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Abstract. We consider a mathematical model of the diffusing dynamics of particles in a

channel under a potential field, and study a related optimal control problem, with the purpose
of maximizing the probability of the particles escape from this channel.
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1. Introduction

The motion of charged particles in channels under the action of the channel elec-
tric potential is a physical process which has wide applications in crystal theory,
semiconductor design ([6], [8]), biological flows through cells and laboratory medical
procedures ([1] [2], [3], [4], [5], [9]).

We treat the problem in one-dimensional approach, assuming that the channel is
much more longer than wider and fixing as the space domain the interval (0, L). The
channel potential is denoted by U(x) and the diffusion coefficient by D(x). Let us
consider that the particle is at position x0 at the initial time t = 0. The diffusing
dynamics of a particle in a potential field is described by the following equation for
the function denoted G(x, t;x0),

∂G

∂t
−∇ ·D(x) [∇G+ βG∇U ] = 0 in (0, L)× (0, T ), T > 0, (1)

with the initial condition

G(x, 0;x0) = G0,

and with boundary conditions considered here of Robin type

D(x) [∇G+ βG∇U ] · ν = k0G at x = 0, t ∈ (0, T ), (2)

−D(x) [∇G+ βG∇U ] · ν = kLG at x = L, t ∈ (0, T ),

where t is the time, ν is the outward unit vector to the boundary, and k0 and kL
represent the rates of particle escape from the channel through the points x = 0 and
x = L, respectively. Here, β is a constant depending on some physical quantities and
it is supposed to be known, as well as U and D.

To explain the meaning of G we start from some considerations of stochastic theory.
Let us consider the motion of the particle under an external force, perturbed by a
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Brownian process, and assert that it is described by the Itô stochastic differential
equation

dX(t, s, ξ) = v(X(t, s, ξ))dt+ σ(X(t, s, ξ))dW (t), 0 ≤ s ≤ t ≤ T, ξ ∈ R,
X(s) = ξ, (3)

where X stands for the position at time t of the particle which was at position ξ at
time s, W (t) is the Brownian perturbation, v is called the drift and σ is the Brownian
motion covariance (see for example [7]). If the stochastic process has a transition
density denoted G(x, t; ξ, s) defined for 0 ≤ s ≤ t, x, ξ ∈ R, one associates to equation
(3) the parabolic equation on (−∞,+∞)× (0,+∞), called the backward Kolmogorov
equation, written for the function (ξ, s)→ G(x, t; ξ, s) with x, t fixed

∂G

∂s
− v(ξ, s)

∂G

∂ξ
− σ2(ξ, s)

2

∂2G

∂ξ2
= 0, ∀ξ ∈ R, 0 < s ≤ t, (4)

(in the 1-D case) and the forward Kolmogorov equation for the function (x, t) →
G(x, t; ξ, s) with ξ, s fixed

∂G

∂t
− ∂

∂x2

(
σ2(x, t)

2
G

)
+

∂

∂x
(v(x, t)G) = 0, ∀x ∈ R, 0 < t, (5)

where σ2(x,t)
2 is the diffusion coefficient. The probability of finding the particle which

was at ξ at time s in an interval I at time t is given by

P [X(t, s, ξ) ∈ I] =

∫
I

G(x, t; ξ, s)dx. (6)

Now, we identify ξ = x0 and see that (1) can be still rewritten as

∂G

∂t
− ∂

∂x2
(D(x)G) +

∂

∂x
(v(x)G) = 0 in (0, L)× (0, T ).

Hence, G(x, t;x0) represents the transition density (from the position x0 at time 0, to
the position x at time t) for the Brownian motion with the diffusion coefficient D(x)
and drift v(x) = ∇D(x)−βD(x)∇U(x). If D is constant, then v reduces to −βU ′(x),
or to a constant if U is linear.

If instead of G we write (GeβU )e−βU , by a straightforward computation (under
hypotheses that allow all operations to make sense) we arrive at the system

∂G

∂t
− ∂

∂x

[
D(x)e−U(x) ∂

∂x

(
GeU(x)

)]
= 0 in (0, L)× (0, T ), (7)

G(x, 0;x0) = G0 in (0, L), (8)

D(x)e−U(x) ∂

∂x

(
GeU(x)

)∣∣∣∣
x=0

= k0G(0, t;x0) for t ∈ (0, T ), (9)

−D(x)e−U(x) ∂

∂x

(
GeU(x)

)∣∣∣∣
x=L

= kLG(L, t;x0) for t ∈ (0, T ), (10)

where we have denoted still by U the product βU. Later we shall indicate by d(x) the
product D(x)e−βU(x). We assume that there is no collision between particles.

