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1. Introduction

The optimality conditions and duality results for minimax fractional programming
problems have been studied by many authors (see, for example, [1, 2, 3, 8, 11, 15, 25],
and others). But in most of the studies, an assumption of convexity on the functions
involving was made. Several classes of functions have been defined for the purpose
of weakening the limitations of convexity. Among these, the concept of invexity [9]
has received more attention. Recently, the notion of invexity has been extended in
several directions. Some recent surveys and synthesis of results pertaining to various
generalizations of invex functions and their applications along with extensive lists of
relevant references are available in [7, 10, 13, 14, 20], and others.

Preda [21] introduced the concept of generalized (F, ρ)-convexity, an extension of
F -convexity defined by Hanson and Mond [10] and generalized ρ-convexity defined by
Vial [24], and he used the concept to obtain duality results for efficient solutions.

Schmitendorf [22] gave two sets of sufficient optimality conditions for minimax
problem, under the conditions of convexity. Later, Tanimoto [23] derived duality
theorems, under convexity assumptions on the functions involved, for the problems
considered by Schmitendorf [22], which were extended for the fractional analogue of
generalized minimax problem by Yadav and Mukherjee [25]. Liu and Wu [15] derived
the sufficient optimality conditions and duality theorems for the generalized minimax
fractional programming in the framework of (F, ρ)-convex functions. Ahmad [1] ob-
tained sufficient optimality conditions and duality theorems for minimax fractional
programming problem assuming the functions involved to be generalized convex.
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Liang et al. [14] introduced the concept of differentiable (F, α, ρ, d)-convex function
and proved optimality theorems and duality results for a multiobjective fractional
programming problem involving (F, α, ρ, d)-convexity assumptions.

Antczak [4] introduced to the optimization theory new classes of (p, r)-invex func-
tions and studied some of its properties. Jayswal et al. [12] focus his study on
multiobjective fractional programming problem and established sufficient optimal-
ity conditions and duality results under the assumptions of (p, r) − ρ − (η, θ)-invex
functions.

Motivated by the earlier works and seeing the importance of generalized convex-
ity into the fields of optimization theory, in this paper we introduce new classes of
generalized (p, r) − ρ − (η, θ)-invex functions i.e. (p, r) − ρ − (η, θ)-quasi-invex and
(strictly) (p, r) − ρ − (η, θ)-pseudo-invex functions and focus our study on minimax
fractional programming problem. We establish sufficient optimality conditions and
duality theorems for two types of dual problems under the aforesaid generalized invex
functions.

The organization of the article is as follows. Some definitions and notation are
given in Section 2. The sufficient optimality conditions are established in Section 3.
By employing the sufficient conditions, we formulate two dual models and derive weak,
strong and strict converse duality results in Sections 4 and 5. Finally, conclusions are
given in Section 6.

2. Notation and preliminaries

Throughout the paper, let Rn be the n-dimensional Euclidean space with the vector
norm ‖ ‖ and Rn+ be its non-negative orthant. We use the following conventions for
vectors in Rn:
x 5 y if and only if xi 5 yi for all i = 1, 2, . . . , n;
x ≤ y if and only if xi 5 yi, for all i = 1, 2, . . . , n and x 6= y;
x < y if and only if xi < yi for all i = 1, 2, . . . , n;
x ≮ y is the negation of x < y.

Let a non-empty set X ⊂ Rn, a differentiable function f : X 7→ R, vector-valued
functions η, θ : X ×X 7→ Rn and let p, r and θ be arbitrary real numbers.

Definition 2.1. [4] A differentiable function f : X → R is said to be (strictly)
(p, r)-invex with respect to η at u ∈ X if and only if for each x ∈ X, one of the
relations

1

r
erf(x) =

1

r
erf(u)[1 +

r

p
∇f(u)(epη(x,u) − 1)] (>) for p 6= 0, r 6= 0,

1

r
erf(x) =

1

r
erf(u)[1 + r∇f(u)η(x, u)] (>) for p = 0, r 6= 0,

f(x)− f(u) =
1

p
∇f(u)(epη(x,u) − 1) (>) for p 6= 0, r = 0,

f(x)− f(u) = ∇f(u)η(x, u) (>) for p = 0, r = 0,

holds.
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If the above inequalities are satisfied at any point u ∈ X, then f is said to be
(strictly) (p, r)-invex with respect to η on X.

Definition 2.2. [19] A differentiable function f : X → R is said to be ρ− (η, θ)-invex
with respect to vector-valued functions η and θ if and only if

f(x)− f(u) = ηT (x, u)∇f(u) + ρ ‖θ(x, u)‖2 , for all x, u ∈ X.

