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1. Introduction

Positive-definite matrices are the matrix analogues to positive numbers.
A real square matrix A of dimension n is called positive-semidefinite (or sometimes

nonnegative-definite) if xTAx ≥ 0 for every x ∈ Rn.
A real square matrix A of dimension n is called positive-definite if xTAx > 0 for

every x ∈ Rn − {0}.
A real square matrix A of dimension n is positive-definite if and only if it arises as

the Gram matrix of some set of n linearly independent vectors.
A real square matrix A of dimension n is positive-semidefinite if and only if it arises

as the Gram matrix of some set of n vectors. In contrast to the positive-definite case,
these vectors need not be linearly independent.

There are many books and research papers that study positive-definite and positive-
semidefinite matrices. We recommend the readers Bhatia’s book [6] and the paper
Bhatia [5].

Positive definite matrices are of both theoretical and computational importance
in a wide variety of applications. They are used, for example, in optimization algo-
rithms and in the construction of various linear regression models, machine learning,
statistics, and optimization.

Historically, positive definite matrices arise quite naturally in the study of n-ary
quadratic forms. They are employed in certain optimization algorithms in mathe-
matical programming, in testing the strict convexity of scalar vector functions (here
positive definiteness of the Hessian matrix provides a sufficient condition for strict
convexity).

In statistics, the covariance matrix of a multivariate probability distribution is
always positive semi-definite. It is positive definite unless one variable is an exact
linear combination of the others. Conversely, every positive semi-definite matrix is
the covariance matrix of some multivariate distribution.
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In the study of document similarity positive semidefinite matrices arise in the text
document classification. Let aij be a measure of similarity between the i-th and j-
th document and xi, xj be their respective bag-of-words representation (normalized
to have Euclidean norm). Then the Gram matrix G=(〈xi, xj〉) = (aij) is positive
semidefinite.

Similarity based classification methods use positive semidefinite (PSD) similarity
matrices. When several data representations (or metrics) are available, they should
be combined to build a single similarity matrix. Often the resulting combination is an
indefinite matrix and it cannot be used to train the classifier. In Munoz and de Diego
[10] new methods to build a positive semidefinite matrix from an indefinite matrix
were built. The obtained matrices were used as input kernels to train Support Vector
Machines (SVMs) for classification tasks. Experimental results on artificial and real
data sets were reported.

Classification methods generally rely on the use of a (symmetric) similarity matrix.
In many situations it is convenient to consider more than one similarity measure. For
instance, in Web Mining problems we have an asymmetric link matrix among Web
pages, A = (aij). aij is 1 when there is a link between page i and page j and it is
0 when there is not a link. Two different matrices are defined starting from A: the
co-citations (ATA) and co-references (AAT ) matrices. Another matrix D = (dij) is
defined from the terms by documents (or web pages). dij = 1 if term i appears in
web page j and it is 0 when it does not appear. The ‘document by document’ matrix
is defined by DTD. The co-citations, co-references and ‘document by document’
matrices correspond to different similarity representations focusing on different data
aspects.

For two matrices, A = (aij) and B = (bij) of the same dimension, the Hadamard
product A ◦ B = (cij), is a matrix, of the same dimension as the operands, with
elements given by cij=aij · bij . For matrices of different dimensions (m×n and p× q,
where m 6= p or n 6= q or both) the Hadamard product is undefined.

The Hadamard product is commutative, associative and distributive over addition.
That is,

A ◦B = B ◦A
A ◦ (B ◦ C) = (A ◦B) ◦ C
A ◦ (B + C) = A ◦B +A ◦ C

The Hadamard product of two positive semidefinite matrices is positive semidefinite.
This is known as the Schur product theorem, after the German mathematician Issai
Schur. See Schur [11]. For positive-semidefinite matrices A and B, it is also known
that

det (A ◦B) ≥ det (A) det (B)

One of the consequences of the Schur Product Theorem is the fact that all the positive

integer Hadamard powers A(k) = (a
(k)
ij ) , k = 1, 2,... of a positive semidefinite matrix

A must be positive definite. It is natural to ask whether the same is true for the

noninteger Hadamard powers A(α) = (a
(α)
ij ) , α > 0. The answer is in the affirmative

only for n = 1 and n = 2. It is known Horn [9, p. 270] that if f : (0,∞) → R is a
smooth function such that the matrix (f(aij)) is positive definite whenever A = (aij)

is a positive definite n×n matrix with positive entries, then f, f ′, f ′′, ..., f (n−1) are all
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nonnegative on (0,∞). Applying this criterion to f(x) = xα shows that α must be a
nonnegative integer or α must be a real number greater or equal than n−2. Fitzgerald
and R. Horn proved in [8] that the latter necessary condition is also sufficient. More
precisely they proved that if α < n− 2 then one can construct a positive semidefinite

matrix A = (aij) such that the matrix A(α) = (a
(α)
ij ) is not positive semidefinite.

