Hausdorff topological BE-algebras

E. Shahdadi and N. Kouhestani

Abstract

In this paper, we introduce the notion of (semi) topological BE-algebras and derive here conditions that imply a BE-algebra to be a (semi) topological BE-algebra. We prove that for each cardinal number α there is at least a (semi) topological BE-algebra of order α. Also we study separation axioms on (semi) topological BE-algebras and show that for any infinite cardinal number α there is a Hausdorff (semi) topological BE-algebra of order α with nontrivial topology.

2010 Mathematics Subject Classification. 06F35, 22A26 .
Key words and phrases. transitive BE-algebra, (semi)topological BE-algebra, filter, ideal, BE-filter, Hausdorff space, Uryshon space.

1. Introduction

In 1966, Y. Imai and K. Iséki in [7] introduced a class of algebras of type (2, 0) called BCK-algebras which generalizes on one hand the notion of algebra of sets with the set subtraction as the only fundamental non-nullary operation, on the other hand the notion of impliction algebra. K. Iséki posed an interesting problem whether the class of BCK-algebras form a variety. In connection with this problem Y. Komori in [10] introduced a notion of BCC-algebras which is a generalization of notion BCKalgebras and proved that class of all BCC-algebras is not a variety. In [2], H. S. Kim introduced the concept of BE-algebra as a generalization of dual BCK-algebra. In [8], S. S. Ahn and K. S. So introduced ideals and upper sets in BE-algebras and discussed several properties of ideals. In [15] A. Walendziak introduced commutative BE-algebras and discussed some of its properties. H. S. Kim and K. J. Lee in [9] generalized the notions of upper sets and introduced the concept of extended upper sets and with the help of this concept they gave several discriptions of filters in BEalgebras.
Algebra and topology are the two fundamental domains of mathematics. Many of the most important objects of mathematics represent a blend of algebraic objects and topological structures. Topological groups, topological fields and topological lattices are objects of this kind. The rules that describe the relation between a topology and algebraic operation are almost always transparent and natural- the operation has to be continuous or separately continuous. In this paper, we will define (left, right, semi) topological BE-algebras and show that for each cardinal number α there is at least a topological BE-algebra of order α. In section 5 , we will study connection between (semi) topological BE-algebras and T_{i} spaces, when $i=0,1,2,5 / 2$. We prove that for
any infinte cardinal number α there is at least a Hausdorff topological BE-algebra of order α which its topology is nontrivial.

2. Preliminary

In this section we collect the relevant definitions and results from topology and BE-algebras theory to make this paper self-contained and easy to read. The material can be found in $[6,15,14,9,8,3,7]$.

Topological Space

Recall that a set A with a family \mathcal{U} of its subsets is called a topological space, denoted by (A, \mathcal{U}), if $A, \emptyset \in \mathcal{U}$, the intersection of any finite numbers of members of \mathcal{U} is in \mathcal{U} and the arbitrary union of members of \mathcal{U} is in \mathcal{U}. The members of \mathcal{U} are called open sets of A and the complement of $U \in \mathcal{U}$, that is $A \backslash U$, is said to be a closed set. If B is a subset of A, the smallest closed set containing B is called the closure of B and denoted by \bar{B}. A subfamily $\left\{U_{\alpha}: \alpha \in I\right\}$ of \mathcal{U} is said to be a base of \mathcal{U} if for each $x \in U \in \mathcal{U}$, there exists an $\alpha \in I$ such that $x \in U_{\alpha} \subseteq U$, or equivalently, each U in \mathcal{U} is the union of members of $\left\{U_{\alpha}\right\}$. A subset P of A is said to be a neighborhood of $x \in A$, if there exists an open set U such that $x \in U \subseteq P$. A directed set I is a partially ordered set such that, for any i and j of I, there is a $k \in I$ with $k \geq i$ and $k \geq j$. If I is a directed set, then the subset $\left\{x_{i}: i \in I\right\}$ of A is called a net. A net $\left\{x_{i} ; i \in I\right\}$ converges to $x \in A$ if for each neighborhood U of x, there exists a $j \in I$ such that for all $i \geq j, x_{i} \in U$. If $B \subseteq A$ and $x \in \bar{B}$, then there is a net in B that converges to x.
Topological space (A, \mathcal{U}) is said to be a:
(i) T_{0}-space if for each $x \neq y \in A$, there is at least one in an open neighborhood excluding the other,
(ii) T_{1}-space if for each $x \neq y \in A$, each has an open neighborhood not containing the other,
(iii) Hausdorff space if for each $x \neq y \in A$, there two disjoint open neighborhoods U, V of x and y, respectively,
(iv) Uryshon space if for each $x \neq y \in A$, there are two open neighborhoods U, V of x and y, respectively, such that $\bar{U} \cap \bar{V}=\phi$.

BE- Algebras

A BE-algebra is a non empty set X with a constant 1 and a binary operation * satisfying the following axioms, for all $x, y, z \in X$:
(BE1) $x * x=1$,
(BE2) $x * 1=1$,
(BE3) $1 * x=x$,
(BE4) $x *(y * z)=y *(x * z)$.
Definition 2.1. Let $(X, *, 1)$ be a BE-algebra, then X is said to be:
(i) transitive if for any $x, y, z \in X,(y * z) \leq(x * y) *(x * z)$,
(ii) self distributive if for any $x, y, z \in X, x *(y * z)=(x * y) *(x * z)$,
(iii) commutative if for any $x, y, z \in X,(x * y) * y=(y * x) * x$,
(iv) bounded with unit 0 , if $0 \in X$ and $0 * x=1$, for every $x \in X$.

In a bounded BE-algebra, $x * 0$ denoted by x^{\prime} and $\left(x^{\prime}\right)^{\prime}$ by $x^{\prime \prime}$. On any BE-algebra X one define:

$$
x \leq y \Leftrightarrow x * y=1
$$

If X is a commutative BE-algebra, then the relation \leq is a partial order on X.
Definition 2.2. Let $(X, *, 1)$ be a BE-algebra and $I \subseteq X$. The set I is called ideal when :
(i) if $a \in I$, then for each $x \in X, x * a \in I$
(ii) if $a, b \in I$, and $y \in I$, then $(a *(b * x)) * x \in I$.

