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How common sense can be misleading in ruin theory

Anişoara Maria Răducan, Raluca Vernic, and Gheorghiţă Zbăganu

Abstract. Some graphical representations of ruin probability computed mainly for Erlang

type claims suggested an idea that intuitively seems to be true: if the first claims are small

then the chance to get ruined is also small. However, for other claims this does not hold, as
is shown by counterexamples.
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1. The problem

In the insurance field, the evaluation of ruin probabilities is of great importance
since it influences the future financial politics of any insurance company. In this sense
some recursive formulae were obtained in [2], for the ruin probability evaluated at or
before claim instants for the following risk model used to describe the evolution over
time of the surplus of an insurance company

Un = u−
n∑

i=1

(Xi − Yi) = u−
n∑

i=1

ξi.

Here (Un)n denotes the remaining capital after paying the n-th claim, u is the
initial capital, (Xn)n are the claim sizes (CSs) assumed to be Erlang-distributed,
independent and independent of (Yn)n, the nonnegative inter-claim revenues (ICRs)
which themselves are assumed to be independent, identically distributed (i.i.d.), fol-
lowing an arbitrary distribution. Then ξn = Xn − Yn represents the loss increment
between the (n−1)-th and the n-th claims. We recall [1], [8] that the ruin probability
at or before the n-th claim is

ψn (u) = P

(
min

1≤j≤n
Uj < 0

)
= P

(
max

1≤j≤n

j∑
i=1

ξi > u

)
. (1)

The novelty of Răducan et al. [4], [5] consists in assuming that the CSs are non-
homogeneous Erlang distributed, yielding a nonhomogeneous process.

Motivated by many numerical examples, Răducan et al. [4] stated the following
conjecture relating the order in which the nonhomogeneous claims arrive to the mag-
nitude of the corresponding ruin probability: if the claims arrive in the increasing
stochastic order, then the ruin probability is smaller that if the same claims come
under a different order. That seemed to be common sense: during the ”small claims”
period, the insurer’s capital accumulates, hence it can face the ”hard claims” pe-
riod better than if a larger claim arrives sooner and decreases the insurer’s capital.
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However, this conjecture was proved only in the particular case when the CSs are
exponentially distributed with all parameters distinct, see [5] and [6].

In this paper, we deal with a case which is more restrictive than the stated conjec-
ture, and more general in the same time: it is more restrictive because we consider
only two claims, and more general because we let them follow any distribution sup-
ported on positive values. More precisely, we study if there is a relation between
the magnitude of the ruin probability and the arrival order of the two claims when
these claims satisfy some stochastic order. In this sense, in Section 2 we define a
new stochastic relation which we call ”ruin domination”. This relation is not always
transitive, as we point out using a counterexample.

2. Various stochastic orderings

Let X1, X2 be two nonnegative random variables (r.v), and let F, G be their
distribution functions (d.f). If the r.v are absolutely continuous either with respect
to the Lebesgue measure, or with respect to the counting one, we will denote by p, q
their densities. We recall the following stochastic orders (see, for instance [7]):

1. The usual stochastic domination: X1 6st X2 ⇔ F > G
2. The hazard rate domination: X1 6hr X2 ⇔ p

1−F >
q

1−G
3. The likelihood ratio domination: X1 6like X2 ⇔ p

q is decreasing.

4. The increasing convex order: X1 6icx X2 ⇔ Eu(X1) 6 Eu(X2) for any non-
decreasing convex u.

Remark 2.1. It is known that the likelihood ratio domination implies the hazard
rate one, which in turn, implies the stochastic one; see, e.g., [7].