We shall study an optimal control problem, consisting in the determination of
the optimal initial distribution G0, for which the particles succeed to escape from
the channel within a given time interval, as it is of interest in real applications. To
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this end, we shall actually maximize the escape probability of the particles from the
channel. We give a rigorous definition for this probability, then we prove the existence
of the control and determine the optimality conditions.

2. The state system

Functional framework. Let us denote Ω = (0, L). We shall denote by (·, ·) and ‖·‖
the scalar product and norm respectively, in L2(Ω) and indicate a partial derivative
either by ∂v

∂x or vx. We consider the following hypotheses:
(i) k0, kL ∈ R, k0 > 0, kL > 0,
(ii) D ∈W 1,∞(Ω), D(x) ≥ Dm > 0,
(iii) U ∈W 1,∞(Ω).
We shall approach the problem in the functional framework involving the spaces

V = H1(Ω) ⊂ L2(Ω) ⊂ V ′, where V ′ is the dual of V. V ′ is endowed with the scalar
product

(v, v)V ′ := v(A−1
∆ v), ∀v, v ∈ V ′, (11)

where A−1
∆ the inverse of the operator A∆ : V → V ′ defined by

〈A∆v, ψ〉V ′,V :=

∫ L

0

D(x)vxψxdx+ k0v(0)ψ(0) + kLv(L)ψ(L), ∀φ ∈ V. (12)

For simplicity, sometimes we shall not indicate all arguments for G or for some
other functions.

We introduce the linear operator A : V → V ′ by

〈Av, φ〉V ′,V =

∫ L

0

D(x)(vxφx + Uxvφx)dx+ k0v(0)φ(0) + kLv(L)φ(L), ∀φ ∈ V,

and the Cauchy problem

dG

dt
(t) +AG(t) = 0, a.e. t ∈ (0, T ), (13)

G(0) = G0.

We remark that a strong solution to (13) is a solution (in the sense of Definition 1)
to problem (7)-(10), so that, instead of this system we shall investigate the abstract
Cauchy problem (13).

Definition 2.1. Let G0 ∈ L2(Ω). We call a solution to problem (13) a function
G ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ′) which satisfies the equation∫ T

0

〈
dG

dτ
(τ), φ(τ)

〉
V ′,V

dτ +

∫ T

0

∫ L

0

(D(x)Gxφx +D(x)UxGφx) dxdτ

+

∫ T

0

(kLG(L, τ ;x0)φ(L, τ) + k0G(0, τ ;x0)φ(0, τ))dxdτ = 0, (14)

for any φ ∈ L2(0, T ;H1(Ω)), and the initial condition G(x, 0;x0) = G0.

Proposition 2.1. Let G0 ∈ L2(Ω). Then, problem (13) has a unique solution

G ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ′), (15)
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which satisfies the estimates

‖G(t)‖2 +

∫ t

0

‖G(τ)‖2V dτ ≤ α0 ‖G0‖2 , ∀t ∈ [0, T ], (16)

‖G(t)‖2V ′ +

∫ t

0

‖G(τ)‖2 dτ ≤ α1 ‖G0‖2V ′ , ∀t ∈ [0, T ]. (17)

The solution tends asymptotically to zero for large time, i.e.,

‖G(t)‖ ≤ e−
γ∞
2 te

UM−Um
2 ‖G0‖ , ∀t > 0, (18)

where α0, α1, γ∞, UM , Um are positive constants depending on k0, kL, L, T and the
norm ‖d‖W 1,∞(Ω). Moreover, if G0 ≥ 0 a.e. x ∈ Ω, then G(t) ≥ 0 a.e. x ∈ Ω, for

any t ∈ [0, T ].