If I is an ideal in X, then $x \in I$ and $x \leq y$ imply $y \in I$.
Definition 2.3. A subset F of X is called a filter when it satisfies the conditions:
(F1) $1 \in F$,
(F2) if $x, x * y \in F$ then $y \in F$.
If F is a filter in X, then $x \in F$ and $x \leq y$ imply $y \in F$.
A filter F of X is said to be normal if for each $x, y, z \in X$,

$$
x * y \in F \Rightarrow[(z * x) *(z * y) \in F, \quad(y * z) *(x * z) \in F
$$

Define the binary operations \vee, \wedge, and + on X as the following: for any $x, y \in X$,

$$
x \vee y=(y * x) * x, \quad x \wedge y=\left(x^{\prime} \vee y^{\prime}\right)^{\prime}, \quad x+y=(x * y) * y
$$

In BE-algebra X, for any $x, y, z \in X$, the following hold:
(B1) $x \leq y * x$,
(B2) $x \leq((x * y) * y)$,
(B3) $(x * y) \leq(y \vee x) * y$,
if X is self distributive, then:
(B4) $x \leq y$ implies $z * x \leq z * y$ and $y * z \leq x * z$,
(B5) $(y \vee x) * y \leq(x * y)$,
(B6) $x *(x * y)=x * y$,
if X is a bounded BE-algebra with unit 0 , then:
(B7) $1^{\prime}=0,0^{\prime}=1$,
(B8) $x \leq x^{\prime \prime}$,
(B9) $x * y^{\prime}=y * x^{\prime}$,
(B10) $x \vee 0=x$,
if X is a bounded and self distributive BE-algebra with unit 0 , we have:
(B11) $x * y \leq y^{\prime} * x^{\prime}$,
(B12) $x \leq y$ implies $y^{\prime} \leq x^{\prime}$,
if X is a commutative BE-algebra, we have:
(B13) $x *(x+y)=1$,
(B14) $x * y=y * z=1 \Rightarrow x * z=1$,
(B15) $x * y=1 \Rightarrow(x+z) *(y+z)=1$,
(B16) $x * z=y * z=1 \Rightarrow(x+y) * z=1$,
if X is a bounded and commutative BE-algebra, the following hold:
(B17) $x^{\prime \prime}=x$,
(B18) $x^{\prime} \wedge y^{\prime}=(x \vee y)^{\prime}$,
(B19) $x^{\prime} \vee y^{\prime}=(x \wedge y)^{\prime}$,
(B20) $x^{\prime} * y^{\prime}=y * x$.
If X is a commutative or self distributive BE-algebra, then it is transitive.
If X is a transitive BE -algebra, then every filter of X is normal.
Let F be a filter in BE-algebra X, in the following way we define the binary relation \equiv^{F} on X :

$$
x \equiv{ }^{F} y \Leftrightarrow x * y \in F, y * x \in F
$$

if F is a normal filter, then \equiv^{F} is a congruence relation, i.e. \equiv^{F} is an equeivalence relation and for each $a, b, x, y \in X$, if $x \equiv^{F} y$ and $a \equiv^{F} b$, then $a * x \equiv^{F} b * y$. In this case, if $F(x)=\left\{y \in X: x \equiv^{F} y\right\}$, then $X / F=\{F(x): x \in X\}$ is a BE-algebra with the following operation:

$$
F(x) * F(y)=F(x * y)
$$

3. Topological $B E$-algebras

Definition 3.1. Let \mathcal{T} be a topology on a BE-algebra $(X, *, 1)$. Then:
(i) $(X, *, \mathcal{T})$ is (right) left topological BE-algebra if $x * y \in U \in \mathcal{T}$, then there is a (V) $W \in \mathcal{T}$ such that $(x \in V) y \in W$ and $(V * y \subseteq U) x * W \subseteq U$. In this case, we also say that $*$ is continuous in (first)second variable,
(ii) $(X, *, \mathcal{T})$ is semitopological BE-algebra if it is left and right topological BE-algebra, i.e. if $x * y \in U \in \mathcal{T}$, then there are $V, W \in \mathcal{T}$ such that $x \in V, y \in W$ and $x * W \subseteq U$ and $V * y \subseteq U$. In this case we also say that $*$ is continuous in each variable separately, (iii) $(X, *, \mathcal{T})$ is topological BE-algebra if $*$ is continuous, i.e. if $x * y \in U \in \mathcal{T}$, then there are two neighborhoods V, W of x, y, respectively, such that $V * W \subseteq U$.

Example 3.1. Let $X=\{1, a, b\}$ be a BE-algebra with the following table:

$*$	1	a	b
1	1	a	b
a	1	1	1
b	1	1	1

Then $\mathcal{T}=\{\{1\},\{a, b\}, X, \phi\}$ and $\mathcal{U}=\{\{1, a\},\{b\}, X, \phi\}$ are two topologies on X such that $(X, *, \mathcal{T})$ is a topological BE-algebra and $(X, *, \mathcal{U})$ is a left topological BEalgebra. Moreover, $(X, *, \mathcal{U})$ is not a right topological BE-algebra.

Let $(X, *, 1)$ be a BE-algebra. Then:
(i) a family Ω of subsets of X is prefilter if for each $U, V \in \Omega$, there exists a $W \in \Omega$ such that $W \subseteq U \cap V$,
(ii) for each $V \subseteq X$ and $x \in X$, we denote

$$
V[x]=\{y \in X: y * x \in V\} \quad V(x)=\{y \in X: y * x, x * y \in V\} .
$$

Theorem 3.1. Let \mathcal{F} be a prefilter of normal filters in a BE-algebra $(X, *, 1)$. Then there is a topology \mathcal{T} on X such that $(X, *, \mathcal{T})$ is a topological BE-algebra.
Proof. Define $\mathcal{T}=\{U \subseteq X: \forall x \in U \exists F \in \mathcal{F}$ s.t $F(x) \subseteq U\}$. For each $x \in X$ and $F \in$ \mathcal{F}, the set $F(x) \in \mathcal{T}$ because if y is an arbitrary element of $F(x)$, then $F(y) \subseteq F(x)$. It is easy to see that \mathcal{T} is a topology on X. We prove that $*$ is continuous. For this, suppose $x * y \in U \in \mathcal{T}$, then for some $F \in \mathcal{F}, F(x * y) \subseteq U$. Now $F(x)$ and $F(y)$ are two open neighborhoods of x and y, respectively, such that $F(x) * F(y) \subseteq F(x * y) \subseteq U$.

Corollary 3.2. Let \mathcal{F} be a prefilter of filters in BE-algebra X. If X is commutative or self distributive or transitive BE-algebra, then there a topology \mathcal{T} on X such that $(X, *, \mathcal{T})$ is a topological BE-algebra.

Proof. If X is commutative or self distributive or transitive, then \mathcal{F} is a prefilter of normal filters in X. By Theorem 3.1, there exists a topology \mathcal{T} on X such that $(X, *, \mathcal{T})$ is a topological BE-algebra.

Theorem 3.3. Let F be a filter in commutative or self distributive BE-algebra $(X, *, 1)$. Then there is a topology \mathcal{T} on X such that $(X, *, 1, \mathcal{T})$ is a left topological BE-algebra.

Proof. Clearly X is a transitive BE-algebra. Let $\mathcal{T}=\{U \subseteq X: \forall x \in U F[x] \subseteq U\}$. First we show that for any $x \in X, F[x] \in \mathcal{T}$. Suppose $x \in X$ and $y \in F[x]$, then $y * x \in F$. Take $z \in F[y]$. By transitivity, $(y * x) *((z * y) *(z * x))=1 \in F$. Hence $(z * y) *(z * x) \in F$. Since F is filter and $(z * y) *(z * x)$ and $z * y$, both, are in F, $z * x$ is in F so. Hence $F[y] \subseteq F[x]$. This implies that $F[x] \in \mathcal{T}$. Now we prove that $*$ is continuous in second variable. Let $x * y \in U \in \mathcal{T}$, then $F[x * y] \subseteq U$. If $z \in F[y]$, then $z * y \in F$. By transitivity $z * y \leq(x * z) *(x * y)$, hence $x * z \in F[x * y]$. This proves that $x * F[y] \subseteq F[x * y] \subseteq U$.

