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Abstract. A survey of the metric theory of θ-expansions discussed in [1, 5, 6, 7] is given.
The limit properties of these expansions have been studied. Using a Wirsing-type approach

to the Perron-Frobenius operator of the generalized Gauss map under its invariant measure

we find a near-optimal solution to the Gauss-Kuzmin-Lévy problem for θ-expansions.
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1. Introduction

In this paper we consider another expansion of reals different from the regular con-
tinued fraction expansion. In fact, one particular expansion discussed by Chakraborty
and Rao in [1], which was studied in detail by Sebe and Lascu in [5, 6, 7], has raised
to a new type of continued fractions, namely θ-expansions.

1.1. Preliminary considerations. Fix an irrational θ ∈ (0, 1). Define on (0, θ) the
transformation Tθ by

Tθ(x) :=


1

x
− θ

⌊
1

xθ

⌋
if x ∈ (0, θ],

0 if x = 0
(1)

where b·c stands for integer part. For any x ∈ (0, θ) put

an(x) = a1
(
Tn−1θ (x)

)
, n ∈ N+ (2)

with T 0
θ (x) = x and

a1(x) =

{
b 1
xθ c if x 6= 0,
∞ if x = 0.

(3)

Then every x ∈ (0, θ) has an infinite expansion

x =
1

a1θ +
1

a2θ +
1

a3θ +
.. .

= [a1θ, a2θ, a3θ . . .]. (4)

We call (4) the θ-expansion of x. Such an’s are called continued fraction digits of x
with respect to the expansion in (4).
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The numbers pn(x)/qn(x) = [a1θ, a2θ, . . . , anθ] are the n-th order convergents of
x ∈ [0, θ]. Then pn(x)/qn(x) → x, n → ∞. Here pn’s and qn’s satisfy for n ∈ N+

the following: pn(x) := anθpn−1(x) + pn−2(x), qn(x) := anθqn−1(x) + qn−2(x) and
p−1(x) := 1, p0(x) := 0, q−1(x) := 0, q0(x) := 1.

In [1] it was shown that for θ2 = 1/m, m ∈ N+, the invariant probability measure
of the transformation Tθ is

γθ(A) :=
1

log (1 + θ2)

∫
A

θdx

1 + θx
, A ∈ B[0,θ]. (5)

Hence, γθ(A) = γθ(T
−1
θ (A)) for any A ∈ B[0,θ], the sequence (an)n∈N+ is strictly

stationary on ([0, θ],B[0,θ], γθ). Clearly, the case θ = 1 corresponds to the regular
continued fraction expansion, intensively studied in [3].

1.2. Some metric properties. Roughly speaking, the metrical theory of continued
fraction expansions is about the sequence (an)n∈N+ and related sequences. Let us fix
0 < θ < 1, θ2 = 1/m, m ∈ N+. Putting Nm = {m,m+ 1, ...}, m ∈ N+, the digits an,
n ∈ N+, take positive integer values in Nm.

For any n ∈ N+ and i(n) = (i1, . . . , in) ∈ Nnm, define the fundamental interval
associated with i(n) by

I
(
i(n)
)

= {x ∈ [0, θ] : ak(x) = ik for k = 1, . . . , n}, (6)

where I
(
i(0)
)

= [0, θ]. We will write I(a1, . . . , an) = I
(
a(n)

)
, n ∈ N+. If n ≥ 1 and

in ∈ Nm, then we have I(a1, . . . , an) = I
(
i(n)
)
.

If λθ denote the Lebesgue measure on [0, θ], it can be shown that

λθ(T
n
θ < x|a1, . . . , an) =

(snθ + 1)x

θ(snx+ 1)
, x ∈ [0, θ], n ∈ N+ (7)

where sn := qn−1/qn, n ∈ N+ and s0 := 0. Equation (7) is the Brodén-Borel-
Lévy formula for θ-expansions. It allows us to determine the probability distri-
bution of (an)n∈N+

under λθ. Clearly, λθ(a1 = i) = m/(i(i + 1)), i ∈ Nm, and
λθ (an+1 = i|a1, . . . , an) = Pi(sn), where

Pi(x) :=
xθ + 1

(x+ iθ)(x+ (i+ 1)θ)
. (8)

We have already noticed that the sequence (an)n∈N+ is strictly stationary on(
[0, θ],B[0,θ], γθ

)
. As such, a doubly infinite version of it, say (al)l∈Z, should exist

on a richer probability space. Indeed, such a version can be effectively constructed

on
(

[0, θ]2,B2[0,θ], γθ
)

, where γθ is the extended measure defined by

γθ(B) :=
1

log(1 + θ2)

∫∫
B

dxdy

(1 + xy)2
, B ∈ B2[0,θ]. (9)

Put an(x, y) = an(x), a0(x, y) = a1(y), a−n(x, y) = an+1(y), for any n ∈ N+ and
(x, y) ∈ [0, θ]2. Then for any l ∈ Z, k ∈ N and n ∈ N+ the probability distribution of
the random vector (al, . . . , al+k) under γθ is identical with that of the random vector
(an, . . . , an+k) under γθ. In other words, (al)l∈Z is (under γθ) a doubly infinite version
of (an)n∈N+