Definition 2.3. [17] A differentiable function f : X → R is said to be (p, r)−ρ−(η, θ)-
invex at the point u ∈ X with respect to vector-valued functions η and θ if and only
if for each x ∈ X, one of the relations

1

r
(er(f(x)−f(u)) − 1) =

1

p
∇f(u)(epη(x,u) − 1) + ρ ‖θ(x, u)‖2 for p 6= 0, r 6= 0,

1

r
(er(f(x)−f(u)) − 1) = ∇f(u)η(x, u) + ρ ‖θ(x, u)‖2 for p = 0, r 6= 0,

f(x)− f(u) =
1

p
∇f(u)(epη(x,u) − 1) + ρ ‖θ(x, u)‖2 for p 6= 0, r = 0,

f(x)− f(u) = ∇f(u)η(x, u) + ρ ‖θ(x, u)‖2 for p = 0, r = 0,

holds.

Remark 2.1. If the above inequalities are satisfied at any point u ∈ X, then f is
said to be (strictly) (p, r)− ρ− (η, θ)-invex on X with respect to η and θ.

Remark 2.2. It should be noted that the exponentials appearing on the right-
hand sides of inequalities above are understood to be taken componentwise and
1 = (1, 1, . . . , 1) ∈ Rn.

Now we give an example of function which is (p, r)−ρ− (η, θ)-invex but not (p, r)-
invex [4].

Example 2.1. Let X = {(x1, x2) ∈ R2 : x1 > 0, x2 = 0}. Let f : R2 → R is given by
f(x) = cos2 x1 − cos2 x2. Define

θ̄(x, u) =

{
1, if u = π/2,
0, if u 6= π/2,

η̄(x, u) =

{
0, if u = π/2,

− sin 2u, if u 6= π/2,

where θ = (θ̄(x, u1), θ̄(x, u2)) and η = (η̄(x, u1), η̄(x, u2)). At u = (π/2, π/2), we have

1

r
erf(u)[1 + r∇f(u)η(x, u)] =

1

r
.

Therefore the inequality
1

r
er(cos2 x1−cos2 x2) = 1,

is not true. Because, if we take x1 = π/2, x2 = 0 and r = 1, then from the above
inequality we get 1/e ≥ 1, which is not possible. Therefore, the function f is not
(0, 1)-invex function (i.e. (p, r)-invex) with respect to η at u = (π/2, π/2). Now, if
p = 0, r = 1 and ρ = −1/2, then

1

r

(
er(f(x)−f(u)) − 1

)
= e(cos2 x1−cos2 x2) − 1,
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and
∇f(u)η(x, u) + ρ ‖θ(x, u)‖2 = −1,

at the point u = (π/2, π/2). Hence, the inequality

ecos2 x1−cos2 x2 − 1 = −1,

is always true. Therefore, from the Definition 2.3, we have f is (0, 1)−(−1/2)−(η, θ)-
invex function (i.e.(p, r) − ρ − (η, θ)-invex) with respect to η and θ at the point
u = (π/2, π/2).

The following example shows that there exists (p, r)− ρ− (η, θ)-invex function but
not ρ− (η, θ)-invex [19].

Example 2.2. Let X = [2, 3] ⊂ R. Consider the function f : X → R defined by

f(x) = x+ log
√
x.

Let η : X×X → R and θ : X×X → R given by η(x, u) = 1+u2 and θ(x, u) = x+u,
respectively.
For p = 0, r = 1, ρ = −1/2 and for all x, u ∈ X, we have

1

r
(er(f(x)−f(u)) − 1)−∇f(u)η(x, u)− ρ ‖θ(x, u)‖2 = 0,

as can be seen from Figure 1.

Figure 1

Therefore the function f defined above is (0, 1) − (−1/2) − (η, θ)-invex function
(i.e.(p, r)− ρ− (η, θ)-invex) with respect to η and θ.
But the function f it is not ρ − (η, θ)-invex for all x, u ∈ X (see Figure 2), because,
if we take x = 2 and u = 3, then

f(x)− f(u) = −1.088045

and
∇f(u)η(x, u) + ρ ‖θ(x, u)‖2 = −0.833.
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Figure 2

which shows that

f(x)− f(u) � ∇f(u)η(x, u) + ρ ‖θ(x, u)‖2 .
Now we introduce the generalized (p, r)− ρ− (η, θ)-invex functions as follows:

Definition 2.4. A differentiable function f : X 7→ R is said to be (p, r)− ρ− (η, θ)-
quasi-invex at the point u ∈ X with respect to vector-valued functions η and θ if and
only if for each x ∈ X, one of the relations

1

r
(er(f(x)−f(u)) − 1) 5 0⇒ 1

p
∇f(u)(epη(x,u) − 1) 5 −ρ ‖θ(x, u)‖2 for p 6= 0, r 6= 0,

1

r
(er(f(x)−f(u)) − 1) 5 0⇒ ∇f(u)η(x, u) 5 −ρ ‖θ(x, u)‖2 for p = 0, r 6= 0,

f(x)− f(u) 5 0⇒ 1

p
∇f(u)(epη(x,u) − 1) 5 −ρ ‖θ(x, u)‖2 for p 6= 0, r = 0,

f(x)− f(u) 5 0⇒ ∇f(u)η(x, u) 5 −ρ ‖θ(x, u)‖2 for p = 0, r = 0,

holds.