Back to the conjecture stated by [5] , if we deal with only two claims, it turns into
the following claim:

Conjecture. Let X1, X2, Y1, Y2 be independent nonnegative r.v.s., withY1 and Y2

identically distributed. Let ξi = Xi − Yi, i = 1, 2, L1,2 = max (ξ1, ξ1 + ξ2)+, L2,1 =
max (ξ2, ξ1 + ξ2)+. If X1 6st X2, then L1,2 6st L2,1; or, in other words, if ψi,j (t) =
P (Li,j > t) , i 6= j ∈ {1, 2}, t > 0, represents the two ruin probabilities, then the claim
is that ψ1,2 6 ψ2,1. Or, in terms of survival probabilities denoted by φi,j = 1− ψi,j ,
the claim is that φ1,2 > φ2,1.

We already know that this conjecture holds if the claims are exponentially dis-
tributed. More generally, the common sense says that if the ICRs are ”the same”,
then it is better if the smaller claim X1 comes first and the greater one X2 comes
next than if the greater claim comes first and the smaller one afterwards (i.e., in the
first scenario one seems to be better prepared for the more dangerous claim than in
the second one, provided that the incomes are identically distributed). Related to
this situation, we define the following stochastic relation.

Definition 2.1. Let X1, X2 be two independent non-negative r.v.s. We say that X2

dominates X1 in the ruin sense if, for any i.i.d. non-negative r.v.s Y1, Y2, independent
of X1, X2 it is true that L1,2 6st L2,1 i.e., that

max (0, X1 − Y1, X1 +X2 − Y1 − Y2) ≤st max (0, X2 − Y2, X1 +X2 − Y1 − Y2) . (2)
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We denote this relation by X1 6ruin X2. If the domination holds only for Y1 =
Y2 = const we say that X2 dominates X1 in the weak ruin domination and write
X1 6wruin X2. Otherwise written: two claims X1, X2 are in the relation X1 6ruin X2

if the scenario ”first comes claim X1, then X2” is always better in stochastic order
than ”first comes claim X2, then X1” for any i.i.d. ICRs Y1, Y2, while X1 6wruin X2

means that the first scenario is better only for constant ICRs.

Thus, our conjecture says that X1 6st X2 ⇒ X1 6ruin X2. The current study
was prompted by the unpleasant surprise that the conjecture is false. Here are two
counterexamples.

Example 2.1. Suppose that X1 ∼
(

0 1 2 3
.3 .3 .3 .1

)
, X2 ∼

(
0 1 2 3
.3 .2 .2 .3

)
,

Y1 = Y2 = 1. The reader can check that X1 6st X2 but it is not true that L1,2 6st

L2,1. Precisely in the first scenario we have ψ1,2 (0) = P (L1,2 > 0) = 1− 0.36 = 0.64
while in the second one ψ2,1 (0) = P (L2,1 > 0) = 1− 0.39 = 0.61.

However, it is true that when the initial capital u is greater than 1, then ψ1,2 (u) 6
ψ2,1 (u). The two scenarios are not stochastically comparable.

Example 2.2. Let X1 ∼ Uniform (0, 1) , X2 ∼ exp (1) , Y1 = Y2 =
1

2
. Clearly

X1 6st X2.

Then ξ1 = X1 −
1

2
, ξ2 = X1 + X2 − 1, and for t > 0 the corresponding survival

probabilities are.

φ12 (t) = P (L12 ≤ t) = P

(
X1 ≤

1

2
+ t,X1 +X2 ≤ 1 + t

)
= P

(
X1 ≤ min

(
1

2
+ t, 1 + t−X2

))
= E

[
P

(
X1 ≤ min

(
1

2
+ t, 1 + t−X2

)
| X2

)]
= E

[
min

(
1,min

(
1

2
+ t, 1 + t−X2

))
+

]

=

∫ ∞
0

min

(
1,

1

2
+ t, 1 + t− x

)
+

e−xdx.

Therefore ϕ1,2 (t) =


1

2
− 1√

e
+ t+ e−1−t if 0 ≤ t ≤ 1

2

1− e−t + e−1−t if t >
1

2

. Next,

ϕ2,1 (t) = P (L12 ≤ t) = P

(
X2 6

1

2
+ t,X1 +X2 6 1 + t

)
= E [P (X2 6 min (1, 1 + t−X1) | X1)] = 1−

(
1− 1

2
√
e

)
e−t.

