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Abstract. We present, in the finite case, a generalization of the cyclic Gibbs sampler − the

Gibbs sampler for short. The chain obtained we call the cyclic Gibbs sampler in a generalized
sense − the Gibbs sampler in a generalized sense for short. The Gibbs sampler in a gener-

alized sense belongs to our collection of hybrid Metropolis-Hastings chains from [U. Păun, A

hybrid Metropolis-Hastings chain, Rev. Roumaine Math. Pures Appl. 56 (2011), 207−228]
and we conjecture that it is the fastest chain in this collection in a sense which will be specified

in article. We then present the wavy probability distributions, a generalization of the wavy

probability distribution(s) of first type from [U. Păun, G method in action: from exact sam-
pling to approximate one, Submitted ]. We construct a Gibbs sampler in a generalized sense,

a special one, for wavy probability distributions which is fast, attaining its stationarity in a
finite number of steps, and, besides this, has other important properties − the computation

of certain important probabilities iteratively and, for wavy probability distributions having

normalization constant, the computation of this constant.
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1. Basic things

In this section, we present some basic things.

Set
Par (E) = {∆ | ∆ is a partition of E } ,

where E is a nonempty set. We shall agree that the partitions do not contain the
empty set.

Definition 1.1. Let ∆1,∆2 ∈Par(E) . We say that ∆1 is finer than ∆2 if ∀V ∈ ∆1,
∃W ∈ ∆2 such that V ⊆W.

Write ∆1 � ∆2 when ∆1 is finer than ∆2.
In this article, a vector is a row vector and a stochastic matrix is a row stochastic

matrix.
The entry (i, j) of a matrix Z will be denoted Zij or, if confusion can arise, Zi→j .
Set

〈m〉 = {1, 2, ...,m} (m ≥ 1),

〈〈m〉〉 = {0, 1, ...,m} (m ≥ 0),

Nm,n = {P | P is a nonnegative m× n matrix} ,
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Sm,n = {P | P is a stochastic m× n matrix} ,

Nn = Nn,n,

Sn = Sn,n.

Let P = (Pij) ∈ Nm,n. Let ∅ 6= U ⊆ 〈m〉 and ∅ 6= V ⊆ 〈n〉. Set the matrices

PU = (Pij)i∈U,j∈〈n〉 , P
V = (Pij)i∈〈m〉,j∈V , and PVU = (Pij)i∈U,j∈V .

Set

({i})i∈{s1,s2,...,st} = ({s1} , {s2} , ..., {st}) ;

({i})i∈{s1,s2,...,st} ∈ Par ({s1, s2, ..., st}) .

E.g.,

({i})i∈〈n〉 = ({1} , {2} , ..., {n}) .

Definition 1.2. Let P ∈ Nm,n. We say that P is a generalized stochastic matrix if
∃a ≥ 0, ∃Q ∈ Sm,n such that P = aQ.

Definition 1.3. [8] Let P ∈ Nm,n. Let ∆ ∈Par(〈m〉) and Σ ∈Par(〈n〉). We say that P
is a [∆]-stable matrix on Σ if PLK is a generalized stochastic matrix, ∀K ∈ ∆,∀L ∈ Σ.
In particular, a [∆]-stable matrix on ({i})i∈〈n〉 is called [∆]-stable for short.

Definition 1.4. [8] Let P ∈ Nm,n. Let ∆ ∈Par(〈m〉) and Σ ∈Par(〈n〉). We say that
P is a ∆-stable matrix on Σ if ∆ is the least fine partition for which P is a [∆]-stable
matrix on Σ. In particular, a ∆-stable matrix on ({i})i∈〈n〉 is called ∆-stable while a

(〈m〉)-stable matrix on Σ is called stable on Σ for short. A stable matrix on ({i})i∈〈n〉
is called stable for short.

Let ∆1 ∈Par(〈m〉) and ∆2 ∈Par(〈n〉). Set (see [8] for G∆1,∆2 and [9] for G∆1,∆2
)

G∆1,∆2
= {P | P ∈ Sm,n and P is a [∆1] -stable matrix on ∆2 }

and

G∆1,∆2
= {P | P ∈ Nm,n and P is a [∆1] -stable matrix on ∆2 } .