If the above inequalities are satisfied at any point u ∈ X, then f is said to be
(p, r)− ρ− (η, θ)-quasi-invex on X with respect to η and θ.

Definition 2.5. A differentiable function f : X 7→ R is said to be (p, r)− ρ− (η, θ)-
pseudo-invex at the point u ∈ X with respect to vector-valued functions η and θ if
and only if for each x ∈ X, one of the relations

1

p
∇f(u)(epη(x,u) − 1) = −ρ ‖θ(x, u)‖2 ⇒ 1

r
(er(f(x)−f(u)) − 1) = 0 for p 6= 0, r 6= 0,

∇f(u)η(x, u) = −ρ ‖θ(x, u)‖2 ⇒ 1

r
(er(f(x)−f(u)) − 1) = 0 for p = 0, r 6= 0,

1

p
∇f(u)(epη(x,u) − 1) = −ρ ‖θ(x, u)‖2 ⇒ f(x)− f(u) = 0 for p 6= 0, r = 0,

∇f(u)η(x, u) = −ρ ‖θ(x, u)‖2 ⇒ f(x)− f(u) = 0 for p = 0, r = 0,

holds.
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If the above inequalities are satisfied at any point u ∈ X, then f is said to be
(p, r)− ρ− (η, θ)-pseudo-invex on X with respect to η and θ.

Definition 2.6. A differentiable function f : X 7→ R is said to be strictly (p, r)−ρ−
(η, θ)-pseudo-invex at the point u ∈ X with respect to vector-valued functions η and
θ if and only if for each x ∈ X, one of the relations

1

p
∇f(u)(epη(x,u) − 1) > −ρ ‖θ(x, u)‖2 ⇒ 1

r
(er(f(x)−f(u)) − 1) = 0 for p 6= 0, r 6= 0,

∇f(u)η(x, u) > −ρ ‖θ(x, u)‖2 ⇒ 1

r
(er(f(x)−f(u)) − 1) = 0 for p = 0, r 6= 0,

1

p
∇f(u)(epη(x,u) − 1) > −ρ ‖θ(x, u)‖2 ⇒ f(x)− f(u) = 0 for p 6= 0, r = 0,

∇f(u)η(x, u) > −ρ ‖θ(x, u)‖2 ⇒ f(x)− f(u) = 0 for p = 0, r = 0,

holds.

If the above inequalities are satisfied at any point u ∈ X, then f is said to be
strictly (p, r)− ρ− (η, θ)-pseudo-invex on X with respect to η and θ.

In this paper, we consider the following minimax fractional programming problem:

(P) v∗ = min
x∈S

max
15i5p

[fi(x)

gi(x)

]
where
(A1) S = {x ∈ Rn; hk(x) 5 0, k = 1, 2, ...,m} is a non-empty and compact set;
(A2) fi, gi : X → R, i = 1, 2, ..., p and hk : X → R, k = 1, 2, ...,m are differentiable
functions, and X is a non-empty open subset of Rn;
(A3) fi(x) = 0, gi(x) > 0, i = 1, 2, ..., p for all x ∈ S.

It is well known [5, 6] that the problem (P) is equivalent to the following problem
(EPv) for a given v.

(EPv) min q,

subject to

fi(x)− vgi(x) 5 q, i = 1, 2, ..., p, (1)

hk(x) 5 0, k = 1, 2, ...,m. (2)

We shall use the following lemmas.

Lemma 2.1. [5] If (x, v, q) is (EPv)-feasible, then x is (P)-feasible. If x is (P)-
feasible, then there exist v and q such that (x, v, q) is (EPv)-feasible.

Lemma 2.2. [5] x∗ is (P)-optimal with the corresponding optimal value of the (P)-
objective equal to v∗ if and only if (x∗, v∗, q∗) is (EPv)-optimal with the corresponding
optimal value of the (EPv)-objective equal to zero; that is, q∗ = 0.