The fact that the Schur (that is, element wise) product of two positive semidef-
inite matrices is positive semidefinite immediately implies (using the convexity of
the positive semidefinite cone) that if A = (aij) is positive semidefinite, then so is
B = (bij) where bij = f (aij), where f is an analytic function all of whose coefficients
are positive. As a consequence if A = (aij) is positive semidefinite, then the matrix
B = (exp (aij)) is also positive semidefinite. A converse result that clarifies the con-
nection between positive definite matrices and absolutely monotonic functions can be
found in Vasudeva [14].

An arithmetic function generalizing the well-known Euler totient function φ is the
Jordan’s function of order k, where k is a positive integer. This function is denoted
by Jk and it is defined by Jk (n)= the number of all vectors (a1, a2, ..., ak) ∈ Nk with
the properties ai ≤ n, i = 1, 2, ..., k and gcd(a1, a2, ..., ak, n) = 1.

It is clear that J1=φ. Jordan’s totient function is multiplicative and may be eval-
uated as follows:

If the unique prime decomposition of the natural number n is n = pα1
1 pα2

2 ...pαm
m

then

Jk (n) = nk
(

1− 1

pk1

)(
1− 1

pk2

)
....

(
1− 1

pkm

)
An easy argument for this formula is the inclusion-exclusion principle. (Gauss’

type formula) The following Gauss’ type formula holds∑
d/n

Jk (d) = nk

The early history of the function Jk is presented in Dickson [7]. Properties of the
Jordan’s totient function can be found in Sándor et al. [12] and Andrica and Piticari
[1]. Let a1, a2, ..., an be natural numbers greater or equal than 1and consider the
GCD matrix A = (f (aij)) where aij = gcd (at, aj). In the case ai = i for every
i ∈ {1, 2, ..., n} and f (x) = x for all x then the matrix A is positive semidefinite.
Smith in [13] proved that

detA = φ (1)φ (2) ...φ (n)

Interesting results about GCD matrices can be found in Beslin and Ligh [3], Beslin
[4], and Bege [2].

In the second section of the paper we shall prove that several classes of matri-
ces, some of them built with the help of the Jordan totient function, are positive
semidefinite.

2. Main results

Theorem 2.1. Let (X,Σ, µ) be a space with measure and A1, A2, . . . , An be sets from
Σ of finite measure. For every i, j ∈ {1, 2, . . . , n} define

aij = µ(Ai ∩Aj), bij = exp(−µ(Ai ∪Aj)), cij = exp(−µ(A1∆Aj)).
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Then the matrices A = (aij), B = (bij) and C = (cij) are positive semidefinite.
Here we used the notation A∆B = (A ∪B)− (A ∩B).

Proof. For every A ⊂ X we consider the characteristic function of A

χA(x) =

{
1 if x ∈ A
0 if x ∈ X −A

Then aij =
∫
X
χAi

(x)χAj
(x)dµ(x) = µ(Ai ∩Aj).

Note that A is a Gram matrix associated to the system of L2(µ) functions χAi
, i ∈

{1, 2, . . . , n}. Hence A is positive semmidefinite.
Note that

bij = exp(−µ(Ai ∪Aj)) =

= exp(µ(Ai ∩Aj))exp(−µ(Ai))exp(−µ(Aj)) =

= exp(aij)exp(−µ(Ai))exp(−µ(Aj)).

Let b
(1)
ij = exp(aij), b

(2)
ij = exp(−µ(Ai))exp(−µ(Aj)), B1 = (b

(1)
ij ), B2 = (b

(2)
ij ).

Note that B1 and B2 are positive semidefinite and B = B1◦B2. Hence B is positive
semidefinite.

Since µ(Ai∆Aj) = µ(Ai) + µ(Aj)− 2µ(Ai ∩Aj) it follows that

cij = exp(2µ(Ai ∩Aj))exp(−µ(Ai))exp(−µ(Aj))

= exp(2aij)exp(−µ(Ai))exp(−µ(Aj)).

Let c
(1)
ij = exp(2aij), C1 = (c

(1)
ij ). Note that C = C1 ◦ B2 hence C is positive

semidefinite. �

Corollary 2.2. Let a1, a2, . . . , an, b1, b2, . . . , bn ∈ R, ai ≤ bi, i = 1, 2, . . . , n. For
every i, j ∈ {1, 2, . . . , n} let

aij = (min(bi, bj)−max(a1, aj))+, bij = min(bi, bj)

Then the following assertions hold:
(1) If bi ≥ 0, i = 1, 2, . . . , n then the matrix B = (bij) is positive semidefinite.
(2) The matrix A = (aij) is positive semidefinite.