When we study or even when we construct products of nonnegative matrices (in
particular, products of stochastic matrices) using G∆1,∆2

or G∆1,∆2
we shall refer this

as the G method. G comes from the verb to group and its derivatives.
Below we give an important result.

Theorem 1.1. [8] Let P1 ∈ G(〈m1〉),∆2
⊆ Sm1,m2

, P2 ∈ G∆2,∆3
⊆ Sm2,m3

, ..., Pn−1 ∈
G∆n−1,∆n

⊆ Smn−1,mn
, Pn ∈ G∆n,({i})i∈〈mn+1〉

⊆ Smn,mn+1
. Then

P1P2...Pn

is a stable matrix (i.e., a matrix with identical rows, see Definition 1.4).

Proof. See [8]. �

Definition 1.5. (See, e.g., [14, p. 80].) Let P ∈ Nm,n. We say that P is a row-
allowable matrix if it has at least one positive entry in each row.
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Let P ∈ Nm,n. Set

P =
(
P ij
)
∈ Nm,n, P ij =

{
1 if Pij > 0,
0 if Pij = 0,

∀i ∈ 〈m〉 ,∀j ∈ 〈n〉 . We call P the incidence matrix of P (see, e.g., [5, p. 222]).
In this article, the transpose of a vector x is denoted x′. Set e = e (n) =

(1, 1, ..., 1) ∈ Rn, ∀n ≥ 1.
In this article, some statements on the matrices hold eventually by permutation of

rows and columns. For simplification, further, we omit to specify this fact.

Warning! In this article, if a Markov chain has the transition matrix P = P1P2...Ps,
where s ≥ 1 and P1, P2, ..., Ps are stochastic matrices, then any 1-step transition of
this chain is performed via P1, P2, ..., Ps, i.e., doing s transitions: one using P1, one
using P2, ..., one using Ps.

Let S = 〈r〉. (We work with this set for simplification; S can be any nonempty
finite set.) Let π = (πi)i∈S = (π1, π2, ..., πr) be a positive probability distribution on
S. One way to sample approximately or, at best, exactly from S when r ≥ 2 is by
means of our hybrid Metropolis-Hastings chain from [9]. Below we define this chain.

Let E be a nonempty set. Set ∆ � ∆′ if ∆′ � ∆ and ∆′ 6= ∆, where ∆,
∆′ ∈Par(E) .

Let ∆1, ∆2, ..., ∆t+1 ∈Par(S) with ∆1 = (S) � ∆2 � ... � ∆t+1 = ({i})i∈S ,
where t ≥ 1. (∆1 � ∆2 implies r ≥ 2.) Let Q1, Q2, ..., Qt ∈ Sr such that

(C1) Q1, Q2, ..., Qt are symmetric matrices;

(C2) (Ql)
L
K = 0,∀l ∈ 〈t〉 − {1} ,∀K,L ∈ ∆l,K 6= L (this assumption implies that

Ql is a block diagonal matrix and ∆l-stable matrix on ∆l,∀l ∈ 〈t〉 − {1});

(C3) (Ql)
U
K is a row-allowable matrix, ∀l ∈ 〈t〉 , ∀K ∈ ∆l, ∀U ∈ ∆l+1, U ⊆ K.

Although Ql, l ∈ 〈t〉, are not irreducible matrices if l ≥ 2, we define the matrices
Pl, l ∈ 〈t〉, as in the Metropolis-Hastings case (see, e.g., [6, pp. 63−66] for this case),
namely,

Pl =
(

(Pl)ij

)
∈ Sr,

(Pl)ij =


0 if j 6= i and (Ql)ij = 0,

(Ql)ij min
(

1,
πj(Ql)ji
πi(Ql)ij

)
if j 6= i and (Ql)ij > 0,

1−
∑
k 6=i

(Pl)ik if j = i,

∀l ∈ 〈t〉 . Set P = P1P2...Pt.