Following the same lines of Liu [16], we can write the necessary optimality condi-
tions for (P) as follows:

Theorem 2.1. (Necessary optimality conditions). Let x∗ be an optimal solution
of (P) with the optimal value of the (P)-objective equal to v∗. Let an appropriate
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constraints qualification [18] hold for (EPv∗). Then, there exist q∗ ∈ R, y∗ ∈ Rp, z∗ ∈
Rm such that (x∗, v∗, y∗, z∗) satisfy the following conditions

p∑
i=1

y∗i [∇fi(x∗)− v∗∇gi(x∗)] +

m∑
k=1

z∗k∇hk(x∗) = 0, (3)

y∗i (fi(x
∗)− v∗gi(x∗)) = 0, for all i = 1, 2, ..., p, (4)

z∗khk(x∗) = 0, for all k = 1, 2, ...,m, (5)

fi(x
∗)− v∗gi(x∗) 5 0, for all i = 1, 2, ..., p, (6)

hk(x∗) 5 0, for all k = 1, 2, ...,m, (7)
p∑
i=1

y∗i = 1, (8)

q∗ = 0, (9)

q∗ ∈ R, y∗ ∈ Rp, z∗ ∈ Rm, y ≥ 0, z∗ = 0, v∗ = 0. (10)

Remark 2.3. All the theorems in the subsequent parts of this paper will be proved
only in the case when p 6= 0, r 6= 0. The proofs in other cases are easier than in
this one since only changes arise from form of inequality. Moreover, without loss of
generality, we shall assume that r > 0 (in the case when r < 0, the direction some of
the inequalities in the proof of the theorems should be changed to the opposite one).
In the subsequent part of the paper, we assume that ρ, ρ1 and ρ2 are all elements of
R.

3. Sufficient optimality conditions

In this section, we establish Karush-Kuhn-Tucker type sufficient optimality con-
ditions under generalized (p, r) − ρ − (η, θ)-invex functions defined in the previous
section.

Theorem 3.1. (Sufficiency). Let (x∗, v∗, q∗, y∗, z∗) satisfy relations (3) to (10).
Moreover, assume any one of the conditions below holds:
(a) A(x) =

∑p
i=1 y

∗
i [fi(x)− v∗gi(x)] +

∑m
k=1 z

∗
khk(x) is (p, r)− ρ− (η, θ)-invex at x∗

with respect to η, θ and ρ = 0;
(b) B(x) =

∑p
i=1 y

∗
i [fi(x) − v∗gi(x)] is (p, r) − ρ1 − (η, θ)-pseudo-invex at x∗ and

C(x) =
∑m
k=1 z

∗
khk(x) is (p, r)−ρ2− (η, θ)-quasi-invex at x∗ with respect to η, θ

and ρ1 + ρ2 = 0;
(c) B(x) =

∑p
i=1 y

∗
i [fi(x) − v∗gi(x)] is (p, r) − ρ1 − (η, θ)-quasi-invex at x∗ and

C(x) =
∑m
k=1 z

∗
khk(x) is strictly (p, r)−ρ2−(η, θ)-pseudo-invex at x∗ with respect

to η, θ and ρ1 + ρ2 = 0,
for all (x, q) that are (EPv∗)-feasible. Then x∗ is (P)-optimal with the corresponding
optimal value equal to v∗.

Proof. Suppose contrary to the result that x∗ is not (P)-optimal. Let v∗ be the value
of the objective function of Problem (P) for x = x∗. From Lemma 2.2, we conclude
that (x∗, v∗, q∗) is not (EPv∗)-optimal with the corresponding optimal value of the
(EPv∗)-objective equal to zero, that is,

q < q∗. (11)
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In (11), using (1), (2), (8) and (10) on LHS and using (4), (5) and (9) on RHS, we
obtain

p∑
i=1

y∗i [fi(x)− v∗i gi(x)] +

m∑
k=1

z∗khk(x) <

p∑
i=1

y∗i [fi(x
∗)− v∗i gi(x∗)] +

m∑
k=1

z∗khk(x∗).

That is,

A(x) < A(x∗). (12)

If condition (a) holds, then

1

r
(er(A(x)−A(x∗)) − 1) =

1

p
∇A(x∗)(epη(x,x∗) − 1) + ρ ‖θ(x, x∗)‖2 .