Proof. Let µ be the Lebesgue measure in R.
Note that µ([ai, bi] ∩ [aj , bj ]) = (min(bi, bj) − max(ai, aj))+. By the preceding

theorem it follows that A is positive semidefinite.
If bi ≥ 0, and ai = 0 for every i ∈ {1, 2, . . . , n} then B = A. Hence B is positive

semidefinite. �

Corollary 2.3. Let x1, x2, . . . , xm ∈ [1,∞) and A1, A2, . . . , An ⊆ {1, 2, . . . ,m}, aij =∏
k∈Ai∩Aj

xk, i, j ∈ {1, 2, . . . , n}. Then the matrix A = (aij) is positive semidefinite.

Proof. Let µ : P({1, 2, . . . ,m})→ R, µ(M) =
∑

k∈M

ln xk, M ∈ P({1, 2, . . . ,m}). Then

µ is a positive measure on {1, 2, . . . ,m}. �

Note that aij = exp(µ(Ai ∩Aj)) hence the matrix A is positive semidefinite.
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Corollary 2.4. Let x1, x2, . . . , xm ∈ (0, 1) and A1, A2, . . . , An ⊆ {1, 2, . . . ,m}

aij =
∏

k∈Ai∪Aj

xk, i, j ∈ {1, 2, . . . , n}, bij =
∏

k∈Ai∆Aj

xk.

Then A = (aij), B = (bij) are positive semidefinite matrices.

Proof. Let µ : P({1, 2, . . . ,m}) → R, µ(M) = −
∑
k∈M

lnxk, µ is a positive finite

measure on {1, 2, . . . ,m}.
Note that aij = exp(−µ(Ai ∪Aj)), bij = exp(−µ(Ai∆Aj)). �

Theorem 2.5. Let a1, a2, . . . , an, r ∈ N∗, aij = Jr(aiaj).
Then A = (aij) is positive semidefinite.

Proof. If a ∈ N∗ denote M(a) = {i ∈ N∗ : pi|a}, a =
∏

k∈M(a)

p
αk(a)
k

aij = Jr(aiaj) = ari a
r
j

∏
k∈M(ai)∪M(aj)

(
1− 1

prk

)

bij = ari a
r
j , cij =

∏
k∈M(ai)∪M(aj)

(
1− 1

prk

)
, B = (bij), C = (cij).

�Note that the matrix C is positive semidefinite of Corollary 2.4.
Since A = B ◦C and the matrices B and C are positive semidefinite it follows that

A is also positive semidefinite.

Theorem 2.6. Let a1, a2, . . . , an, r ∈ N∗, aij = Jr(gcd(ai, aj)). Then A = (aij) is
positive semidefinite.

Proof. With notation
u(a) =

∏
k∈M(a)

pk

we have
gcd(ai, aj) =

∏
k∈M(ai)∩M(aj)

p
αk(ai)∧αk(aj)
k

Jr(gcd(ai, aj)) = Jr

 ∏
k∈M(ai)∩M(aj)

p
αk(ai)∧αk(aj)
k


= [gcd(ai, aj)]

r
∏

k∈M(ai)∩M(aj)

(
1− 1

prk

)

= [gcd(ai, aj)]
r · 1

u(gcd(ai, aj))r

∏
k∈M(ai)∩M(aj)

(prk − 1)

=

[
gcd

(
ai

u(ai)
,
aj

u(aj)

)]r
·

∏
k∈M(ai)∩M(aj)

(prk − 1).

�

Theorem 2.7. Let a1, a2, . . . , an, r ∈ N∗, aij = [gcd(ai, aj)]
2r · Jr

(
aiaj

[gcd(ai,aj)]2

)
.

Then A = (aij) is positive semidefinite.
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Proof. Note that

aij = [gcd(ai, aj)]
2r · Jr

(
aiaj

[gcd(ai, aj)]2

)
= [gcd(ai, aj)]

2r
ari a

r
j

[gcd(ai, aj)]2r

∏
k∈M(ai)∆M(aj)

(
1− 1

prk

)

= ari a
r
j

∏
k∈M(ai)∆M(aj)

(
1− 1

prk

)
.

�

Theorem 2.8. Let a1, a2, . . . , an, r, s, t ∈ N∗, aij = Jr(a
s
ia
s
j [gcd(ai, aj)]

t). Then
A = (aij) is positive semidefinite.

Proof.

aij = Jr(a
s
ia
s
j [gcd(ai, aj)]

t) = arsi a
rs
j [gcd(ai, aj)]

rt ·
∏

k∈M(ai)∪M(aj)

(
1− 1

prk

)
.

�
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