Theorem 1.2. [9] Concerning P above we have πP = π and P > 0.

Proof. See [9]. �

By Theorem 1.2, Pn → e′π as n → ∞. We call the Markov chain with transition
matrix P the hybrid Metropolis-Hastings chain. In particular, we call this chain the
hybrid Metropolis chain when Q1, Q2, ..., Qt are symmetric matrices.
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2. Our Gibbs sampler in a generalized sense

In this section, we consider a generalization of the cyclic Gibbs sampler − the
Gibbs sampler for short − which we call the cyclic Gibbs sampler in a generalized
sense − the Gibbs sampler in a generalized sense for short. The Gibbs sampler in
a generalized sense belongs to our collection of hybrid Metropolis-Hastings chains
presented in Section 1 and, moreover, we conjecture that it is the fastest chain in this
collection in a sense which will be specified in this section.

Theorem 2.1. Consider a hybrid Metropolis-Hastings chain with state space S = 〈r〉
and transition matrix P = P1P2...Pt, P1, P2, ..., Pt corresponding to Q1, Q2, ..., Qt,
respectively. Suppose that ∀l ∈ 〈t〉 , ∀i, j ∈ S,

(Ql)ij =
πj∑

k∈S,(Ql)ik>0

πk
if (Ql)ij > 0

(see Section 1 again for Ql, l ∈ 〈t〉 , π = (πi)i∈S , ...). Then

Pl = Ql, ∀l ∈ 〈t〉 .

Proof. Obvious. �

We call the hybrid Metropolis-Hastings chain from Theorem 2.1 the cyclic Gibbs
sampler in a generalized sense − the Gibbs sampler in a generalized sense for short.
Recall that we work with S = 〈r〉 for simplification; S, here, can be any finite set with
|S| ≥ 2 (|·| is the cardinal).

We use the convention that an empty term vanishes.
Let π be a positive probability distribution on S = 〈〈h〉〉n , h, n ≥ 1 (more generally,

on S = 〈〈h1〉〉×〈〈h2〉〉× ...×〈〈hn〉〉 , h1, h2, ..., hn, n ≥ 1). Let x = (x1, x2, ..., xn) ∈ S.
Set

x [k |l ] = (x1, x2, ..., xl−1, k, xl+1, ..., xn) ,∀k ∈ 〈〈h〉〉 ,∀l ∈ 〈n〉 .
Obviously, x [k |l ] ∈ S, ∀k ∈ 〈〈h〉〉 ,∀l ∈ 〈n〉. The (usual) cyclic Gibbs sampler
− the Gibbs sampler for short − on S = 〈〈h〉〉n , h, n ≥ 1 (more generally, on
S = 〈〈h1〉〉 × 〈〈h2〉〉 × ...× 〈〈hn〉〉 , h1, h2, ..., hn, n ≥ 1) is a Markov chain with state
space S and transition matrix P = P1P2...Pn, where

(Pl)xy =


0 if y 6= x [k |l ] ,∀k ∈ 〈〈h〉〉 ,

πx[k|l ]∑
j∈〈〈h〉〉

πx[j|l ]
if y = x [k |l ] for some k ∈ 〈〈h〉〉 ,

∀l ∈ 〈n〉 , ∀x, y ∈ S. (For the Gibbs sampler, see, e.g., [2], [4, Chapter 5], and [6, pp.
69−81].)

The Gibbs sampler on 〈〈h〉〉n belongs to our collection of hybrid Metropolis-Hastings
chains, see [10] − this follows considering the partitions

∆1 = (S) ,

∆l+1 =
(
K(x1,x2,...,xl)

)
x1,x2,...,xl∈〈〈h〉〉

,∀l ∈ 〈n〉 ,

where

K(x1,x2,...,xl) = {(y1, y2, ..., yn) | (y1, y2, ..., yn) ∈ S and yi = xi,∀i ∈ 〈l〉} ,
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∀l ∈ 〈n〉 , ∀x1, x2, ..., xl ∈ 〈〈h〉〉 (so, ∆1 = (S) � ∆2 � ... � ∆n+1 = ({x})x∈S), and
matrices Ql, l ∈ 〈n〉 ,

Ql = Pl, ∀l ∈ 〈n〉 .
Obviously − now, it is obvious −, the Gibbs sampler on 〈〈h〉〉n is a special case of

our Gibbs sampler in a generalized sense on 〈〈h〉〉n .