The above inequality together with (12) gives

1

p
∇A(x∗)(epη(x,x∗) − 1) + ρ ‖θ(x, x∗)‖2 < 0. (13)

Consequently, (3) and (13) yield

ρ ‖θ(x, x∗)‖2 < 0,

which contradicts to the fact that ρ = 0.
If condition (b) holds, from (2), (5) and (10), we have

m∑
k=1

z∗khk(x) 5
m∑
k=1

z∗khk(x∗). (14)

That is,

C(x) 5 C(x∗), (15)

which in turn implies that

1

r
(er(C(x)−C(x∗)) − 1) 5 0. (16)

Using (p, r)− ρ2 − (η, θ)-quasi-invexity of C at x∗ with respect to η and θ, we have

1

p
∇C(x∗)(epη(x,x∗) − 1) 5 −ρ2 ‖θ(x, x∗)‖2 . (17)

The above inequality together with equation (3) and the assumption ρ1 +ρ2 = 0 gives

1

p
∇B(x∗)(epη(x,x∗) − 1) = −ρ1 ‖θ(x, x∗)‖2 . (18)

Now using (p, r)− ρ1 − (η, θ)-pseudo-invexity of B at x∗ with respect to η and θ, we
have

1

r
(er(B(x)−B(x∗)) − 1) = 0, (19)

which in turn implies that

B(x) = B(x∗).

That is,
p∑
i=1

y∗i [fi(x)− v∗i gi(x)] =
p∑
i=1

y∗i [fi(x
∗)− v∗i gi(x∗)]. (20)
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From (1), (4), (8) and the above inequality, we obtain

q =
p∑
i=1

y∗i [fi(x)− v∗i gi(x)] =
p∑
i=1

y∗i [fi(x
∗)− v∗i gi(x∗)] = 0 = q∗.

That is,
q = q∗.

This along with Lemma 2.2 yields that x∗ is (P)-optimal with the corresponding
optimal value equal to v∗.

The proof of hypothesis (c) follows along the lines similar to that of (b). This
completes the proof. �

4. First duality model

With the help of (EPv), we consider the following form of dual problem of Problem
(P):

(DEPv1) Maximize

p∑
i=1

yi[fi(u)− vgi(u)] +

m∑
k=1

zkhk(u)

subject to
p∑
i=1

yi[∇fi(u)− v∇gi(u)] +

m∑
k=1

zk∇hk(u) = 0, (21)

p∑
i=1

yi = 1, (22)

u ∈ Rn, y ∈ Rp, z ∈ Rm, y ≥ 0, z = 0, v = 0. (23)

Theorem 4.1. (Weak duality). For a given v∗, let (x̂, q̂) be (EPv∗)-feasible, and
let (ū, ȳ, z̄) be (DEPv∗1)- feasible. Assume that G(.) =

∑p
i=1 ȳi[fi(.) − v∗gi(.)] +∑m

k=1 z̄khk(.) is (p, r)− ρ− (η, θ)-invex at ū with respect to η, θ and ρ = 0. Then

inf(EPv∗) = sup(DEPv∗1).

Proof. Let (x̂, q̂) be (EPv∗)-feasible and let (ū, ȳ, z̄) be (DEPv∗1)-feasible. Suppose,
contrary to the result, i.e.,

inf (EPv∗) < sup (DEPv∗1).

Equivalently,

q̂ <

p∑
i=1

ȳi[fi(ū)− v∗gi(ū)] +

m∑
k=1

z̄khk(ū). (24)

In (24), using (1), (2), (22) and (23) on LHS, we have
p∑
i=1

ȳi[fi(x̂)− v∗gi(x̂)] +

m∑
k=1

z̄khk(x̂) <

p∑
i=1

ȳi[fi(ū)− v∗gi(ū)] +

m∑
k=1

z̄khk(ū).

That is,
G(x̂) < G(ū),

which in turn implies that

1

r
(er(G(x̂)−G(ū)) − 1) < 0. (25)
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The above inequality together with (p, r) − ρ − (η, θ)-invexity of G(.) at ū, implies
that

1

p
∇G(ū)(epη(x̂,ū) − 1) + ρ ‖θ(x̂, ū))‖2 < 0. (26)

Consequently, (21) and (26) yield

ρ ‖θ(x̂, ū))‖2 < 0,

which contradicts to the fact that ρ = 0. This completes the proof. �

Theorem 4.2. (Strong duality). Let

v∗ = min
x∈S

max
15i5p

[fi(x)

gi(x)

]
and let (x∗, q∗) be (EPv∗)-optimal, at which an appropriate constraint qualification
holds [18]. Then, there exists (y∗, z∗) such that (x∗, y∗, z∗) is (DEPv∗1)-feasible and
the corresponding objective values of (EPv∗) and (DEPv∗1) are equal. If also the
hypotheses of Theorem 4.1 are satisfied, then (x∗, q∗) and (x∗, y∗, z∗) are, respectively,
global optimal for (EPv∗) and (DEPv∗1) with each objective value equal to zero.