Theorem 3.4. Let $(X, *, 1, \mathcal{T})$ be a topological BE-algebra and $0 \notin X$. Suppose $X_{0}=$ $X \cup\{0\}$ and $\mathcal{T}^{*}=\mathcal{T} \backslash\{\phi\}$. If $1 \in \cap \mathcal{T}^{*}$, then there are an operation \otimes and a topology \mathcal{T}_{0} on X_{0} such that $\left(X_{0}, \otimes, 1, \mathcal{T}_{0}\right)$ is a topological bounded self distributive BE-algebra and $1 \in \cap \mathcal{T}_{0}^{*}$.

Proof. Define the operation \otimes on X_{0} by

$$
x \otimes y=\left\{\begin{aligned}
x * y & \text { if } x, y \in X \\
0 & \text { if } x \in X, y=0 \\
1 & \text { if } x=0, y \in X \\
1 & \text { if } x=y=0
\end{aligned}\right.
$$

Assume that $\mathcal{T}_{0}=\{U \cup\{0\}: U \in \mathcal{T}\} \cup\{\phi\}$. It is easy to verify that $\left(X_{0}, \otimes, 1\right)$ is a bounded self distributive BE-algebra and \mathcal{T}_{0} is a topology on X_{0}. Let $x \otimes y \in U \cup\{0\}$. In the following cases we find two sets $V, W \in \mathcal{T}_{0}$ such that $x \in V, y \in W$ and $V \otimes W \subseteq U \cup\{0\}$.
Case 1. If $x, y \in X$, then $x * y=x \otimes y \in U$. Since $*$ is continuous, there are $V, W \in \mathcal{T}$ such that $x \in V, y \in W$ and $V * W \subseteq U$. If $z_{1} \in V \cup\{0\}$ and $z_{2} \in W \cup\{0\}$, then $z_{1} \otimes z_{2} \in\left\{z_{1} * z_{2}, 0,1\right\} \subseteq U \cup\{0\}$. Hence $V \cup\{0\} \otimes W \cup\{0\} \subseteq U \cup\{0\}$.
Case 2. If $x \in X$ and $y=0$, then $x \in X_{0} \in \mathcal{T}_{0}, y=0 \in\{0\} \in \mathcal{T}_{0}$ and $X_{0} \otimes\{0\}=$ $\{1,0\} \subseteq U \cup\{0\}$.
Case 3. If $x=0$ and $y \in X$, then $x=0 \in\{0\} \in \mathcal{T}_{0}, y \in X_{0} \in \mathcal{T}_{0}$ and $\{0\} \otimes X_{0}=$ $\{1,0\} \subseteq U \cup\{0\}$.
Case 4. If $x=y=0$, then $x=y=0 \in\{0\} \in \mathcal{T}_{0}$ and $\{0\} \otimes\{0\}=\{1\} \subseteq U \cup\{0\}$.
The Cases $1,2,3$ and 4 prove that $\left(X_{0}, \otimes, \mathcal{T}_{0}\right)$ is a topological BE-algebra. But it is obvious that $1 \in \cap \mathcal{T}_{0}^{*}$.

Theorem 3.5. For any integer $n \geq 3$ there exists a topological bounded self distributive commutative BE-algebra of order n.

Proof. Let $X=\{1, a\}$ be the self distributive commutative BE-algebra with the following table:

$*$	1	a
1	1	a
a	1	1

Then $\mathcal{T}=\{X, \phi\}$, is a topology on X such that $(X, *, \mathcal{T})$ is a topological BE-algebra. Let $u_{1} \notin X$. Since $1 \in \cap \mathcal{T}^{*}$, by Theorem 3.4, there is an operation \otimes and a topology
\mathcal{T}_{1} on $X_{1}=X \cup\left\{u_{1}\right\}$ such that $\left(X_{1}, *, \mathcal{T}_{1}\right)$ is a topological bounded self distributive BE-algebra of order 3 with unit u_{1} and $1 \in \cap \mathcal{T}^{*}{ }_{1}$.

Take $\left(X_{n}, *, \mathcal{T}_{n}\right)$ a topological bounded self distributive BE-algebra of order n with unit u_{n} such that $1 \in \cap \mathcal{T}^{*}{ }_{n}$. Let $X_{n+1}=X_{n} \cup\left\{u_{n+1}\right\}$, where $u_{n+1} \notin X_{n}$. By Theorem 3.4, there is a topology \mathcal{T}_{n+1} on X_{n+1} such that $\left(X_{n+1}, *, \mathcal{T}_{n+1}\right)$ is a topological bounded self distributive commutative BE-algebra of order $n+1$ with unit u_{n+1} and $1 \in \cap \mathcal{T}^{*}{ }_{n+1}$.

Theorem 3.6. Let α be an infinite cardinal number. Then there is a topological self distributive BE-algebra of order α.
Proof. Let X be a set with cardinal number α. Consider $X^{0}=\left\{x_{0}=1, x_{1}, x_{2}, \ldots\right\}$ as a countable subset of X and define the operation $*$ on X^{0} by

$$
x_{i} * x_{j}=\left\{\begin{aligned}
1 & \text { if } i=j \\
x_{j} & \text { if } i \neq j
\end{aligned}\right.
$$

Then $\left(X^{0}, *, 1\right)$ is a self distributive BE-algebra. The set $F_{n}=\left\{1, x_{1}, \ldots, x_{n}\right\}$, for any $n \geq 1$ is a normal filter of X^{0}. Since $B_{0}=\left\{F_{n}: n \geq 1\right\}$ is a prefilter of normal filters in X^{0}, by Theorem 3.1, there is a nontrivial topology \mathcal{T}^{0} on X^{0} such that $\left(X^{0}, *, \mathcal{T}^{0}\right)$ is a topological BE-algebra. Now define the binary operation \circ on X by

$$
x \circ y=\left\{\begin{aligned}
x * y & \text { if } x, y \in X^{0} \\
y & \text { if } x \in X^{0}, y \notin X^{0} \\
1 & \text { if } x \notin X^{0}, y \in X^{0} \\
1 & \text { if } x=y \notin X^{0} \\
y & \text { if } x \neq y, x, y \notin X^{0} .
\end{aligned}\right.
$$