Remark 2.2. The matricesQl, l ∈ 〈n〉 , of Gibbs sampler on 〈〈h〉〉n have the property:

(Ql)
U
K has in each row just one positive entry,

∀l ∈ 〈n〉 , ∀K ∈ ∆l, ∀U ∈ ∆l+1 with U ⊆ K.
Therefore, a subcollection − an interesting subcollection − of our collection of Gibbs
samplers in a generalized sense is that of the Gibbs samplers in a generalized sense
having the above property, i.e., satisfying the condition (c4) from [9].

Let P = (Pij) ∈ Nm,n. P is called 0-1 matrix if Pij ∈ 〈〈1〉〉 ,∀i ∈ 〈m〉 , ∀j ∈ 〈n〉 .
We conjecture that the Gibbs sampler in a generalized sense is the fastest chain

in our collection of hybrid Metropolis-Hastings chains in a sense which is specified
below.

Conjecture 2.3. Fix S = 〈r〉 . Fix ∆1, ∆2, ..., ∆t+1 ∈Par(S) with ∆1 = (S) � ∆2 �
... � ∆t+1 = ({i})i∈S , where t ≥ 1. Fix the 0-1 matrices V1, V2, ..., Vt ∈ Nr having the
properties (C1)-(C3) from Section 1 − we extend these properties for matrices from
Nr. Fix the target probability distribution π = (πi)i∈S (on S). Fix w, a probability
distribution on S. Consider the subcollection of hybrid Metropolis-Hastings chains
corresponding to π (each chain from this subcollection is constructed using π) with
Q1, Q2, ..., Qt ∈ Sr having the properties (C1)-(C3) and, moreover,

Ql = Vl, ∀l ∈ 〈t〉
(these equations simply say that all the chains from this subcollection have the same
neighbor system; V1, V2, ..., Vt are fixed, not Q1, Q2, ..., Qt − the latter are only fixed
for each chain from subcollection). Then the Gibbs sampler in a generalized sense
from this subcollection (there exists a unique Gibbs sampler in a generalized sense
in this subcollection) is the fastest chain in this subcollection, i.e., for any hybrid
Metropolis-Hastings chain from this subcollection,

‖pn − π‖1 ≤ ‖sn − π‖1 , ∀n ≥ 1,

where pn = the probability distribution of Gibbs sampler in a generalized sense (from
this subcollection) at time n, sn = the probability distribution of hybrid Metropolis-
Hastings chain at time n, ∀n ≥ 0, p0 = s0 = w (all the chains from this subcollection
have the same initial probability distribution, w).

Obviously, the word “fastest” from the above conjecture refers to Markov chains
strictly, not to computers. The running time of our hybrid chains on a computer is
another matter (the computational cost per step is the main problem; on a computer,
a step of a Markov chain can be performed or not).

Conjecture 2.3 is supported by [11]-[13]; each of these articles is based on a Gibbs
sampler in a generalized sense which is fast − we refer, here, both the Markov chains
and computers − and, moreover, has other interesting properties. (For more infor-
mation, see Section 3.)
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3. Wavy probability distributions

In this section, we construct a class of probability distributions which contains
the wavy probability distribution(s) of first type from [10] as a special case. The
probability distributions from this class we call the wavy probability distributions.

Let S = 〈r〉. Let π = (πi)i∈S be a positive probability distribution (on S). Let ∆1,
∆2, ..., ∆t+1 ∈Par(S) with ∆1 = (S) � ∆2 � ... � ∆t+1 = ({i})i∈S , where t ≥ 1.

