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Existence and multiplicity results for elliptic equations
involving the p-Laplacian-like
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Abstract. In this paper, existence results of positive solutions to a Neumann problem involv-
ing the p-Laplacian-like are established. Multiplicity results are also point out. The results of

the equations discussed can be applied to a variety of different fields in applied mechanics.
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1. Introduction

In this paper, we consider the existence of positive solutions for the Neumann
problem, originated from a capillary phenomena, −div

((
1 + |∇u|p√

1+|∇u|2p

)
|∇u|p−2∇u

)
+ |u|p−2u = λf(x, u) in Ω,

∂u
∂ν = 0 on ∂Ω,

(Nf
λ )

where Ω ⊂ RN (N ≥ 2) is a bounded domain with boundary of class C1, ν is the
outer unit normal to ∂Ω, λ > 0, f : Ω×R→ R is a Carathéodory function and p > N .

As for the p-Laplacian-like equation, the authors in [4] discussed the eigenvalue
problem for the equation

−div

((
1 +

|∇u|p√
1 + |∇u|2p

)
|∇u|p−2∇u

)
= λf(x, u), u ∈W 1,p

0 (Ω),

and proved the existence of two eigenfunctions which have very different asymptotic
behaviors.
Authors in [8] studied −div

((
1 + |∇u|p√

1+|∇u|2p

)
|∇u|p−2∇u

)
+ a(x)|u|p−2u = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 2) is a bounded smooth domain, λ > 0, a ∈ C(R+,R),
f : Ω × R → R is a Carathéodory function and 1 < p < N . They established
the existence of one or infinitely many nontrivial solutions.
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Also, the study of p(x)-Laplacian-like equations has been received considerable atten-
tion in recent years (see for instance [1, 7, 11, 12, 13]).
In the present paper, motivated by [3], our analysis is mainly based on a recent critical
point theorem of Bonanno [2], of whose two its consequences are here applied (see
Theorems 2.1 and 2.2).

The plan of the paper is as follows. In Section 2, we introduce our abstract frame-
work and main tool, while Section 3, is devoted to existence results of at least one
solution. Precisely, our main result (Theorem 3.1) is proved and its consequences
(Theorems 3.2, 3.3 and 3.4) are pointed out. Finally, in Section 4, multiplicity results
are presented; precisely, an existence result of two solutions (Theorem 4.1), an exis-
tence result of three solutions (Theorem 4.2) and its consequence (Theorem 4.3) are
pointed out, and lastly, a concrete example is given (Example 4.1).

2. Abstract framework

Our main tools are two consequences of a local minimum theorem [2, Theorem 3.1]
which are recalled below.
For a given non-empty set X, and two functionals Φ,Ψ : X → R, we define the
following functions

β(r1, r2) = inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u)−Ψ(v)

r2 − Φ(v)
, (1)

ρ2(r1, r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1]) Ψ(u)

Φ(v)− r1
, (2)

for all r1, r2 ∈ R, with r1 < r2, and

ρ(r) = sup
v∈Φ−1(]r,+∞[)

Ψ(v)− supu∈Φ−1(]−∞,r]) Ψ(u)

Φ(v)− r
, (3)

for all r ∈ R.

Theorem 2.1 ([2, Theorem 5.1]). Let X be a reflexive real Banach space; Φ : X → R
be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux
differentiable function whose Gâteaux derivative admits a continuous inverse on X∗;
Ψ : X → R be a continuously Gâteaux differentiable function whose Gâteaux derivative
is compact. Assume that there are r1, r2 ∈ R, with r1 < r2, such that

β(r1, r2) < ρ2(r1, r2), (4)

where β and ρ2 are given by (1) and (2). Then, setting Tλ := Φ − λΨ, for each
λ ∈] 1

ρ2(r1,r2) ,
1

β(r1,r2) [ there is u0,λ ∈ Φ(u)−1(]r1, r2[) such that Tλ(u0,λ) ≤ Tλ(u) for

all u ∈ Φ−1(]r1, r2[) and T ′λ(u0,λ) = 0.

Theorem 2.2 ([2, Theorem 5.3]). Let X be a real Banach space; Φ : X → R be a
continuously Gâteaux differentiable function whose Gâteaux derivative admits a con-
tinuous inverse on X∗; Ψ : X → R be a continuously Gâteaux differentiable function
whose Gâteaux derivative is compact. Fix infX Φ < r < supX Φ and assume that

ρ(r) > 0, (5)
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where ρ is given by (3), and for each λ > 1
ρ(r) the function Tλ := Φ− λΨ is coercive.

Then for each λ > 1
ρ(r) there is u0,λ ∈ Φ−1(]r,+∞[) such that Tλ(u0,λ) ≤ Tλ(u) for

all u ∈ Φ−1(]r,+∞[) and T ′λ(u0,λ) = 0.