It is routine to check that $(X, \circ, 1)$ is a self distributive BE-algebra of order α and the set $B=\mathcal{T}^{0} \cup\left\{\{x\}: x \notin X^{0}\right\}$ is a subbase for a topology \mathcal{T} on X. Since $\{1\} \notin \mathcal{T}, \mathcal{T}$ is a nontrivial topology on X. In the following cases we will show that (X, \circ, \mathcal{T}) is a topological BE-algebra. For this, let $x \circ y \in U \in B$.
Case 1. If $x, y \in X^{0}$, then $x \circ y=x * y \in U \in \mathcal{T}^{0}$. Since $*$ is continuous in $\left(X^{0}, \mathcal{T}^{0}\right)$, there are $V, W \in \mathcal{T}^{0}$ containing x, y, respectively, such that $V * W \subseteq U$. Hence $V \circ W \subseteq U$ which implies that \circ is continuous in (X, \mathcal{T}).
Case 2. If $x \in X^{0}$ and $y \notin X^{0}$, then X^{0} and $\{y\}$ are two elements of \mathcal{T} such that $x \in X^{0}, y \in\{y\}$ and $X^{0} \circ\{y\}=\{y\} \subseteq U$.
Case 3. If $x \notin X^{0}$ and $y \in X^{0}$, then $x \circ y=1 \in U$. Now $\{x\}$ and X^{0}, both, belong to \mathcal{T} and $x \in\{x\}, y \in X^{0}$ and $\{x\} \circ X^{0}=\{1\} \subseteq U$.
Case 4. If $x=y \notin X^{0}$, then $x \circ y=1 \in U$. Then $\{x\}$ is an open set in \mathcal{T} which contains x, y and $\{x\} \circ\{x\}=\{1\} \subseteq U$.
Case 5. If $x \notin X^{0}$ and $y \notin X^{0}$, then $x \in\{x\} \in \mathcal{T}$ and $y \in\{y\} \in \mathcal{T}$ and $\{x\} \circ\{y\} \subseteq U$. The cases $1,2,3,4,5$ show that operation \circ is continuous in (X, \mathcal{T}).

Theorem 3.7. Let $(X, *, 1, \mathcal{T})$ be a topological BE-algebra and α be a cardinal number. If $\alpha \geq|X|$, then there is a topological BE-algebra $(Y, \circ, 1, \mathcal{U})$ such that $\alpha \leq|Y|$ and X is a subalgebra of Y.

Proof. Suppose

$$
\Gamma=\left\{(H, \circledast, 1, \mathcal{U}):(H, \circledast, 1, \mathcal{U}) \text { is a topological BE-algebra, }\left.X \subseteq H \circledast\right|_{X}=*\right\}
$$

The following relation is a prtial order on Γ.

$$
(H, \circledast, 1, \mathcal{U}) \leq(K, \odot, 1, \mathcal{V}) \Leftrightarrow H \subseteq K,\left.\odot\right|_{H}=\circledast, \mathcal{U} \subseteq \mathcal{V}
$$

Let $\left\{\left(H_{i}, \circledast_{i}, 1, \mathcal{U}_{i}\right): i \in I\right\}$ be a chain in Γ. Put $H=\cup H_{i}$ and $\mathcal{U}=\cup \mathcal{U}_{i}$. If x and y are two elements of H, then for some $i \in I, x, y \in H_{i}$. Define $x \circledast y=x \circledast_{i} y$. We prove that \circledast is an operation on H. Suppose $x, y \in H_{i} \cap H_{j}$. Since $\left\{\left(H_{i}, \circledast_{i}, 1, \mathcal{U}_{i}\right): i \in I\right\}$ is a chain, $H_{i} \subseteq H_{j}$ or $H_{j} \subseteq H_{i}$. Without the lost of generality, assume that $H_{i} \subseteq H_{j}$. Then $\left.\circledast_{j}\right|_{H_{i}}=\circledast_{i}$. So $x \circledast_{j} y=x \circledast_{i} y$. This proves that \circledast is an operation on H. Now it is easy to see that $(H, \circledast, 1)$ is a BE-algebra such that $\left.\circledast\right|_{X}=*$. On the other hand, Since $\left\{\left(H_{i}, \circledast_{i}, 1, \mathcal{U}_{i}\right): i \in I\right\}$ is a chain, \mathcal{U} is a topology on H. We prove that $(H, \circledast, \mathcal{U})$ is a topological BE-algebra. Let $x \circledast y \in U \in \mathcal{U}$. Then there is an $i \in I$ such that $x \circledast y=x \circledast_{i} y \in U \in \mathcal{U}_{i}$. Since \circledast_{i} is continuous in $\left(H_{i}, \mathcal{U}_{i}\right)$, there are $V, W \in \mathcal{U}_{i}$ such that $x \in V, y \in W$, and $V \circledast_{i} W \subseteq U$. This proves that \circledast is continuous in (H, \mathcal{U}). Thus $(H, \circledast, 1, \mathcal{U})$ is an upper bound for $\left\{\left(H_{i}, \circledast_{i}, 1, \mathcal{U}_{i}\right): i \in I\right\}$ in Γ. By Zorn's Lemma, Γ has a maximal element. Suppose $(Y, \circ, 1, \mathcal{U})$ is a maximal element of Γ. We prove that $|Y| \geq \alpha$. If $|Y|<\alpha$, then for some nonempty set $C,|Y \cup C|=\alpha$. Take $a \in Y \backslash C$ and put $H=Y \cup\{a\}$. Then it is easy to claim that H with the following operation is a BE-algebra.

$$
x \circledast y=\left\{\begin{aligned}
x \circ y & \text { if } x, y \in Y \\
a & \text { if } x \in Y, y=a \\
1 & \text { if } x=a, y \in Y \\
1 & \text { if } x=y=a .
\end{aligned}\right.
$$

The set $B=\mathcal{U} \cup\{\{a\}\}$ is a subbase for a topology \mathcal{V} on H. In the following cases we prove that $(H, \circledast, \mathcal{V})$ is a topological BE-algebra. Let $x, y \in H$ and $x \circledast y \in U \in B$.
Case 1. If $U \in \mathcal{U}$, then or x, y, both, are in Y or $x \in Y$ and $y=a$ or $x=y=a$. If $x, y \in Y$, then since \circ is continuous in (Y, \mathcal{U}), there are $V, W \in \mathcal{U} \subseteq B$ such that $x \in V, y \in W$ and $V \circledast W=V \circ W \subseteq U$. If $x \in Y$ and $y=a$, then Y and $\{a\}$ are two open sets in \mathcal{V} containing x and y, respectively, such that $x \circledast y \in Y \circledast\{a\}=\{a\} \subseteq U$. If $x=y=a$, then $\{a\}$ is an open neighborhood of x, y in \mathcal{V} such that $\{a\} \circledast\{a\}=$ $\{1\} \subseteq U$.
Case 2. If $U=\{a\}$, then $x=a \in\{a\} \in B$ and $y \in Y \in B$ and $x \circledast y \in\{a\} \circledast Y \subseteq U$. Thus by cases $1,2,(H, \circledast, \mathcal{V})$ is a topological BE-algebra. But $(H, \circledast, \mathcal{V})$ is a member of Γ which $(Y, \circ, 1, \mathcal{U})<(H, \circledast, 1, \mathcal{V})$, a contradiction. Therefore, $|Y| \geq \alpha$ and X is a subalgebra of Y.