(∆1 � ∆2 implies r ≥ 2.) Consider that ∆l =
(
K

(l)
1 ,K

(l)
2 , ...,K

(l)
ul

)
, K

(l)
1 having the

first
∣∣∣K(l)

1

∣∣∣ elements of S, K
(l)
2 having the next

∣∣∣K(l)
2

∣∣∣ elements of S (this condition

and the next ones vanish when l = 1), ..., K
(l)
ul having the last

∣∣∣K(l)
ul

∣∣∣ elements of S,

∀l ∈ 〈t+ 1〉 . Consider that

(c1)
∣∣∣K(l)

1

∣∣∣ =
∣∣∣K(l)

2

∣∣∣ = ... =
∣∣∣K(l)

ul

∣∣∣ , ∀l ∈ 〈t+ 1〉 with ul ≥ 2;

(c2) r = r1r2...rt with r1r2...rl = |∆l+1| ,∀l ∈ 〈t− 1〉 , and rt =
∣∣∣K(t)

1

∣∣∣ (this

condition is compatible with ∆1 � ∆2 � ... � ∆t+1).

The above conditions are noted (c1) and (c2) as in [9]. The condition (c2) is
superfluous because it follows from (c1) and ∆1 � ∆2 � ... � ∆t+1.

We have

K(l)
v =

⋃
s∈Dv,bl

∪{vbl}

K(l+1)
s , ∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 ,

where

bl =
|∆l+1|
|∆l|

, ∀l ∈ 〈t〉 ,

and

Dv,bl = {(v − 1) bl + 1, (v − 1) bl + 2, ..., vbl − 1} , ∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 .

Suppose that ∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 , ∀s ∈ Dv,bl , ∃α
(l,v)
s > 0 such that

π
i+d

(l,v)
s

= α(l,v)
s πi (direct proportionality), ∀i ∈ K(l+1)

(v−1)bl+1,

where

d(l,v)
s =

∣∣∣K(l+1)
(v−1)bl+1

∣∣∣+
∣∣∣K(l+1)

(v−1)bl+2

∣∣∣+ ...+
∣∣∣K(l+1)

s

∣∣∣ ,
∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 , ∀s ∈ Dv,bl .

Definition 3.1. The probability distribution π = (πi)i∈S having the above property
we call the wavy probability distribution.

To define the wavy probability distribution, we considered S = 〈r〉 (r ≥ 2) for
simplification; moreover, S = 〈r〉 was equipped with the usual order relation < (1 <
2 < ... < r) for simplification too. S can be any finite set for which the conditions (c1)
and (c2) hold, setting r = |S|. In this case, supposing that π = (πi)i∈S is given, to
see if π is a wavy probability distribution on S, we must consider, excepting S = 〈r〉
equipped with the usual order relation <, order relations on S or bijective functions
(i.e., coding functions; for coding functions, see, e.g., [3, p. 643]) from S to 〈|S|〉 ,
equipping the latter set with the usual order relation < .
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Recall that R+ = {x | x ∈ R and x > 0} . Recall that in [10] the probability distri-
bution

π = (c0, c0a, ..., c0a
w, c1, c1a, ..., c1a

w, ..., ch, cha, ..., cha
w,

c0, c0a, ..., c0a
w, c1, c1a, ..., c1a

w, ..., ch, cha, ..., cha
w, ...,

c0, c0a, ..., c0a
w, c1, c1a, ..., c1a

w, ..., ch, cha, ..., cha
w)

(the sequence c0, c0a, ..., c0a
w, c1, c1a, ..., c1a

w, ..., ch, cha, ..., cha
w appears (h+1)n−t−1

times if 0 ≤ t < n and c0, c0a, ..., c0a
w only appears if t = n) on 〈〈h〉〉n equipped with

the lexicographic order, where w = (h+ 1)
t − 1, 0 ≤ t ≤ n, c0, c1, ..., ch, a ∈ R+, was

called the wavy probability distribution of first type. This probability distribution is,
according to Definition 3.1, a wavy probability distribution. Below we illustrate this
in a simple case.

