} r^{d_{7}} \exp \left\{(1+\varepsilon) \alpha \delta_{1} r^{n}\right\} \exp \left\{r^{\rho+\varepsilon}\right\} \tag{56}
\end{equation*}
$$

where $B_{10}(>0), B_{11}(>0)$ and d_{7} are constants.
By (56), we obtain

$$
\begin{equation*}
\exp \left\{\frac{(1-\alpha)}{3} \delta_{1} r^{n}\right\} \leq B_{12} r^{d_{8}} \exp \left\{r^{\rho+\varepsilon}\right\} \tag{57}
\end{equation*}
$$

where $B_{12}(>0)$ and d_{8} are constants. This is a contradiction.
(b) Assume that $\theta_{s}=\theta_{d}$ and $\left|a_{n, d}\right|<(1-\alpha)\left|a_{n, s}\right|$. We can take a ray $\arg z=\theta$ such that $\delta\left(P_{s}, \theta\right)>0$. Thus $\delta\left(P_{s}, \theta\right)>\delta\left(P_{d}, \theta\right)>0$.
By (6), (40) and (41), for all z with $\arg z=\theta$ and $|z|=r$ sufficiently large, we obtain (55) which is a contradiction.
Hence every polynomial solution f of (6) satisfies $\operatorname{deg} f \leq s-1$.

References

[1] M. Andasmas, B. Belaïdi, On the order and hyper-order of meromorphic solutions to higher order linear differential equations, Hokkaido Math. J. 42 (2013), 357-383.
[2] M. Andasmas, B. Belaïdi, On the growth and fixed points meromorphic solutions of second order non-homogeneous linear differential equations, Int. J. Math. Comput. 18 (2013), no. 1, 28-45.
[3] B. Belaïdi, A.El. Farissi, Differential polynomials generated by some complex linear differential equations with meromorphic coefficients, Glas. Math. Ser. III 43 (2008), no. 2, 363-373.
[4] B. Belaïdi, S. Abbas, On the hyper-order of solutions of a class of higher order linear differential equations, An. St. Univ. Ovidius Constanta 16 (2008), no. 2, 1-16.
[5] Z.X. Chen, On the hyper-order of solutions of second order linear differential equations, Acta Math. Sinica Engl. Ser. 18 (2002), no. 1, 79-88.
[6] G.G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. 37 (1988), no. 1, 88-104.
[7] G.G. Gundersen, Finite order solutions of second order linear differential equation, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415-429.
[8] W.K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[9] K.H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J. 19 (1996), no.3, 378-387.
[10] J. Tu, C.F. Yi, On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order, J. Math. Anal. Appl. 340 (2008), no. 1, 487-497.
[11] J. Wang, I. Laine, Growth of solutions of nonhomogeneous linear differential equations, Abstr. Appl. Anal. 2009 (2009), Art. ID 363927, 1-11.
[12] C.-C. Yang, H.-X. Yi, Uniqueness Theory of Meromorphic Functions, Mathematics and Its Applications 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
(Nour el imane Khadidja Cheriet, Karima Hamani) Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227
Mostaganem, Algeria
E-mail address: ch.nour_imen@yahoo.fr, hamanikarima@yahoo.fr, karima.hamani@univ-mosta.dz