Thus ϕ1,2 (0) =
1

2
− 1√

e
+ e−1 = 0.26135 while ϕ2,1 (0) =

1

2
√
e

= 0.30327. It is not

true that ϕ1,2 ≥ ϕ2,1.
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It turns out that even the weaker conjecture “X1 6st X2 ⇒ X1 6wruin X2” fails
to be true. Even the weaker implication “ X1 6hr X2 ⇒ X1 6wruin X2” is false - as
it is proved by the second example. However, in both examples it is true that the
second scenario is worse in the increasing convex order (meaning that L1,2 6icx L2,1)
but maybe this is only by chance; we do not dare to add a new false guess here.

3. Ruin domination in general case

In order to see under which assumptions the ruin domination holds, we define the
following notation: for two nonnegative r.v.s X1, X2 and a, b, t > 0 let

∆a,b = P (X1 ≤ a,X1 +X2 ≤ a+ b)− P (X2 ≤ a,X1 +X2 ≤ a+ b) , (3)

and

Da,b (t) =
1

2
(∆a+t,b + ∆b+t,a) . (4)

Lemma 3.1. i). If a > 0 then ∆a,0 = 0 and Da,0 (t) = 1
2 (∆t,a).

ii). Let X1, X2 be non-negative independent r.v.s. and let F1, F2 be their d.f.s. If they
are absolutely continuous with respect to some measure µ, the densities are dF1 (x) =
f1 (x) dµ (x) , dF2 (x) = f2 (x) dµ (x) and δ (x, y) = f1 (x) f2 (y)− f1 (y) f2 (x) then

∆a,b =

∫ a

0

∫ a+b−x

0

δ (x, y) dµ (y) dµ (x) =

∫ min{a,b}

0

∫ a+b−x

a

δ (x, y) dµ (y) dµ (x) .

(5)

iii). If the d.f.s. F1 =

(
0 1 2 ...
p0 p1 p2 ...

)
, F2 =

(
0 1 2 ...
q0 q1 q2 ...

)
are discrete,

then for any a, b > 0 positive integers,

∆a,b =

a∑
i=0

a+b−i∑
j=0

δi,j =

min{a,b}∑
i=0

a+b−i∑
j=a+1

δi,j , (6)

where δi,j = piqj − pjqi and, by convention, an empty sum is 0.

Proof. i). For any a > 0 we have ∆a,0 = P (X1 6 a,X1 +X2 6 a)
−P (X2 6 a,X1 +X2 6 a) = P (X1 +X2 6 a)− P (X1 +X2 6 a) = 0 and

Da,0 (t) =
1

2
(∆a+t,0 + ∆t,a) =

∆t,a

2
.
ii). The first equality is immediate. To prove the second one, we consider first the
case a 6 b, when we split

∆a,b =

∫ a

0

∫ a

0

δ (x, y) dµ (y) dµ (x) +

∫ a

0

∫ a+b−x

a

δ (x, y) dµ (y) dµ (x) .

The first integral is 0 since if we change the order of integration followed by inter-
changing x and y, we get∫ a

0

∫ a

0

δ (y, x) dµ (y) dµ (x) =

∫ a

0

∫ a

0

δ (y, x) dµ (x) dµ (y)

= −
∫ a

0

∫ a

0

δ (y, x) dµ (y) dµ (x) =
1

2

∫ a

0

∫ a

0

(δ (x, y) + δ (y, x)) dµ (x) dµ (y) = 0.
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When a > b we split

∆a,b =

∫ b

0

∫ a

0

δ (x, y) dµ (y) dµ (x) +

∫ a

0

∫ a+b−x

a

δ (x, y) dµ (y) dµ (x)

−
∫ a

b

∫ a

a+b−x
δ (x, y) dµ (y) dµ (x) .