Proof. The proof follows along the lines of Bector et al. [5]. �

Theorem 4.3. (Strict converse duality). Let

v∗ = min
x∈S

max
15i5p

[fi(x)

gi(x)

]
and let (x∗, q∗) be (EPv∗)-optimal, at which an appropriate constraint qualification
holds [18]. Let (ū, ȳ, z̄) be (DEPv∗1)-optimal, and let

ρ > 0 and G(.) =

p∑
i=1

ȳi[fi(.)− v∗gi(.)] +

m∑
k=1

z̄khk(.)

is (p, r)−ρ−(η, θ)-invex at ū for all (EPv∗)-feasible and (DEPv∗1)-feasible solutions.
Then ū = x∗; that is (ū, q∗) is (EPv∗)-optimal, with each objective value equal to zero.

Proof. Let (ū, ȳ, z̄) be (DEPv∗1)-optimal. Suppose on the contrary that ū 6= x∗.
Since (x∗, q∗) is (EPv∗)-optimal, there exist (y∗, z∗) such that (x∗, y∗, z∗) is (DEPv∗1)-
optimal and

q∗ = 0 =

p∑
i=1

y∗i [fi(x
∗)− v∗gi(x∗)] +

m∑
k=1

z∗khk(x∗)

=

p∑
i=1

ȳi[fi(ū)− v∗gi(ū)] +

m∑
k=1

z̄khk(ū). (27)

That is,

G(x∗) = G(ū),

which in turn implies that

1

r
(er(G(x∗)−G(ū)) − 1) = 0.
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The above inequality together with (p, r) − ρ − (η, θ)-invexity of G(.) at ū, implies
that

1

p
∇G(ū)(epη(x∗,ū) − 1) + ρ ‖θ(x∗, ū))‖2 5 0. (28)

Consequently, (21) and (28) yield

ρ ‖θ(x∗, ū)‖2 5 0,

which contradicts to the fact that ρ > 0. This completes the proof. �

Remark 4.1. If the function G(.) in Theorem 4.3 is expressed by the sum of B(.)
and C(.) as defined in previous section and if B(.) is strictly (p, r)− ρ− (η, θ)-invex
and C(.) is (p, r)− ρ− (η, θ)-invex then the Theorem 4.3 is still hold.

5. Second duality model

In this section for a given v, we take the following form of dual problem:

(DEPv2) Maximize

p∑
i=1

yi[fi(u)− vgi(u)]

subject to
p∑
i=1

yi[∇fi(u)− v∇gi(u)] +

m∑
k=1

zk∇hk(u) = 0, (29)

m∑
k=1

zkhk(u) = 0, (30)

p∑
i=1

yi = 1, (31)

u ∈ Rn, y ∈ Rp, z ∈ Rm, y ≥ 0, z = 0, v = 0. (32)

Theorem 5.1. (Weak duality). For a given v∗, let (x̂, q̂) be (EPv∗)-feasible and
let (ū, ȳ, z̄) be (DEPv∗2)-feasible. Moreover, assume any one of the conditions below
holds:
(a) H(.) =

∑p
i=1 ȳi[fi(.)− v∗gi(.)] is (p, r)− ρ1− (η, θ)-pseudo-invex at ū and I(.) =∑m

k=1 z̄khk(.) is (p, r) − ρ2 − (η, θ)-quasi-invex at ū with respect to η, θ and
ρ1 + ρ2 = 0;

(b) H(.) =
∑p
i=1 ȳi[fi(.)− v∗gi(.)] is (p, r)− ρ1 − (η, θ)-quasi-invex at ū and I(.) =∑m

k=1 z̄khk(.) is strictly (p, r)− ρ2− (η, θ)-pseudo-invex at ū with respect to η, θ
and ρ1 + ρ2 = 0,

for all feasible solutions for (EPv) and (DEPv2). Then

inf(EPv∗) = sup(DEPv∗2).

Proof. Let (x̂, q̂) be (EPv∗)-feasible and let (ū, ȳ, z̄) be (DEPv∗2)-feasible. From (2),
(30) and (32), we have

m∑
j=1

z̄khk(x̂) 5
m∑
j=1

z̄khk(ū). (33)

On the other hand, suppose contrary to the result, i.e.,

inf (EPv∗) < sup (DEPv∗2).
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Equivalently,

q̂ <

p∑
i=1

ȳi[fi(ū)− v∗gi(ū)]. (34)

In (34), using (1), (31) and (32) on LHS, we have

p∑
i=1

ȳi[fi(x̂)− v∗gi(x̂)] <

p∑
i=1

ȳi[fi(ū)− v∗gi(ū)].