Theorem 3.8. Let α be an infinite cordinal number. Then there is a left topological BE-algebra of order α which is not a topological BE-algebra.
Proof. Let X be a set with cardinal number α. Suppose $X^{0}=\left\{x_{0}=1, x_{1}, x_{2}, \ldots\right\}$ is a countabel subset of X. Define

$$
x_{i} * x_{j}=\left\{\begin{aligned}
1 & \text { if } i \leq j \\
x_{j} & \text { if } i>j
\end{aligned}\right.
$$

It is easy to prove that $\left(X^{0}, *, 1\right)$ is a BE-algebra. If $U_{i}=\left\{x_{i}, x_{i+1}, x_{i+2}, \ldots\right\}$, then $B=\left\{U_{i}: i=0,2,3, \ldots\right\}$ is a base for a topology \mathcal{T}^{0} on X^{0}. We prove that $\left(X^{0}, *, \mathcal{T}^{0}\right)$ is a left topological BE-algebra. Let $x_{i} * x_{j} \in U \in \mathcal{T}^{0}$. If $i \leq j$, then $x_{i} * x_{j}=1 \in U$. Since X^{0} is only open neighborhood of $1, U=X^{0}$. Cleraly, $x_{j} \in X^{0}$ and $x_{i} * X^{0} \subseteq U$. If $i>j$, then $x_{i} * x_{j}=x_{j}$. Since B is a base for $\mathcal{T}^{0}, x_{j} \in U_{j} \subseteq U$. Since $i>j$, $x_{i} * U_{j}=U_{j} \subseteq U$. Therefore, $\left(X^{0}, *, \mathcal{T}^{0}\right)$ is a left topological BE-algebra. But this
space is not topological BE-algebra because $x_{1} \in U_{1}, x_{2} \in U_{2}$ and $x_{1} * x_{2}=x_{1} \in U_{1}$ but $U_{1} * U_{2} \nsubseteq U_{1}$. Consider X with the following operation

$$
x \circ y=\left\{\begin{aligned}
x * y & \text { if } x, y \in X^{0} \\
y & \text { if } x \in X^{0}, y \notin X^{0} \\
1 & \text { if } x \notin X^{0}, y \in X^{0} \\
1 & \text { if } x=y \notin X^{0} \\
y & \text { if } x \neq y, x, y \notin X^{0},
\end{aligned}\right.
$$

then $(X, \circ, 1)$ is a BE-algebra. As the proof of Theorem 3.6, we can claim that $B=\mathcal{T}^{0} \cup\left\{\{x\}: x \notin X^{0}\right\}$ is a subbase for a topology \mathcal{T} on X such that (X, \circ, \mathcal{T}) is a left topological BE-algebra and it's not right topological BE-algebra. But \circ is not continuous in (X, \mathcal{T}) because $*$ is not continuous in $\left(X^{0}, \mathcal{T}^{0}\right)$.

Definition 3.2. Let $(X, *, 1)$ be a BE-algera. A non empty subset V on X is $B E$ filter if for each $x, y \in X, x \leq y$ and $x \in V$ imply $y \in V$.
Clearly every filter and each ideal is a BE-filter, but it's converse is not correct.
Proposition 3.9. Let $(X, *, 1)$ be a BE-algebra. Then:
(i) arbiterary unions and intersections of $B E$-filters in X is a prefilter in X,
(ii) if V is a $B E$-filter, then $1 \in V$,
(iii) if V is a $B E$-filter, then $X * V \subseteq V$.

Proof. The proof is easy.
Theorem 3.10. Let Ω be a family of BE-filters in self distributive BE-algebra $(X, *, 1)$ such that is closed under intersection. If for each $x \in V \in \Omega$, there is a $U \in \Omega$ such that $U[x] \subseteq V$, then there is a topology \mathcal{T} on X such that $(X, *, 1, \mathcal{T})$ is a left topological BE-algebra.

Proof. It is not difficult to prove that $\mathcal{T}=\{U \subseteq X: \forall x \in U, \exists V \in \Omega$ s.t $V[x] \subseteq U\}$ is a topology on X. Let $U \in \Omega$ and $x \in X$. We show that $U[x] \in \mathcal{T}$. For this, suppose $y \in U[x]$, then $y * x \in U$. Consider $V \in \Omega$ such that $V[x * y] \subseteq U$. Let $z \in V[y]$. Since $z * y \leq(x * z) *(x * y)$ and $z * y \in V$, we get that $(x * z) *(x * y) \in V$. Hence $x * z \in V[x * y] \subseteq U$. This shows that $y \in V[y] \subseteq U[x]$. Therefore, $U[x]$ is an open set, for each $U \in \Omega$ and $x \in X$. Also, obviously, the set $B=\{U[x]: U \in \Omega, x \in X\}$ is a base for \mathcal{T}. Now we prove that $*$ is continuous in second variable. Let $y * x \in U[y * x] \in B$. If $z \in U[x]$, since $z * x \leq(y * z) *(y * x)$ and $z * x \in U$, we conclude that $(y * z) *(y * x) \in U$. So $y * z \in U[y * x]$. Thus, $y * U[x] \subseteq U[y * x]$. Therefore, $(X, *, 1, \mathcal{T})$ is a left topological BE-algebra.

Theorem 3.11. Let Ω be a family of $B E$-filters in self distributive $B E$-algebra $(X, *, 1)$ such that is closed under intersections. Let for each $x \in V \in \Omega$, there is a $U \in \Omega$ such that $U(x) \subseteq V$. Then there is a topology \mathcal{T} on X such that $(X, *, 1, \mathcal{T})$ is a semitopological BE-algebra.

Proof. Define $\mathcal{T}=\{U \subseteq X: \forall x \in U, \exists V \in \Omega$ s.t $V(x) \subseteq U\}$. Easily, one can prove that \mathcal{T} is a topology on X. We show that $B=\{U(x): U \in \Omega, x \in X\}$ is a base for \mathcal{T}. Let $x \in U(a) \in B$. Then there exists a $V \in \Omega$ such that $V(x * a)$ and $V(a * x)$, both, are the subsets of U. We show that $x \in V(x) \subseteq U(a)$. Let $y \in V(x)$. Then $y * x$ and $x * y$ belong to V. Since X is transitive,

$$
y * x \leq(a * y) *(a * x), \quad x * y \leq(a * x) *(a * y)
$$

hence $(a * y) *(a * x)$ and $(a * x) *(a * y)$, both, belong to V. Hence $a * y \in V(a * x) \subseteq U$. On the other hand, by (B4),

$$
(x * y) *[(y * a) *(x * a)]=(y * a) *[(x * y) *(x * a)] \geq(y * a) *(y * a)=1
$$

so $(x * y) \leq(y * a) *(a * x)$. As $x * y \in V$, we get that $(y * a) *(x * a) \in V$. In a similar fashion, one can prove that $(x * a) *(y * a) \in V$. Hence $y * a \in V(x * a) \subseteq U$. Since $a * y$ and $y * a$, both, belong to U, we get that $y \in U(a)$. Thus we could show that $U(a) \in \mathcal{T}$, for each $a \in X$. Now it is easy to prove that B is a base for \mathcal{T}. In continue we will prove that $*$ is continuous in first and second variable. Let $y * x \in V(y * x) \in B$. We show that $y * V(x) \subseteq V(y * x)$ and $V(y) * x \subseteq V(y * x)$. If $a \in V(x)$, then since

$$
a * x \leq(y * a) *(y * x), \quad x * a \leq(y * x) *(y * a)
$$

we get that $(y * a) *(y * x) \in V$ and $(y * x) *(y * a) \in V$. Hence $y * a \in V(y * x)$ and so $y * V(x) \subseteq V(y * x)$. If $b \in V(y)$, since

$$
b * y \leq(y * x) *(b * x), \quad y * b \leq(b * x) *(y * x)
$$

we get that $b * x \in V(x * y)$. Hence $V(y) * x \subseteq V(y * x)$.
Example 3.2. (i) An algebra $X=\{1, a, b, c\}$ defined by the table:

$*$	1	a	b	c
1	1	a	b	c
a	1	1	a	a
b	1	1	1	a
c	1	1	a	1

is a BE-algebra. BE-filters have the form $\{1, a\},\{1, b\},\{1, a, c\}$ and $\{1, b, c\}$. Let $U=\{1, b\}$ and $V=\{1, b, c\}$. Then V is not an filter because $c * a=1 \in V$ but $a \notin V$. Also $V[1], V[b], U[c]$, all, are the subsets of V and the sets $U[1], U[b]$, both, are the subsets of U. Hence $\Omega=\{U, V\}$ satisfies in Theorem 3.10. Therefore, $\mathcal{T}=\{W$: $\forall x \in W, \exists G \in \Omega$ s.t $G[x] \subseteq W\}$ is a topology on X such that $(X, *, 1, \mathcal{T})$ is a left topological BE-algebra.
(ii) It is easy to verify that $X=[1, \infty)$ by

$$
x * y= \begin{cases}1 & \text { if } x \leq y \\ y & \text { if } x>y\end{cases}
$$

is a BE-algebra. Let $F_{n}=[1, n]$, for any $n \geq 1$. Then:

$$
F_{n}(x)=\left\{\begin{aligned}
F_{n} & \text { if } x \leq n \\
\{x\} & \text { if } x>n
\end{aligned}\right.
$$

Now if $\Omega=\left\{F_{n}: n \geq 1\right\}$, then Ω satisfies in Theorem 3.11 and so there is a topology \mathcal{T} on X such that $(X, *, 1, \mathcal{T})$ is a semitopological BE-algebra.

4. Separation axioms on topological commutative BE-algebra

Theorem 4.1. Let α be an infinite cardinal number. Then there is a topological commutative self distributive BE-algebra of order α.

Proof. Let X be a set with cardinal number α. Consider $X^{0}=\left\{x_{0}=1, x_{1}, x_{2}, \ldots\right\}$ as a countable subset of X and define the operation $*$ on X^{0} by

$$
x_{i} * x_{j}=\left\{\begin{aligned}
1 & \text { if } i=j \\
x_{j} & \text { if } i \neq j
\end{aligned}\right.
$$

Then $\left(X^{0}, *, 1\right)$ is a commutative BE-algebra. The set $F_{n}=\left\{1, x_{1}, \ldots, x_{n}\right\}$, for any $n \geq 1$ is a normal filter of X^{0}. Since $B_{0}=\left\{F_{n}: n \geq 1\right\}$ is a BE-filter of normal filters in X^{0}. By Theorem 3.1, there is a nontrivial topology \mathcal{T}^{0} on X^{0} such that $\left(X^{0}, *, \mathcal{T}^{0}\right)$ is a topological BE-algebra. Now define the binary operation \circ on X by

$$
x \circ y=\left\{\begin{aligned}
x * y & \text { if } x, y \in X^{0} \\
y & \text { if } x \in X^{0}, y \notin X^{0} \\
y & \text { if } x \notin X^{0}, y \in X^{0} \\
1 & \text { if } x=y \notin X^{0} \\
y & \text { if } x \neq y, x, y \notin X^{0} .
\end{aligned}\right.
$$

It is routine to check that $(X, o, 1)$ is a commutative self distributive BE-algebra of order α and the set $B=\mathcal{T}^{0} \cup\left\{\{x\}: x \notin X^{0}\right\}$ is a subbase for a topology \mathcal{T} on X. Since $\{1\} \notin \mathcal{T}, \mathcal{T}$ is a nontrivial topology on X. In the following cases we will show that (X, \circ, \mathcal{T}) is a topological BE-algebra. For this, let $x \circ y \in U \in B$.
Case 1. If $x, y \in X^{0}$, then $x \circ y=x * y \in U \in \mathcal{T}^{0}$. Since $*$ is continuous in $\left(X^{0}, \mathcal{T}^{0}\right)$, there are $V, W \in \mathcal{T}^{0}$ containing x, y, respectively, such that $V * W \subseteq U$. Hence $V \circ W \subseteq U$ which implies that \circ is continuous in (X, \mathcal{T}).
Case 2. If $x \in X^{0}$ and $y \notin X^{0}$, then X^{0} and $\{y\}$ are two elements of \mathcal{T} such that $x \in X^{0}, y \in\{y\}$ and $X^{0} \circ\{y\}=\{y\} \subseteq U$.
Case 3. If $x \notin X^{0}$ and $y \in X^{0}$, then $x \circ y=y \in U$. Now $\{x\}$ and X^{0}, both, belong to \mathcal{T} and $x \in\{x\}, y \in X^{0}$ and $\{x\} \circ X^{0}=\{y\} \subseteq U$.
Case 4. If $x=y \notin X^{0}$, then $x \circ y=1 \in U$. Then $\{x\}$ is an open set in \mathcal{T} which contains x, y and $\{x\} \circ\{x\}=\{1\} \subseteq U$.
Case 5. If $x \notin X^{0}, y \notin X^{0}$ and $x \neq y$. then $\{x\},\{y\} \in \mathcal{T}$ and $\{x\} \circ\{y\} \subseteq U$.
The cases $1,2,3,4,5$ show that operation \circ is continuous in (X, \mathcal{T}).
Theorem 4.2. Let \mathcal{T} be a topology on commutative BE-algebra $(X, *, 1)$. If for any $a \in X$ the map $l_{a}: X \hookrightarrow X$, by $l_{a}(x)=a * x$, is an open map, then (X, \mathcal{T}) is a T_{0} space.
Proof. Let $x \neq y \in X$ and U be an open neighborhood of 1 . Then $U * x$ and $U * y$ are two open neighborhoods of x and y, respectively. If $x \in U * y$ and $y \in U * x$, then for some $a, b \in X$, by $(B 1), y \leq a * y=x$ and $x \leq b * x=y$. Hence $x=y$ which is a contradiction. Therefore, $x \notin U * y$ or $y \notin U * x$. This shows that (X, \mathcal{T}) is a T_{0} space.

Theorem 4.3. Let $(X, *, 1, \mathcal{T})$ be a right (left) topological commutative BE-algebra. Then (X, \mathcal{T}) is a T_{0} space iff, for any $x \neq 1$, there is a $U \in \mathcal{T}$ such that $x \in U$ and $1 \notin U$.