(under γθ).
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The definition of (al)l∈Z is associated with the natural extension Tθ of Tθ, which

is a transformation of [0, θ]2 defined by

Tθ(x, y) :=

(
Tθ(x),

1

a1(x)θ + y

)
, (x, y) ∈ [0, θ]2. (10)

This is a one-to-one transformation of [0, θ]2 with the inverse

(Tθ)
−1(x, y) =

(
1

a1(y)θ + x
, Tθ(y)

)
, (x, y) ∈ [0, θ]2 . (11)

The extended measure γθ is Tθ-invariant, that is, γθ = γθTθ
−1

, and al+1(x, y) =
a1((Tθ)

l(x, y) ), l ∈ Z, with a1(x, y) = a1(x), (x, y) ∈ [0, θ]2. Hence the sequence

(al)l∈Z is strictly stationary on
(

[0, θ]2,B2[0,θ], γθ
)

.

The dependence structure of (al)l∈Z follows from the fact that

γθ([0, x]× [0, θ] | a0, a−1, . . .) =
(aθ + 1)x

(ax+ 1)θ
γθ-a.s., (12)

for any x ∈ [0, θ], where a := [a0θ, a−1θ, . . .]. Hence

γθ(a1 = i| a0, a−1, . . .) = Pi(a) γθ-a.s., (13)

for any i ∈ Nm, and by the strict stationarity of (al)l∈Z under γθ we also have

γθ(al+1 = i | al, al−1, . . .) = Pi(a) γθ-a.s. (14)

with a = [alθ, al−1θ, . . .] for l ∈ Z and i ∈ Nm. We thus see that (al)l∈Z is an infinite

order chain [2] on
(

[0, θ]2,B2[0,θ], γθ
)

.

2. Solving Gauss’s problem

It is only recently [5, 6] that the limits and ergodic properties of these expansions
have been studied. It should be stressed that the ergodic theorem does not yield rates
of convergence for mixing properties; for this a Gauss-Kuzmin theorem is needed.

2.1. Limits properties. Let us consider the random system with complete connec-
tions RSCC [2] {(

[0, θ],B[0,θ]
)
, (Nm,P(Nm)) , u, P

}
, (15)

where u : [0, θ] × Nm → [0, θ], u(s, i) = ui(s) := 1/(s + iθ) and the function
P (s, i) = Pi(s) := (xθ + 1)/((x + iθ)(x + (i + 1)θ)) defines a transition probabil-
ity from ([0, θ],B[0,θ]) to (Nm,P ((Nm))). Here P (Nm) denotes the power set of Nm.
For any a ∈ [0, θ] let s0,a := a, sn,a := 1/(anθ + sn−1,a), n ∈ N+, and consider the
family (γθ,a)a∈[0,θ] of probability measures on B[0,θ] defined by their distribution func-

tions γθ,a([0, x]) := (aθ+ 1)x/((ax+ 1)θ). The sequence (sn,a)n∈N+
is an [0, θ]-valued

Markov chain on ([0, θ],B[0,θ], γθ,a) which starts at s0,a := a and has the following
transition mechanism: from state s ∈ [0, θ] the possible transitions are to any state
1/(s + iθ) with corresponding transition probability Pi(s), i ∈ Nm. Thus the transi-
tion operator (Perron-Frobenius operator) U of all Markov chains (sn,a)n∈N+

for any
bounded complex-valued measurable function f on [0, θ], is given by

Uf(x) =
∑
i≥m

Pi(x) f(ui(x)), m ∈ N+ (16)
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where f ∈ L1
γθ

:= {f : [0, θ] → C :
∫ θ
0
|f |dγθ < ∞}. It was investigated in [5, 6] the

Perron-Frobenius operator of the continued fraction transformation Tθ under different
probability measures on B[0,θ]. The asymptotic behavior of this operator is derived
in [6] and is given by

µ
(
(Tθ)

−n(A)
)

=

∫
A

Unf(x)dγθ(x), (17)

where f(x) := (log(1 + θ2))xθ+1
θ h(x), x ∈ [0, θ].

In the sequel the domain of U will be successively restricted to various Banach
spaces. Recall that the variation varAf of f on a subset A of [0, θ] is defined as

sup
∑k−1
i=1 |f(ti) − f(ti−1)| the supremum being taken over all t1 < · · · < tk ∈ A and

k ≥ 2. If varf = var[0,θ]f < ∞, then f is called a function of bounded variation. A
variation ν(f) for L∞([0, θ],B[0,θ], λθ), the collection of all classes of λθ - essentially
bounded measurable complex-valued λθ-indistinguishable function on [0, θ] is defined
as ν(f) = inf varf , the infimum being taken over all versions of f . The set BEV ([0, θ])
is a Banach space under the norm ‖f‖ν := ν(f) + ‖f‖1, where ‖ · ‖1 is the usual L1

λθ

norm ‖f‖1 =
∫ θ
0
|f |dλθ. For proofs and more details see [5, 6].