That is,

H(x̂) < H(ū),

which in turn implies that

1

r
(er(H(x̂)−H(ū)) − 1) < 0. (35)

If hypothesis (a) holds, the above inequality together with (p, r)− ρ1− (η, θ)-pseudo-
invexity of H(.) at ū, implies that

1

p
∇H(ū)(epη(x̂,ū) − 1) < −ρ1 ‖θ(x̂, ū))‖2 . (36)

Consequently, (29), (36) and the assumption ρ1 + ρ2 = 0, yield

1

p
∇I(ū)(epη(x̂,ū) − 1) > −ρ2 ‖θ(x̂, ū))‖2 . (37)

The above inequality together with (p, r) − ρ2 − (η, θ)-quasi-invexity of I(.) at ū,
implies that

1

r
(er(I(x̂)−I(ū)) − 1) > 0, (38)

which in turn implies that

I(x̂)− I(ū) > 0. (39)

That is,
m∑
j=1

z̄khk(x̂) >
m∑
j=1

z̄khk(ū),

which contradicts (33).
The proof of hypothesis (b) follows along the lines similar to that of (a). This com-
pletes the proof. �

Similarly, we can establish the following strong duality theorem and strict converse
duality theorem.

Theorem 5.2. (Strong duality). Let

v∗ = min
x∈S

max
15i5p

[fi(x)

gi(x)

]
and let (x∗, q∗) be (EPv∗)-optimal, at which an appropriate constraint qualification
holds [18]. Then, there exists (y∗, z∗) such that (x∗, y∗, z∗) is (DEPv∗2)-feasible and
the corresponding objective values of (EPv∗) and (DEPv∗2) are equal. If also the
hypotheses of Theorem 5.1 are satisfied, then (x∗, q∗) and (x∗, y∗, z∗) are, respectively,
global optimal for (EPv∗) and (DEPv∗2) with each objective value equal to zero.
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Theorem 5.3. (Strict converse duality). Let

v∗ = min
x∈S

max
15i5p

[fi(x)

gi(x)

]
and let (x∗, q∗) be (EPv∗)-optimal, at which an appropriate constraint qualification
holds [18]. Let (ū, ȳ, z̄) be (DEPv∗2)-optimal. Moreover, assume any one of the
conditions below holds:
(a) H(.) =

∑p
i=1 ȳi[fi(.)− v∗gi(.)] is (p, r)− ρ1 − (η, θ)-quasi-invex at ū and I(.) =∑m

k=1 z̄khk(.) is strictly (p, r)− ρ2− (η, θ)-pseudo-invex at ū with respect to η, θ
and ρ1 + ρ2 = 0;

(b) H(.) =
∑p
i=1 ȳi[fi(.)−v∗gi(.)] is strictly (p, r)−ρ1−(η, θ)-pseudo-invex at ū and

I(.) =
∑m
k=1 z̄khk(.) is (p, r) − ρ2 − (η, θ)-quasi-invex at ū with respect to η, θ

and ρ1 + ρ2 = 0,
for all feasible solutions for (EPv∗) and (DEPv∗2). Then ū = x∗; that is, (ū, q∗) is
(EPv∗)-optimal, with each objective value equal to zero.

6. Conclusion

In this paper, we have defined the concept of generalized (p, r) − ρ − (η, θ)-invex
functions. An example is given to support this class of functions. Sufficient optimality
conditions for minimax fractional programming problem have established under the
(p, r) − ρ − (η, θ)-invexity assumptions. Moreover, duality results for two types of
dual models are derived under the aforesaid functions. The question arise whether
sufficiency and duality theorems established in this paper are also holds under the
assumption of (p, r) − ρ − (η, θ)-invexity for a class of nondifferentiable minimax
fractional programming problem:

(NFP) min
x∈Rn

sup
y∈Y

f(x, y) + (xtBx)
1/2

h(x, y)− (xtDx)
1/2

,

subject to g(x) 5 0, x ∈ X,
where Y is a compact subset of Rm, f, h : Rn×Rm → R are C1-functions on Rn×Rm
and g : Rn → Rp is a C1-function on Rn; B and D are positive semi-definite matrices.
We can consider a more general form of objective function, i.e.

min
x∈Rn

sup
y∈Y

f(x, y) + s(x|D)

h(x, y) + s(x|E)
,

where D and E are compact convex set and for example s(x|D) is the support function
of D defined by

s(x|D) = max{xT y|y ∈ D}.
It will orient the future research of the authors.

References

[1] I. Ahmad, Optimality conditions and duality in fractional minimax programming involving

generalized ρ-invexity, Int. J. Stat. Manag. Syst. (2003) 19, 165–180.
[2] I. Ahmad, Z. Husain, Optimality conditions and duality in nondifferentiable minimax fractional

programming with generalized convexity, J. Optim. Theory Appl. (2006) 129, 255–275.