With a similar reasoning, we obtain that∫ a

0

∫ a+b−x

a

δ (x, y) dµ (y) dµ (x)−
∫ a

b

∫ a

a+b−x
δ (x, y) dµ (y) dµ (x) = 0,

hence the equality from (5) also holds.
iii). Taking into consideration that δi,j+δj,i = 0, this formula results after a reasoning
similar with the one in the continuous case ii). �

Remark 3.1. Let us notice that:
i) Da,b (t) = Db,a (t),∀a, b, t > 0 (an obvious consequence of the definition),

ii) Da,b (t) > 0, ∀a, b, t > 0⇔ ∆a,b > 0, ∀a, b > 0 (obvious from Da,0 (t) =
∆t,a

2
).

Proposition 3.2. Let X1, X2 be non-negative independent random variables. Then
i) X1 6wruin X2 if and only if ∆a,b > 0 for any 0 6 b 6 a.
ii) X1 6ruin X2 if and only if

∫∞
0

∫∞
0
Da,b (t) dH (a) dH (b) > 0 for any probability

distribution H on the halfline [0,∞) and t > 0.
iii) If X1, X2 are discrete, then X1 6wruin X2 if and only if ∆m,n > 0 for all non-
negative integers m,n such that m > n− 1.

Proof. i) X1 6wruin X2 ⇔ P (X1 6 x+t,X1 +X2 6 2x+t)−P (X2 6 x+t,X1 +X2 6
2x+ t) > 0⇔ ∆x+t,x > 0 for all t, x > 0. Put a = x+ t and b = x.
ii) X1 6ruin X2 ⇔ P (X1 6 Y1 + t,X1 +X2 6 Y1 +Y2 + t) > P (X2 6 Y2 + t,X1 +X2 6
Y1 +Y2 + t) for any i.i.d. nonnegative r.v.s. Y1, Y2, independent of X1, X2. Denoting
by H the common distribution of Y1, Y2, we see that

P (X1 6 Y1 + t,X1 +X2 6 Y1 + Y2 + t)

= E [P (X1 6 Y1 + t,X1 +X2 6 Y1 + Y2 + t | Y1, Y2)]

=

∫ ∞
0

∫ ∞
0

P (X1 6 y1 + t,X1 +X2 6 y1 + y2 + t)dH(y1)dH(y2)

=

∫ ∞
0

∫ ∞
0

P (X1 6 y1 + t,X1 +X2 6 y1 + y2 + t)dH(y2)dH(y1)

=

∫ ∞
0

∫ ∞
0

P (X1 6 y2 + t,X1 +X2 6 y2 + y1 + t)dH(y1)dH(y2)

= P (X1 6 Y2 + t,X1 +X2 6 Y1 + Y2 + t).

Next

P (X2 6 Y2 + t,X1 +X2 6 Y1 + Y2 + t)

= E [P (X2 6 Y2 + t,X1 +X2 6 Y1 + Y2 + t|Y1, Y2)]

=

∫ ∞
0

∫ ∞
0

P (X2 6 y2 + t,X1 +X2 6 y1 + y2 + t)dH(y1)dH(y2).



HOW COMMON SENSE CAN BE MISLEADING IN RUIN THEORY 77

Then

P (X1 6 Y1 + t,X1 +X2 6 Y1 + Y2 + t)− P (X2 6 Y2 + t,X1 +X2 6 Y1 + Y2 + t)

=

∫ ∞
0

∫ ∞
0

[P (X1 6 y2 + t,X1 +X2 6 y2 + y1 + t)−

−P (X2 6 y2 + t,X1 +X2 6 y1 + y2 + t)]dH(y1)dH(y2) =

=

∫ ∞
0

∫ ∞
0

∆t+y2,y1dH (y1) dH (y2) =

∫ ∞
0

∫ ∞
0

∆t+y1,y2dH (y2) dH (y1)

=
1

2

∫ ∞
0

∫ ∞
0

(∆t+y1,y2
+∆t+y2,y1

) dH (y1) dH (y2) =

∫ ∞
0

∫ ∞
0

Da,b (t) dH (a) dH (b) .