Whatever a ∈ [0, θ] the Markov chain (sn,a)n∈N associated with the RSCC (15)
has the transition operator U , with the transition probability function

Q(s,B) =
∑

{ i≥m|ui(s)∈B}

Pi(s), s ∈ [0, θ], B ∈ B[0,θ]. (18)

ThenQn(·, ·) will denote the n-step transition probability function of the same Markov
chain.

It was proved in [6] that the RSCC (15) is uniformly ergodic and its transition
operator is regular with respect to the Banach space of Lipschitz functions.

Now for a probability measure µ on
(
[0, θ],B[0,θ]

)
we may determine the limit of

the sequence (µ(Tnθ < x))n∈N+
as n → ∞ and obtain the rate of this convergence,

i.e.,

lim
n→∞

µ(Tnθ < x) =
1

log(1 + θ2)
log((mθ + x)θ), x ∈ [0, θ]. (19)

2.2. A Gauss-Kuzmin-Lévy-type theorem. The study of optimality of the con-
vergence rate remains an open question. Using a Wirsing-type approach [8], in [7] it
was obtained a better estimate of the convergence rate involved. The strategy was to
restrict the domain of the Perron-Frobenius operator of Tθ under its invariant mea-
sure γθ to the Banach space of functions which have a continuous derivative on [0, θ].
Define a linear operator V : C([0, θ]) → C([0, θ]) by V g = −(Uf)′, g ∈ C([0, θ]),
where f ′ = g. Since U is a Markov operator, V is well defined. It is easy to check
that (Unf)′ = (−1)nV nf ′, n ∈ N+, f ∈ C1([0, θ]). Sebe proved in [7] that there are
positive constants vθ < wθ < 1 and a real-valued function ϕθ ∈ C([0, θ]) defined by

ϕθ(x) =
1

θ

[
eθ(m+ 1)θ − aθ − 1

(eθ + x(−eθmθ + aθ + 1))2
− eθ(m− 1)θ − aθ − 1

(eθ + x(−eθ(m− 1)θ + aθ + 1))2

]
,

x ∈ [0, θ], where the coefficient eθ is chosen such that the equation

Eθ(x) = 2θ(x+ 1)4 − e3θ [(2m+ 1)(x+ 1) + eθ(m+ 1)θ] = 0
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x ∈ [0, θ] has a unique solution aθ ∈ [0, θ]. For this unique acceptable aθ ∈ [0, θ]
we have vθϕθ ≤ V ϕθ ≤ wθϕθ. Next, putting αθ = min

x∈[0,θ]
ϕθ(x)/(fθ)

′(x) and βθ =

max
x∈[0,θ]

ϕθ(x)/(fθ)
′(x) for any fθ ∈ C1([0, θ]) such that (fθ)

′ > 0, we get

αθ
βθ
vnθ (fθ)

′ ≤ V n(fθ)
′ ≤ βθ

αθ
wnθ (fθ)

′,

n ∈ N+.
In Theorem 5.3 in [7] there are obtained upper and lower bounds of the convergence

rate, respectively O(wn) and O(vn) as n→∞, which provide a near-optimal solution
to the Gauss-Kuzmin-Lévy problem.

Let µ be a probability measure on B[0,θ] such that µ � λθ. For any n ∈ N
put Fnθ (x) = µ(Tnθ < x), x ∈ [0, θ], where T 0

θ is the identity map. Let f0θ (x) =
xθ+1
θ (F 0

θ )′(x), x ∈ [0, θ], where (F 0
θ )′ = dµ/dλθ. Let us recall this theorem.

Theorem 2.1. Let f0θ ∈ C1([0, θ]) such that (f0θ )′ > 0 and let µ be a probability
measure on B[0,θ] such that µ� λθ. For any n ∈ N+ and x ∈ [0, θ] we have

(log(1 + θ2))2
αθ

2θβθ
min
x∈[0,θ]

(f0θ )′(x)vnθGθ(x)(θ −Gθ(x)) ≤ |µ(Tnθ < x)−Gθ(x)|

≤ (log(1 + θ2))2
(1 + θ2)βθ

2θαθ
max
x∈[0,θ]

(f0θ )′(x)wnθGθ(x)(θ −Gθ(x))

where

Gθ(x) =
log(1 + xθ)

log(1 + θ2)
.

For example, for m = 3, the equation Eθ(x) = 0, with eθ = 0.67, has as unique
acceptable solution aθ = 0.287897. For this value of aθ the function ϕaθ/V ϕaθ attains
its maximum equal to 7.389969626 at x = 0 and x = θ, and has a minimum m(aθ) =
(ϕaθ/V ϕaθ )(0.256122) = 7.29924. It follows that upper and lower bounds of the
convergence rate are respectively O(wnθ ) and O(vnθ ) as n→∞, with vθ > 0.135318553
and wθ < 0.137000564.

Obviously, the determination of the exact convergence rate remains an open ques-
tion. We may derive it using the same strategy as in [4].
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