MINIMAX FRACTIONAL PROGRAMMING PROBLEM WITH INVEX FUNCTIONS 107

[3] A.M. Al-roqi, Duality in minimax fractional programming problem involving nonsmooth gener-

alized (F, α, ρ, d)-convexity, Appl. Math. Inf. Sci. (2015) 9, 155–160.

[4] T. Antczak, (p, r)-invex sets and functions, J. Math. Anal. Appl. (2001) 263, 355–379.
[5] C.R. Bector, S. Chandra, M.K. Bector, Generalized fractional programming duality: A para-

metric approach, J. Optim. Theory Appl. (1989) 60, 243–260.

[6] C.R. Bector, S. Chandra, V. Kumar, Duality for minmax programming involving V -invex func-
tions, Optimization (1994) 30, 93-103.

[7] G. Giorgi, E. Molho, Generalized invexity: Relationships with generalized convexity and appli-

cations to optimality and duality conditions, In: Generalized Concavity for Economic Applica-
tions, (Edited by P. Mazzoleni), Tecnoprint, Bologna, (1992) 53–70.

[8] S.K. Gupta, D. Dangar, On second-order duality for nondifferentiable minimax fractional pro-
gramming, J. Comput. Appl. Math. (2014) 255, 878-886.

[9] M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. (1981) 80,

545–550.
[10] M.A. Hanson, B. Mond, Further generalizations of convexity in mathematical programming, J.

Inform. Optim. Sci. (1982) 3, 25–32.

[11] A. Jayswal, A.K. Prasad, K. Kummari, On nondifferentiable minimax fractional programming
involving higher order generalized convexity, Filomat (2013) 27, 1497–1504.

[12] A. Jayswal, R. Kumar, D. Kumar, Multiobjective fractional programming problems involving

(p, r) − ρ− (η, θ)-invex function, J. Appl. Math. Comput. (2012) 39, 35–51.
[13] P. Kanniappan, P. Pandian, On generalized convex functions in optimization theory -A survey,

Opsearch (1996) 33, 174–185.

[14] Z.A. Liang, H.X. Huang, P.M. Pardalos, Efficiency conditions and duality for a class of multi-
objective fractional programming problems, J. Glob. Optim. (2003) 27, 447–471.

[15] J.C. Liu, C.S. Wu, On minimax fractional optimality conditions with (F, ρ)-convexity, J. Math.

Anal. Appl. (1998) 219, 36–51.
[16] J.C. Liu, Optimality and duality for generalized fractional programming involving nonsmooth

(F, ρ)-convex functions, Comput. Math. Appl. (1996) 32, 91–102.
[17] P. Mandal, C. Nahak, Symmetric duality with (p, r) − ρ− (η, θ)-invexity, Appl. Math. Comput.

(2011) 217, 8141–8148.

[18] O.L. Mangasarian, Nonlinear Programming, McGraw Hill, New York (1969).
[19] C. Nahak, S. Nanda, Multiobjective duality with ρ− (η, θ)-invexity, J. Appl. Math. Stoc. Anal.

(2005) 2, 175–180.

[20] R. Pini, C. Singh, A survey of recent [1985-1995] advances in generalized convexity with appli-
cations to duality theory and optimality conditions, Optimization (1997) 39, 311–360.

[21] V. Preda, On efficiency and duality for multiobjective programs, J. Math. Anal. Appl. (1992)
166, 365–377.

[22] W.E. Schmitendorf, Necessary conditions and sufficient conditions for static minmax problems,
J. Math. Anal. Appl. (1977) 57, 683–693.

[23] S. Tanimoto, Duality for a class of nondifferentiable mathematical programming problems, J.
Math. Anal. Appl. (1981) 79, 286–294.

[24] J.P. Vial, Strong and weak convexity of sets and functions, Math. Oper. Res. (1983) 8, 231–259.
[25] S.R. Yadav, R.N. Mukherjee, Duality for fractional minimax programming problems, J. Aust.

Math. Soc. Ser. B (1990) 31, 484–492.

(Ioan Stancu-Minasian) Institute of Mathematical Statistics and Applied Mathematics of

the Romanian Academy, Calea 13 Septembrie, nr. 13, 050711 Bucharest, Romania

E-mail address: stancu minasian@yahoo.com

(Andreea Madalina Stancu) Institute of Mathematical Statistics and Applied Mathematics

of the Romanian Academy, Calea 13 Septembrie, nr. 13, 050711 Bucharest, Romania
E-mail address: andreea madalina s@yahoo.com

(Anurag Jayswal) Department of Applied Mathematics, Indian School of Mines,
Dhanbad-826 004, India
E-mail address: anurag jais123@yahoo.com