Proof. Suppose for any $x \neq 1$, there is a $U \in \mathcal{T}$ such that $x \in U$ and $1 \notin U$. We prove that (X, \mathcal{T}) is a T_{0} space. Given $x \neq y \in X$. Since X is commutative BE-algebra, $x * y \neq 1$ or $y * x \neq 1$. Suppose $x * y \neq 1$, then there exists a $U \in \mathcal{T}$ such that $x * y \in U$ and $1 \notin U$. Since $*$ is continuous in first variable, there an open set V containing x
such that $V * y \subseteq U . y$ is not in V because if $y \in V$, then $1=y * y \in V * y \subseteq U$, which is a contradiction. Hence (X, \mathcal{T}) is a T_{0} space. The proof of converse is clear.

Theorem 4.4. If α is an infinite cardinal number, then there is a T_{0} topological commutative BE-algebra of order α which its topology is nontrivial.

Proof. Let $\left(X^{0}, *, \mathcal{T}^{0}\right)$ and (X, \circ, \mathcal{T}) be topological commutative BE-algebras in Theorem 4.1. It is clear that \mathcal{T} is nontrivial. Let $x \in X \backslash\{1\}$. If $x \in X^{0}$, then for some $n \geq 1, x \notin F_{n}$. Hence $x \in F_{n}(x) \in \mathcal{T}$ and $1 \notin F_{n}(x)$. If $x \notin X^{0}$, then $x \in\{x\} \in \mathcal{T}$ and $1 \notin\{x\}$. Now by Theorem 4.3, (X, \circ, \mathcal{T}) is a T_{0} topological commutative BE-algebra of order α, with nontrivial topology \mathcal{T}.

Theorem 4.5. Let $(X, *, 1, \mathcal{T})$ be a semitopological commutative BE-algebras. Then (X, \mathcal{T}) is a T_{1} space if and only if for any $x \neq 1$, there are two open neighborhoods U and V of x and 1 , respectively, such that $1 \notin U$ and $x \notin V$.

Proof. If (X, \mathcal{T}) is T_{1}, then the proof is obvious. Conversely, let for any $x \neq 1$, there are two open neighborhoods U and V of x and 1 , respectively, such that $1 \notin U$ and $x \notin V$. We prove that (X, \mathcal{T}) is a T_{1} space. Given $x \neq y$, then $x * y \neq 1$ or $y * x \neq 1$. Without the lost of the generality, assume that $x * y \neq 1$. Then there are two open neighborhoods U and V of $x * y$ and 1 , respectively, such that $x * y \notin V$ and $1 \notin U$. Since $*$ is continuous in each variable separately, there are W and W_{1} belong to \mathcal{T} such that $x \in W, y \in W_{1}$ and $W * y \subseteq U$ and $x * W_{1} \subseteq U$. But $x \notin W_{1}$ because if $x \in W_{1}$, then $1=x * x \in x * W_{1} \subseteq U$, a contradiction. Similarly, $y \notin W$. Therefore, (X, \mathcal{T}) is a T_{1} space.

Theorem 4.6. Let $(X, *, 1, \mathcal{T})$ be a semitopological commutative BE-algebras. Then (X, \mathcal{T}) is a T_{1} space if and only if it is T_{0} space.

Proof. Let (X, \mathcal{T}) be a T_{0} space and $x \neq y$. Then $x * y \neq 1$ or $y * x \neq 1$. Without the lost of the generality suppose $x * y \neq 1$. Then there is a $U \in \mathcal{T}$ such that $x * y \in U$ and $1 \notin U$ or $1 \in U$ and $x * y \notin U$. First assume that $x * y \in U$ and $1 \notin U$. Since $(X, *, \mathcal{T})$ is semitopological BE-algebra, there are two open neighborhoods V and W of x and y, respectinvely, such that $V * y \subseteq U$ and $x * W \subseteq U$. But $x \notin W$ because if $x \in W$, then $1=x * x \in x * W \subseteq U$, a contradiction. Similarly, $y \notin V$. Now if $1 \in U$ and $x * y \notin U$, then since $x * x=y * y=1 \in U$, there are open sets V and W such that $x \in V, y \in W$ and $V * y \subseteq U$ and $x * W \subseteq U$. If $x \in W$, then $x * y \in x * W \subseteq U$, a conteradiction. Similarly, $y \notin V$. Therefore, (X, \mathcal{T}) is a T_{1} space. If (X, \mathcal{T}) is T_{1}, clearly it is T_{0}.

Corollary 4.7. If α is an infinite cardinal number, then there is a T_{1} topological commutative BE-algebra of order α which its topology is nontrivial.

Proof. By Theorems 4.4 and 4.6, the proof is clear.
Theorem 4.8. Let $(X, *, 1, \mathcal{T})$ be a topological commutative BE-algebra. Then (X, \mathcal{T}) is Hausdorff if and only if for each $x \neq 1$, there are two disjoint open neighborhoods U and V of x and 1 , respectively.

Proof. If (X, \mathcal{T}) is Hausdorff, the proof is clear. Conversely, let for each $x \neq 1$, there are two disjoint open neighborhoods U and V of x and 1, respectively. We prove that (X, \mathcal{T}) is Hausdorff. For this, take $x \neq y$. Then $x * y \neq 1$ or $y * x \neq 1$. Without the
lost of the generality, we suppose that $x * y \neq 1$. Then there are two disjoint open neighborhoods U and V of $x * y$ and 1, respectively. Since $*$ is continuous, there are two open sets W and W_{1} such that $x \in W, y \in W_{1}$ and $W * W_{1} \subseteq U$. If $z \in W \cap W_{1}$, then $1=z * z \in W * W_{1} \subseteq U$, which is a contradiction. Hence $W \cap W_{1}=\phi$. Therefore, (X, \mathcal{T}) is Hausdorff.

Theorem 4.9. Let $(X, *, 1, \mathcal{T})$ be a topological commutative BE-algebras. Then (X, \mathcal{T}) is a T_{1} space if and only if it is Hausdorff space.

Proof. Let $(X, *, 1, \mathcal{T})$ be T_{1} topological BE-algebra. Given $x \neq 1$. Then there are $U, V \in \mathcal{T}$ such that $x \in U, 1 \in V$ and $x \notin V$ and $1 \notin U$. There are two open neighborhoods W and W_{1} such that $x \in W, 1 \in W_{1}$ and $W * W_{1} \subseteq U$. If $z \in W \cap W_{1}$, then $1=z * z \in W * W_{1} \subseteq U$, which is a contradiction. Hence $W \cap W_{1}=\phi$. By Theorem 4.8, (X, \mathcal{T}) is Hausdorff. Conversely is obvious.

Corollary 4.10. If α is an infinite cardinal number, then there is a Hausdorff topological commutative BE-algebra of order α which its topology is nontrivial.

Proof. By Theorems 4.4, 4.6 and 4.9, the proof is clear.
Theorem 4.11. Let \mathcal{N} be a fundamental system of neighborhoods of 1 in topological commutative BE-algebra $(X, *, 1, \mathcal{T})$. The following conditions are equivalent.
(i) (X, \mathcal{T}) is T_{0} space,
(ii) (X, \mathcal{T}) is T_{1} space,
(iii) (X, \mathcal{T}) is Hausdorff space,
(iv) $\cap \mathcal{N}=\{1\}$.