Proof. Let us take G0 ∈ L2(Ω). One easily notes that the operator A is bounded

‖Av‖V ′ ≤ cM ‖v‖V , (19)

and

〈Av, v〉V ′,V ≥ −
λ0

2
‖v‖2 +

cm
2
‖v‖2V , (20)

with λ0 and cm constants depending on the problem parameters. Since A satisfies
(19) and (20) it follows by Lions’ theorem that the Cauchy problem (13) has a unique
solution in the spaces (15). In order to prove (16) we multiply equation (13) by G
and integrate over Ω× (0, t). Using (20) we get

1

2
‖G(t)‖2 +

cm
2

∫ t

0

‖G(τ)‖2V dτ ≤
1

2
‖G0‖2 +

λ0

2

∫ t

0

‖G(τ)‖2 dτ.

Now we apply the Gronwall lemma and obtain (16). We multiply (13) by G(t) scalarly
in V ′ and integrate over (0, t). We have

1

2
‖G(t)‖2V ′ +

1

2

∫ t

0

‖G(τ)‖2 dτ ≤ 1

2
‖G0‖2V ′ +

λ1

2

∫ t

0

‖G(τ)‖2 dτ,

with λ1 another positive constant, and by the Gronwall lemma we get (17). From
(13) and (19) we have ∫ t

0

∥∥∥∥dGdτ (τ)

∥∥∥∥2

V ′
dτ ≤ cMα0 ‖G0‖2 . (21)

Due to the linearity of A we still obtain that (16)-(17) are satisfied by the difference
of two solutions G and G corresponding to two different initial data, G0 and G0

belonging to L2(Ω).
Assume now that G0 ≥ 0. Let us multiply (13) by G−(t) and integrate over Ω ×

(0, t). Using the Stampacchia lemma we obtain

−1

2

∥∥G−(t)
∥∥2

+
1

2

∥∥G−(0)
∥∥− ∫ t

0

∫ L

0

D(G−x )2dxdτ

−
∫ t

0

kL
(
G−(L, τ)

)2
dτ −

∫ t

0

k0

(
G−(0, τ)

)2
dτ

=

∫ t

0

∫ L

0

DUxGG
−
x dxdτ.
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But G−0 = 0 and eventually, we deduce that∥∥G−(t)
∥∥2

+ cm

∫ t

0

∥∥G−(τ)
∥∥2

V
dτ ≤ λ0

∫ t

0

∥∥G−(τ)
∥∥2
dτ.

Still by the Gronwall lemma we conclude that ‖G−(t)‖2 = 0, ∀t ∈ [0, T ], hence
G(t) ≥ 0 for any t ∈ [0, T ].

We pass now to the proof of (18). For that we denote UM := maxx∈[0,L] U(x), Um =

minx∈[0,L] U(x), and take into account that if u ∈ W 1,∞(Ω) and dG
dt ∈ L

2(0, T ;V ′)

then we can define udGdt ∈ L
2(0, T ;V ′) by

u
dG

dt
(φ) :=

dG

dt
(φu), ∀φ ∈ V.

We multiply (7) by eUG ∈ V and after straightforward computations we obtain

d

dt

∥∥∥eU2 G(t)
∥∥∥2

+ γ∞

∥∥∥eU2 G(t)
∥∥∥2

≤ 0, (22)

with γ∞ := eUm min{Dme−UM ,k0,kL}
cP

. From here we deduce that the function t →

eγ∞t
∥∥∥eU2 G(t)

∥∥∥2

is decreasing, whence we get (18), as claimed. �

3. The control problem

We are going to explain the control problem we shall deal with. This aims at
computing G0 such that to maximize the probability of the particle escape from the
channel within the time interval (0, T ). Thus, the control acts in the initial condition.
However, it will be not let free in L2(Ω) but it will be restricted to have the integral
over (0, L) equal to 1, ∫ L

0

G0(x)dx =

∫ L

0

G(x, 0;x0)dx = 1. (23)

First of all we shall define the escape probability (see also [9]).
We denote by G(x, t;x0) the solution to (7)-(10), or equivalently to (13).
By (7) we deduce that the probability (given by (6)) that the particle is in the

channel [0, L] at time t, satisfies the problem

− ∂

∂t

(
〈G(·, t;x0), 1〉V ′,V

)
= k0G(0, t;x0) + kLG(L, t;x0), (24)