iii) From i) we know already that X1 6wruin X2 ⇔ ∆x+t,x > 0,∀x, t > 0. But in the

discrete case ∆x+t,x =
[x+t]∑
i=0

[2x+t]−i∑
j=0

δi,j > 0, thus we have only to check that m > n−1

where m := [x+ t] and m+n = [2x+ t] . Here [x] is integer part of x. Thus the claim
is that [2a+ t]− [a+ t] 6 [a+ t] + 1⇔ [2a+ t] 6 2 [a+ t] + 1. This is easy and it is
left to the reader [a] 6 [a+ t] . �

Corollary 3.3. Let X1, X2 be nonnegative independent r.v.s, absolutely continu-
ous with respect to some σ-finite measure µ having densities p, q. Then a sufficient
condition in order that the relation X1 6ruin X2 hold is that δ (x, y) = p (x) q (y) −
p (y) q (x) > 0 for all x 6 y.

Proof. According to (ii) from Proposition 3.2 X1 6ruin X2 if and only if∫∞
0

∫∞
0
Da,b (t) dH (a) dH (b) > 0. But Da,b (t) = 1

2 (∆a+t,b + ∆b+t,a). We denote
a′ = a+ t and b′ = b+ t. Using the second equality in (5), we note that

∆a′,b =

∫ min(a′,b)

0

∫ a′+b−x

a′
δ (x, y) dµ (y) dµ (x) > 0

since in this integral x 6 a′and y > a′, and we know that x 6 y implies δ (x, y) > 0.
Similarly, ∆b′,a > 0, which completes the proof. �

The following corollary is a consequence of the above one.

Corollary 3.4. Let X1, X2 be non-negative independent r.v.s. absolutely continuous
with respect to some σ- finite measure. Then X1 6like X2 ⇒ X1 6ruin X2.

Remark 3.2. The ” 6like ” relation is too strong, it seems to be far away from the
relation ” 6ruin ”. We consider another relation seemingly closer from the later one.

Definition 3.1. Denote by X1 6Sruin X2 the condition Da,b (t) > 0 for all a, b > 0
and t > 0.

Remark 3.3. According to remark 3.1 ii), one can also writeX1 6Sruin X2 ⇔ ∆a,b >
0 for all a, b > 0.

Proposition 3.5. Let X1, X2 be non-negative independent r.v.s. absolutely contin-
uous with respect to some σ- finite measure. The following implications hold:

X1 6like X2 ⇒ X1 6Sruin X2 ⇒ X1 6ruin X2 ⇒ X1 6wruin X2

Proof. The implications are obvious. �
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4. The comparison in the discret case

Here we suppose that

X1 ∼ F1 =

(
0 1 2 ...
p0 p1 p2 ...

)
, X2 ∼ F2 =

(
0 1 2 ...
q0 q1 q2 ...

)
,

hence F1 (m) =
m∑
i=0

pi, F2 (m) =
m∑
i=0

qi. We shall compare these four orderings in the

most simple cases. The most convenient comparisons are those which involve only
the quantities ∆i,j . They are easily to compare because, according to Proposition
3.2. we have the following algorithm :
X1 6wruin X2 ⇔ ∆m,n > 0 for all positive integers m,n such that m > n− 1.
X1 6Sruin X2 ⇔ ∆m,n > 0 for all positive integers m,n.

Proposition 4.1. Let X1, X2 be non-negative independent r.v.s. as above. Then

(i). If X1 6wruin X2 then
p0

q0
> sup

j>1

(
pj
qj

)
.

(ii). If X1 6Sruin X2 then X1 6st X2.
(iii). If X1 6wruin X2 and X2 6wruin X1 then X1 ∼ X2.

Proof. (i). Note that for any n >0 we have ∆n,1 = δ0,n and we know that ∆n,1 > 0
or, which is the same p0qn > pnq0 .