Proof. By Theorems 4.6, 4.9, (i), (ii), (iii) are equivalent. We prove that (ii) and (iv) are equivalent. If (X, \mathcal{T}) is T_{1} space and $x \neq 1$, then by Theorem 4.5 , there is a $U \in \mathcal{N}$ such that $x \notin U$, hence $x \notin \cap \mathcal{N}$. Conversely, let $\cap \mathcal{N}=\{1\}$ and $x \neq 1$. Then there is a $V \in \mathcal{N}$ such that $x \notin V$. We show that $U(x)$ is an open set. For this let $a \in U(x)$. Then $x * a$ and $a * x$ belong to U. Since $(X, *, \mathcal{T})$ is semitopological BE-algebra, there is an open set W containing x such that $W * x$ and $x * W$ are two subsets of V. Hence $a \in W \subseteq U(x)$. Then $U(x)$ is an open neighborhood of x. But $1 \notin U(x)$ because $x \notin U$. Thus U and $U(x)$ are two open sets containing $1, x$, respectively, such that $x \notin U$ and $1 \notin U(x)$. By Theorem 4.5, (X, \mathcal{T}) is T_{1} space.

Theorem 4.12. Topological commutative BE-algebra $(X, *, 1, \mathcal{T})$ is Uryshon space if and only if for any $x \neq 1$, there are two open sets U and V containing x and 1 , respectively, such that $\bar{U} \cap \bar{V}=\phi$.

Proof. Let for any $x \neq 1$, there are two open sets U and V containing x and 1, respectively, such that $\bar{U} \cap \bar{V}=\phi$. We prove that (X, \mathcal{T}) is Uryshon space. For this, suppose $x \neq y$. Then we can assume that $x * y \neq 1$. Take two open sets U and V such that $x * y \in U$ and $1 \in V$ and $\bar{U} \cap \bar{V}=\phi$. Since $*$ is continuous, there are open neighborhoods W and W_{1} of x and y, respectively, $W * W_{1} \subseteq U$. If $z \in \bar{W} \cap \overline{W_{1}}$, then there are two nets $\left\{x_{i}: i \in I\right\}$ and $\left\{y_{i}: i \in I\right\}$ in W and W_{1}, respectively, which converges to z. Now $\left\{x_{i} * y_{i}: i \in I\right\}$ is a net in U which converges to 1 . Hence $1 \in \bar{U} \cap \bar{V}=\phi$, a contradiction. This proves that (X, \mathcal{T}) is Uryshon space. Conversely, is clear.

Theorem 4.13. Topological commutative BE-algebra $(X, *, 1, \mathcal{T})$ is Uryshon space if and only if it is Hausdorff.

Proof. Let (X, \mathcal{T}) be Hausdorff space and $x \neq 1$. Then there are two disjoint open neighborhoods U and V of x and 1, respectively, there are two open sets W and W_{1} such that $x \in W$ and $1 \in W_{1}$ and $W * W_{1} \subseteq U$. We prove that $\bar{W} \cap \overline{W_{1}}=\phi$. Let $z \in \bar{W} \cap \overline{W_{1}}$. Then there are two nets $\left\{x_{i}: i \in I\right\} \subseteq W$ and $\left\{y_{i}: i \in I\right\} \subseteq W_{1}$, which both converges to z. Thus $\left\{x_{i} * y_{i}: i \in I\right\}$ is a net in U converges to 1 which implies that $1 \in \bar{U}$. Since V is an open neighborhood of $1, V \cap U \neq \phi$, a contradiction. Therefore, (X, \mathcal{T}) is Uryshon space. If (X, \mathcal{T}) is Uryshon space, clearly it is Hausdorff.

Corollary 4.14. If α is an infinite cardinal number, then there is a Uryshon topological commutative BE-algebra of order α which its topology is nontrivial.

Proof. By Theorem 4.13 and Corollary 4.10, the proof is obvious.

Conclusion

In this note, we have studied (semi) topological BE-algebras. In Theorems 3.5 and 3.6, we have built a topological self distributive BE-algebra of order α, for every cardinal number α. In section 4 we have investigated separation axioms T_{0}, T_{1}, Hausdorff and Uryshon spaces on topological commutative BE-algebras and showed that they are equivalent on topological commutative BE-algebras. In particular, in Corollary 4.10, we have proved that for each infinite cardinal number α there exists at least a Hausdorff topological commutative BE-algebra of order α with nontrivial topology. For the future, we suggest to study:
(1) regularity, normality and metrizability on (semi) topological BE-algebras,
(2) topological pseudo BE-algebras and separation axioms on them,
(3) quasi-uniformities and uniformities on BE-algebras and to investigate quasi-uniformizable BE-algebras.

References

[1] A. Arhangel'skii, M. Tkachenko, Topological groups and related structures, Atlantis press, 2008.
[2] S. S. Ahn and K. S. So, On generalized upper sets in BE-algebras, Bull. Korean. Math. Soc. 46 No. 2(2009), 281-287.
[3] S. S. Ahn and K. S. So, On ideals and upper sets in BE-algebras, Sci. Math. jpn. online e-2008, No. 2, 279-285.
[4] R. A. Borzooei, G. R. Rezaei, N. Kouhestani, On (semi)topological BL-algebras, Iranian Journal of Mathematical Sciences and Informatics 6(1) (2011), 59-77.
[5] R. A. Borzooei, G. R. Rezaei, N. Kouhestani, Metrizability on (semi)topological BL-algebras, Soft Comput. 16(10) (2012), 183-194.
[6] R. Engelking, General topology, Berline Heldermann, 1989.
[7] Y. Imai and K. Iséki, On axioms system of propositional calculi XIV, Poc. Japan Acad 42(1966), 19-22.
[8] H. S. kim and Y. H. Kim, On BE-algebras, Sci. Math. jpn. 66 No. 1(2007), 113-116.
[9] H. S. kim and K. J. Lee, Extended upper sets in BE-algebras, Bull. Malays. Math. Sci. Soc(2009), 1-11.
[10] Y. komori, The variety generated by BCC-algebras is finitely based, Reports Fac. Sci, Shizuoka Univ. 17 (1983), 13-16.
[11] . Kouhestani, R.A. Borzooei, On (semi)Topological Residuated Lattices, Annals of the university of Craiova, Mathematics and computer science, 41(1), (2014), 1-15.
[12] . Kouhestani, S. Mehrshad, A Quasi-Uniformity On BCC-algebras, Annals of the university of Craiova, Mathematics and computer science, 44(1), (2017), 64-77.
[13] . Kouhestani, S. Mehrshad, (semi)Topological BCK-algebras, Afr. Mat. 28, (2017), 1235-1251.
[14] B. L. Meng, CI-algebras, Sci. math. jpn. 71 No. 1(2010), 11-17;e-2009, 695-701.
[15] A. Walendziak, On commutative BE-algebras, Sci. Math. jpn. online e-2008, 585-588.
(E. Shahdadi, N. Kouhestani) Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran, Fuzzy Systems Research Center, University of Sistan and Baluchestan, Zahedan, Iran
E-mail address: e.shahdadi@gmail.com, Kouhestani@math.usb.ac.ir