〈G(·, 0;x0), 1〉V ′,V =

∫ L

0

G(x, 0;x0)dx = 1,

since by Proposition 2.1, G ∈ L2(0, T ;V ). We define

Px0
(t1, t2) = −

∫ t2

t1

〈
∂G

∂t
(·, t;x0), 1

〉
V ′,V

dt (25)

= 〈G(·, t1;x0), 1〉V ′,V − 〈G(·, t2;x0), 1〉V ′,V

=

∫ L

0

G(x, t1;x0)dx−
∫ L

0

G(x, t2;x0)dx, for 0 ≤ t1 < t2 <∞,
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and will show that it is a probability measure. By (24) we obtain

Px0
(t1, t2) =

∫ t2

t1

k0G(0, t;x0)dt+

∫ t2

t1

kLG(L, t;x0)dt (26)

and observe that by Proposition 2.1, equation (25) makes sense for 0 ≤ t1 < t2 and
(26) makes sense for 0 ≤ t1 < t2.

For t1 = 0 and t2 = T we have by (25) and (24) that

Px0(0, T ) = 1−
∫ L

0

G(x, T ;x0)dx (27)

=

∫ T

0

kLG(L, t;x0)dt+

∫ T

0

k0G(0, t;x0)dt.

Recalling Proposition 2.1, Px0
(0, T ) as defined in (27) exists. By (25), (23) and (18)

we get that

Px0(0,∞) = 1 (28)

and by (26) it follows that Px0(t1, t2) ≥ 0 (since G(x, t;x0) ≥ 0 for all t ≥ 0). As a
matter of fact, here we needed the constraint (23). Also, from

〈G(t1), 1〉V ′,V − 〈G(t2), 1〉V ′,V =

∫ t2

t1

kLG(L, τ ;x0)dτ +

∫ t2

t1

k0G(0, τ ;x0)dτ ≥ 0

we see that

〈G(t1), 1〉V ′,V ≥ 〈G(t2), 1〉V ′,V for 0 < t1 < t2. (29)

Then, by (26), Px0(t1, t2) ≤ Px0(0, t2) for any t2 > t1 ≥ 0. All these imply that
Px0

(t1, t2) ∈ [0, 1], for t1 ≥ 0, and by all the other properties above it represents a
probability. It may be interpreted that Px0

(t1, t2) is the probability of the particle
presence in the channel in the interval (t1, t2).

Using again (25) we deduce that for T > 0 we have

Px0
(T,∞) =

∫ L

0

G(x, T ;x0)dx (30)

and this is the probability that the particle is still present in the channel at t ≥ T, as
already specified before. We can still formulate it as the probability that the particle has
not escaped from the channel up to the time T, or the survival probability. Therefore

Px0
(0, T ) = 1−

∫ L

0

G(x, T ;x0)dx (31)

is the probability that the particle has escaped from the channel within (0, T ), through
whatever exit (x = 0 or x = L), as defined in [1].

The control problem. We conclude that the problem of maximizing the escape
probability of the particles from the channel up to the time T, means in fact to

minimize the survival probability Px0
(T,∞) =

∫ L
0
G(x, T ;x0)dx. Hence, we define

the control problem as

min
G0∈U

(
α

∫ L

0

G(x, T ;x0)dx+
1

2

∫ L

0

G2
0(x)dx

)
, (32)
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subject to (13), where α is a fixed positive constant and

U =

{
G0 ∈ L2(Ω);

∫ L

0

G0(x)dx = 1

}
. (33)

So, we have an optimal control problem with a nonlocal constraint for the control.

Theorem 3.1. Problem (32) has a solution G0 ∈ U .

Proof. Let us denote

dinf := min
G0∈U

(
α

∫ L

0

G(x, T ;x0)dx+
1

2

∫ L

0

G2
0(x)dx

)
and consider a minimizing sequence {Gn0}n ∈ U . Then

dinf ≤ α
∫ L

0

Gn(x, T ;x0)dx+
1

2

∫ L

0

(Gn0 (x))2dx ≤ dinf +
1

n
, (34)

where Gn(x, t;x0) is the solution to (13) corresponding to Gn0 . By (34) we get that
{Gn0}n is bounded in L2(Ω) and {Gn(·, T ;x0)}n is bounded in L1(0, L) (recalling that
it is positive by Proposition 2.1). Hence, we can select a subsequence such that, as
n→∞,

Gn0 → G∗0, weakly in L2(Ω),

Gn(x, T ;x0)→ η weakly in L1(Ω). (35)

Then, by (15)-(17) we deduce that

Gn(·, ·;x0)→ G∗(·, ·;x0) weakly in L2(0, T ;V ) ∩W 1,2(0, T ;V ′)

and strongly in L2(0, T ;L2(Ω)), by the Lions-Aubin lemma. Moreover, by Arzelà-
Ascoli theorem we obtain that

Gn(·, t;x0)→ G∗(·, t;x0) strongly in V ′, uniformly on subsets of [0, T ].