(ii). Let ∆m,∞ = lim
n→∞

∆m,n. As ∆m,n > 0 for all m,n it follows that ∆m,∞ > 0

for all m. But it is easy to see that ∆m,∞ = F1 (m)− F2 (m).

(iii). According to (i). we see that X1 6wruin X2 and X2 6wruin X1 imply
p0

q0
>

sup
j≥1

(
pj
qj

)
and

q0

p0
> sup

j≥1

(
qj
pj

)
⇔ p0

q0
6 inf

j≥1

(
pj
qj

)
. Therefore sup

j≥1

(
qj
pj

)
6

p0

q0
6

inf
j≥1

(
pj
qj

)
from where

p0

q0
=
pj
qj

for any j > 1. As
∑
i>0

pi =
∑
i>0

qi = 1 it follows that

pi = qi,∀i > 0. �

Here is a table with the first quantities (∆m,n)m,n>0 . Here δi,j:k means δi,j +

δi,j+1 + ..+ δi,k.

∆ :

m/n 0 1 2 3 4

0 0 δ0,1 δ0,1:2 δ0,1:3 δ0,1:4

1 0 δ0,2 δ0,2:3 + δ1,2 δ0,2:4 + δ1,2:3 δ0,2:5 + δ1,2:4

2 0 δ0,3 δ0,3:4 + δ1,3 δ0,3:5 + δ1,3:4 + δ2,3 δ0,3:6 + δ1,3:5 + δ2,3:4

3 0 δ0,4 δ0,4:5 + δ1,4 δ0,4:6 + δ1,4:5 + δ2,4 δ0,4:7 + δ1,4:6 + δ2,4:5 + δ3,4

So, if
A. Supp (F1) = Supp (F2) = {0, 1}, then the single interesting value of ∆ is

∆0,1 = δ0,1 and ∆1,1. Thus X1 6wruin X2 iff δ0,1 > 0 ⇔ p0q1 > p1q0 ⇔ p0 (1− q0) >
q0 (1− p0)⇔ p0 > q0 ⇔ X1 6st X2.

Therefore we have

Corollary 4.2. If Supp (F1) = Supp (F2) = {0, 1} then the relations ” 6st ”,
” 6wruin ”, ” 6ruin ”, ” 6Sruin ” and ” 6like ” are the same.
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B. Supp (F1) = Supp (F2) = {0, 1, 2}. In this case only the matrix

(∆i,j)06i≤1,0≤j62 =

(
0 δ0,1 δ0,1:2

0 δ0,2 δ0,2:3

)
does matter. According to our algorithm X1 6wruin X2 ⇔ δ0,1 > 0, δ0,2 > 0, δ0,2:3 +
δ1,2 > 0. Adding the first two inequalities we also get δ0,1:2 > 0 ⇔ p0 (q1 + q2) >
q0 (p1 + p2) ⇔ p0 (1− q0) > q0 (1− p0) ⇔ p0 > q0. The last one is p0q2 + p1q2 >
q0p2 + q1p2 ⇔ q2 (p0 + p1) > p2 (q0 + q1)⇔ q2 > p2 ⇔ p0 + p1 > q0 + q1.

But p0 > q0, p0 + p1 > q0 + q1 means that X1 6st X2. As the conditions for
X1 6Sruin X2 are the same, the conclusion is:

Corollary 4.3. If Supp (F1) = Supp (F2) = {0, 1, 2} then
i). X1 6st X2 ⇔ p0 > q0, p0 + p1 > q0 + q1 ⇔ p0 > q0, p2 6 q2.

ii). X1 6wruin X2 ⇔
(
X1 6st X2,

p0

q0
>
p1

q1
,
p0

q0
>
p2

q2

)
⇔ X1 6Sruin X2 ⇔ X1 6ruin

X2.

iii). X1 6like X2 ⇔
p0

q0
>
p1

q1
>
p2

q2
.