Example 3.1. Consider S = 〈〈1〉〉3 (h = 1, n = 3) equipped with the lexicographic
order and

π =
(
c0, c0a, c0a

2, c0a
3, c1, c1a, c1a

2, c1a
3
)
.

π is a wavy probability distribution (according to Definition 3.1). To show this, we
consider (see Section 2, where we showed that the (usual) Gibbs sampler belongs to
our collection of hybrid Metropolis-Hastings chains) the sets

K(0) = {(0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)} ,

K(1) = {(1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)} ,
K(0,0) = {(0, 0, 0) , (0, 0, 1)} , K(0,1) = {(0, 1, 0) , (0, 1, 1)} ,
K(1,0) = {(1, 0, 0) , (1, 0, 1)} , K(1,1) = {(1, 1, 0) , (1, 1, 1)} ,

K(0,0,0) = {(0, 0, 0)} , K(0,0,1) = {(0, 0, 1)} , ..., K(1,1,1) = {(1, 1, 1)}
and partitions

∆1 = (S) =
(
〈〈1〉〉3

)
,

∆2 =
(
K(0), K(1)

)
,

∆3 =
(
K(0,0), K(0,1), K(1,0), K(1,1)

)
,

∆4 =
(
K(0,0,0), K(0,0,1), ..., K(1,1,1)

)
.

Obviously,
∆1 � ∆2 � ∆3 � ∆4,∣∣K(0)

∣∣ =
∣∣K(1)

∣∣ = 4,∣∣K(0,0)

∣∣ =
∣∣K(0,1)

∣∣ =
∣∣K(1,0)

∣∣ =
∣∣K(1,1)

∣∣ = 2,∣∣K(0,0,0)

∣∣ =
∣∣K(0,0,1)

∣∣ = ... =
∣∣K(1,1,1)

∣∣ = 1,

π(1,0,0) =
c1
c0
π(0,0,0), π(1,0,1) =

c1
c0
π(0,0,1),

π(1,1,0) =
c1
c0
π(0,1,0), π(1,1,1) =

c1
c0
π(0,1,1)

(the proportionality factor is c1
c0

),

π(0,1,0) = a2π(0,0,0), π(0,1,1) = a2π(0,0,1)

(the proportionality factor is a2),

π(1,1,0) = a2π(1,0,0), π(1,1,1) = a2π(1,0,1)
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(the proportionality factor is also a2),

π(0,0,1) = aπ(0,0,0), π(0,1,1) = aπ(0,1,0),

π(1,0,1) = aπ(1,0,0), π(1,1,1) = aπ(1,1,0)

(the proportionality factor is a in all these last cases). Therefore, π is a wavy proba-
bility distribution (according to Definition 3.1).

The Mallows model through Cayley metric and that through Kendall metric and
Potts model on the tree are three interesting examples of wavy probability distribu-
tions. It is easy to show these statements using [11]-[13]. (For the first two models
(models for ranked data), see also [7]; for the last model (a model used in statistical
physics and other fields), see also [6, Chapter 6].)

Below we give the main result of this section.

Theorem 3.1. Let S = 〈r〉 . Let π = (πi)i∈S be a wavy probability distribution ( on
S). Consider a Gibbs sampler in a generalized sense with state space S and transition
matrix P = P1P2...Pt (t ≥ 1), where (we use the notation from the definition of wavy
probability distribution)

(Pl)i+d(l,v)
s →ξ =


π
i+d

(l,v)
u∑

w∈{0}∪Dv,bl

π
i+d

(l,v)
w

if ξ = i+ d
(l,v)
u for some u ∈ {0} ∪Dv,bl ,

0 if ξ 6= i+ d
(l,v)
u , ∀u ∈ {0} ∪Dv,bl ,

∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 , ∀i ∈ K
(l+1)
(v−1)bl+1, ∀s ∈ {0} ∪ Dv,bl , ∀ξ ∈ S, setting d

(l,v)
0 = 0,

∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 . Then

P = e′π

(therefore, the chain attains its stationarity at time 1, its stationary probability dis-
tribution being, obviously, π).