By (35) we obtain that η = G∗(x, T ;x0) ∈ L1(Ω) and by the weakly lower semiconti-
nuity of the cost functional we get at limit that

dinf = α

∫ L

0

G∗(x, T ;x0)dx
1

2

∫ L

0

G∗20 (x)dx,

which ends the proof. �

The system in variations. Let us consider that G∗0 ∈ U is optimal for problem
(32) and denote by G∗, the solution to (13) corresponding to G∗0. We give a variation
to G∗0 along the direction λ > 0

Gλ0 (x) := G∗0(x) + λw(x), where w ∈ L2(Ω), (36)

and denote

Y (x, t;x0) := lim
λ→0

GG
λ
0 (x, t;x0)−G∗(x, t;x0)

λ
,
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where GG
λ
0 (x, t;x0) is the solution to (13) corresponding to Gλ0 . Hence, the system in

variations reads

dY

dt
− ∂

∂x

[
d(x)

∂

∂x

(
Y eU(x)

)]
= 0, in Ω× (0, T ), (37)

Y (x, 0;x0) = w, in Ω,

d(x)
∂

∂x

(
Y eU(x)

)∣∣∣∣
x=0

= k0Y (0, t;x0) for t ∈ (0, T ),

−d(x)
∂

∂x

(
Y eU(x)

)∣∣∣∣
x=L

= kLY (L, t;x0) for t ∈ (0, T ).

By Proposition 2.1, this system has a unique solution

Y ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ′).

The adjoint system. We introduce now the following adjoint system

∂p

∂t
+ eU(x) ∂

∂x
(d(x)px) = 0, in Ω× (0, T ), (38)

p(x, T ;x0) = α, in Ω,

eU(0)d(0)px(0, T ;x0) = k0p(0, T ;x0), t ∈ (0, T ),

−eU(L)d(L)px(L, T ;x0) = kLp(L, T ;x0), t ∈ (0, T ).

The first equation in (38) can be written

∂p

∂t
+

∂

∂x

(
d(x)eU(x) ∂p

∂x

)
− d(x)U ′(x)

∂p

∂x
= 0, in Ω× (0, T )

and we can prove that (38) has a unique solution

p ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ′),

by similar arguments as in Proposition 2.1.

Proposition 3.2. Let us consider that G∗0 ∈ U is optimal for problem (34). Then,

G∗0(x) = −p(x, 0;x0) + C, (39)

where p(x, 0;x0) is the solution to the adjoint system (38) at t = 0 and C is a constant
that can be determined from (23).

Proof. Let us consider that G∗0 ∈ U is optimal for problem (34).
The optimality condition calculated from (32) reads as

α

∫ L

0

Y (x, T ;x0)dx+

∫ L

0

G∗0(x)w(x)dx ≥ 0, for all w ∈ L2(Ω). (40)

Next, we multiply (37) by p(x, t;x0) and integrate over Ω and (0, T ). By taking into
account (38) we get that

α

∫ L

0

Y (x, T ;x0)dx =

∫ L

0

p(x, 0;x0)w(x)dx. (41)

By comparison with (40) we obtain∫ L

0

p(x, 0;x0)w(x)dx+

∫ L

0

G∗0(x)w(x)dx ≥ 0, for all w ∈ L2(Ω).
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Writing this relation for −w we finally get∫ L

0

(p(x, 0;x0) +G∗0(x))w(x)dx = 0, for all w ∈ L2(Ω), (42)

which implies (39), as claimed. This relation involves a constant due to (23) which is
a restriction in the admissible set. Moreover, still by this restriction we can determine

that C = 1
L

(
1 +

∫ L
0
p(x, 0;x0)dx

)
. �
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