Remark 4.1. The answer to the question if the ”Sruin” relation implies the ”like”

relation is negative, as we can see from the counterexample X1 ∼
(

0 1 2
1
3

1
3

1
3

)
and

X2 ∼
(

0 1 2
1
6

1
2

1
3

)
in which X1 6Sruin X2 but it is not true that X1 6like X2.

Remark 4.2. This is the most simple case when one can deny the implication X1 6st

X2 ⇒ X1 6ruin X2. For instance, if X1 ∼
(

0 1 2
1
3

4
9

2
9

)
and X2 ∼

(
0 1 2
1
3

1
3

1
3

)
,

then X1 6st X2 but it is not true that X1 6ruin X2 since
p0

q0
= 1 <

p1

q1
=

4

3
.

C. Supp (F1) = Supp (F2) = {0, 1, 2, 3}.
The interesting part of ∆ is

(∆i,j)06i≤2,0≤j63 =

 0 δ0,1 δ0,1:2 δ0,1:3

0 δ0,2 δ0,2:3 + δ1,2 δ0,2:3 + δ1,2:3

0 δ0,3 δ0,3 + δ1,3 δ0,3 + δ1,3 + δ2,3

 .

ThenX1 6st X2 ⇔ p0 > q0, p0 + p1 > q0 + q1, p0 + p1 + p2 > q0 + q1 + q2 and
X1 6wruin X2 ⇔ δ0,1 > 0, δ0,2 > 0, δ0,3 > 0, δ0,2:3 + δ1,2 > 0, δ0,3 + δ1,3 > 0, δ0,3 +
δ1,3 + δ2,3 > 0.Adding the first three inequalities, we obtain p0 > q0; the last one says
that p3 6 q3 or, which is the same, that p0 + p1 + p2 > q0 + q1 + q2.

The relation X1 6sruin X2 adds to the inequalities for the weak comparison three
more ones: δ0,1:2 > 0, δ0,1:3 > 0 and δ0,2:3 > 0, δ1,2:3 > 0. The first two of them are
superfluous since they are implied by δ0,1 > 0, δ0,2 > 0, δ0,3 > 0. The remaining one
is not: written as (p0 + p1) (q2 + q3) > (q0 + q1) (p2 + p3)⇔

(p0 + p1) (1− (q0 + q1)) > (q0 + q1) (1− (p0 + p1)) it implies the stochastic order.
To summarize:

Corollary 4.4. If Supp (F1) = Supp (F2) = {0, 1, 2, 3} then
i). X1 6st X2 ⇔ p0 > q0, p0 + p1 > q0 + q1, p0 + p1 + p2 > q0 + q1 + q2.

ii). X1 6wruin X2 ⇔ (
p0

q0
> max

(
p1

q1
,
p2

q2
,
p3

q3

)
,p0>q0,p36 q3, δ0,2:3 + δ1,2 > 0,
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δ0,3 + δ1,3 > 0).
iii). X1 6Sruin X2 ⇔ (X1 6wruin X2) & (X1 6st X2).

iv). X1 6like X2 ⇔
p0

q0
>
p1

q1
>
p2

q2
>
p3

q3
.

The relation X1 6ruin X2 should be between the last ones. It is possible to coincide
with the relation X1 6Sruin X2.

Remark 4.3. This is the first case when “ 6wruin” does not imply the stochastic

domination. For instance, if X1 ∼
(

0 1 2 3
1
4

1
4

1
4

1
4

)
and X2 ∼

(
1 2 3
11
20

3
20

6
20

)
,

the reader can check that X1 6wruin X2 but it is not true that X1 6st X2.

Remark 4.4. The notation ” 6 ” attributed to ruin domination might not be the
most proper one, since this is not an ordering relation as one can easily see from

the following example: X1 ∼
(

0 1 2 3
1
2 0 1

2 0

)
, X2 ∼

(
0 1 2 3
1
4

1
4

1
4

1
4

)
, X3 ∼(

0 1 2 3
0 4

7
1
7

2
7

)
for which X1 6wruin X2 6wruin X3 and yet it is not true that

X1 6wruin X3.
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