Proof. We have

(Pl)i+d(l,v)
s →ξ =



1

1+
∑

w∈Dv,bl

α
(l,v)
w

if ξ = i,

α(l,v)
u

1+
∑

w∈Dv,bl

α
(l,v)
w

if ξ = i+ d
(l,v)
u for some u ∈ Dv,bl ,

0 if ξ 6= i+ d
(l,v)
u , ∀u ∈ {0} ∪Dv,bl ,

∀l ∈ 〈t〉 , ∀v ∈ 〈ul〉 , ∀i ∈ K(l+1)
(v−1)bl+1, ∀s ∈ {0} ∪Dv,bl , ∀ξ ∈ S. It follows that

Pl ∈ G∆l,∆l+1
, ∀l ∈ 〈t〉

(for ∆l, l ∈ 〈t+ 1〉 , see the definition of wavy probability distribution). Since P =
P1P2...Pt, by Theorem 1.1, P is a stable matrix. Consequently, ∃ψ, ψ is a probability
distribution on S, such that

P = e′ψ.

On the other hand, by Theorem 1.2 we have

πP = π.
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Finally, we have

π = πP = πe′ψ = ψ,

so,

P = e′π.

�

Theorem 3.1 supports Conjecture 2.3. Each of articles [11]-[13] contains a special
case of Theorem 3.1 (in Theorem 3.1, S = 〈r〉 for simplification ...). So, [11]-[13]
support Conjecture 2.3 too.

Below, in Theorem 3.2 and Remarks 3.3 and 3.4, we give three important applica-
tions of Theorem 3.1.

Theorem 3.2. Let S = 〈r〉 . Let π = (πi)i∈S be a wavy probability distribution ( on
S). Suppose that

πi =
νi
Z
, ∀i ∈ S,

where

Z =
∑
i∈S

νi,

Z is the normalization constant (νi ∈ R+, ∀i ∈ S, so, Z ∈ R+). Then (we use the
notation from the definition of wavy probability distribution and Theorem 3.1)

Z = ν1

∏
l∈〈t〉

1 +
∑

w∈D1,bl

α(l,1)
w

 .

Proof. We know that

π1 =
ν1

Z
.

On the other hand, by Theorem 3.1, using the equation P = e′π, we can compute

π1 because S = K
(1)
1 ⊃ K

(2)
1 ⊃ ... ⊃ K

(t+1)
1 = {1} , Pl is a block diagonal matrix,

∀l ∈ 〈t〉 − {1} , and Pl ∈ G∆l,∆l+1
, ∀l ∈ 〈t〉 (moreover, Pl is a ∆l-stable matrix on

∆l+1, ∀l ∈ 〈t〉); we obtain

π1 =
1∏

l∈〈t〉

(
1 +

∑
w∈D1,bl

α
(l,1)
w

) .
So,

Z = ν1

∏
l∈〈t〉

1 +
∑

w∈D1,bl

α(l,1)
w

 .

�

Each of articles [11]-[13] contains a special case of Theorem 3.2 (in Theorem 3.2,
S = 〈r〉 for simplification ...). Moreover, in [13], by Z (this computation way using Z
is known, see, e.g., [1, p. 6]) it is computed the expectation for the Potts model on
the tree.
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Remark 3.3. When the transition probabilities from Theorem 3.1 can be computed,
this theorem gives an exact Markovian method to sample from S according to the
wavy probability distribution π. Since P = P1P2...Pt, this method has t steps and it
is fast when the transition probabilities from Theorem 3.1 can be computed fast. See
[11]-[13] for examples.

Remark 3.4. The important probabilities P
(
K

(l)
v

)
, l ∈ 〈t+ 1〉 , v ∈ 〈ul〉 , can be

computed for wavy probability distributions iteratively. Indeed, this can be done
using Theorem 3.1 and Uniqueness Theorem from [10]. See [11]-[13] for examples.

The Gibbs sampler in a generalized sense is good, very good, at least for wavy
probability distributions when its transition probabilities from Theorem 3.1 can be
computed fast (no problem for the models from [11]-[13]). This is our final conclusion.
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