Let X be the Sobolev space W 1,p(Ω) endowed with the usual norm

‖u‖ :=

(∫
Ω

|∇u(x)|pdx+

∫
Ω

|u(x)|p
) 1
p

,

while on the space C0(Ω̄) we consider the norm ‖u‖∞ := supx∈Ω̄ |u(x)|. Since
p > N, X is compactly embedded in C0(Ω̄), so that

k := sup
u∈X\{0}

‖u‖∞
‖u‖

.

Clearly, kp|Ω| ≥ 1.
If Ω is convex, an explicit upper bound for the constant k is

k ≤ 2
p−1
p max

{(
1

|Ω|

) 1
p

,
σ

N
1
p

(
p− 1

p−N
|Ω|
) p−1

p 1

|Ω|

}
,

where σ = diam(Ω) and |Ω| is the Lebesgue measure of Ω (see [5]). Hence

|u(x)| ≤ k‖u‖ for all x ∈ Ω and for all u ∈ X. (6)

We recall that f : Ω× R→ R is an L1-Carathéodory function if
(a) the mapping x 7−→ f(x, ξ) is measurable for every ξ ∈ R;
(b) the mapping ξ 7−→ f(x, ξ) is continuous for almost every x ∈ Ω;
(c) for every ρ > 0 there exists a function lρ ∈ L1(Ω) such that

sup
|ξ|≤ρ

|f(x, ξ)| ≤ lρ(x)

for almost every x ∈ Ω.

We say that a function u ∈ X is a weak solution of problem (Nf
λ ) if∫

Ω

(
|∇u(x)|p−2∇u(x) +

|∇u(x)|2p−2∇u(x)√
1 + |∇u(x)|2p

)
∇v(x)dx

+

∫
Ω

|u(x)|p−2u(x) v(x) dx− λ
∫

Ω

f(x, u(x))v(x) dx = 0

holds for all v ∈ X.

3. Main results

In this section we present our main results. To be precise, we establish an existence
result of at least one solution, Theorem 3.1, which is based on Theorem 2.1, and we
point out some consequences, Theorems 3.2, 3.3 and 3.4. Finally, we present an
other existence result of at least one solution, Theorem 3.5, which is based in turn on
Theorem 2.2.
Given two non-negative constants c, d, with c 6= k p

√
(1 + dp)|Ω|, put

ad(c) :=

∫
Ω

max|ξ|≤c F (x, ξ)dx−
∫

Ω
F (x, d)dx

cp − kp(1 + dp)|Ω|
.
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Theorem 3.1. Assume that there exist three constants c1, c2, d, with

0 ≤ c1 < k p
√

(1 + dp)|Ω| < c2,

such that ad(c2) < ad(c1). Then, for each λ ∈
]

1
pkpad(c1) ,

1
pkpad(c2)

[
, the problem

(Nf
λ ) admits at least one non-trivial weak solution u0 ∈ X such that

c1
k
< ‖u0‖ <

c2
k
.

Proof. Our aim is to apply Theorem 2.1 to our problem. To this end, we introduce
the functionals Φ,Ψ : X → R by setting

Φ(u) =

∫
Ω

1

p

(
|∇u(x)|p +

√
1 + |∇u(x)|2p + |u(x)|p

)
dx,

Ψ(u) =

∫
Ω

F (x, u(x)) dx,

where F (x, ξ) :=

∫ ξ

0

f(x, t) dt for every (x, ξ) ∈ Ω× R and put

Tλ(u) := Φ(u)− λΨ(u) ∀ u ∈ X.

Clearly, Φ(u) and Ψ(u) are well defined and continuously Gâteaux differentiable func-
tionals whose Gâteaux derivatives at the point u ∈ X are the functionals Φ′(u),Ψ′(u) ∈
X∗, given by

Φ′(u)(v) =

∫
Ω

(
|∇u(x)|p−2∇u(x) +

|∇u(x)|2p−2∇u(x)√
1 + |∇u(x)|2p

)
∇v(x) dx

+

∫
Ω

|u(x)|p−2u(x) v(x) dx,

Ψ′(u)(v) =

∫
Ω

f(x, u(x))v(x) dx

for any v ∈ X.
Moreover, Φ is coercive and sequentially weakly lower semicontinuous and Ψ is

sequentially weakly upper semicontinuous. Also, Φ′ admits a continuous inverse on
X∗ (see [11]) and Ψ′ is compact. Note that the critical points of the functional Tλ
in X are exactly the weak solutions of problem (Nf

λ ). We verify condition (4) of
Theorem 2.1. To this end, put

r1 :=
(c1
k

)p
, r2 :=

(c2
k

)p
and u0(x) = d for all x ∈ Ω.

Clearly, u0 ∈ X and one has

Φ(u0) =
1

p
(1 + dp)|Ω|,

and

Ψ(u0) =

∫
Ω

F (x, u0(x))dx =

∫
Ω

F (x, d)dx.
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From the condition c1 < k p
√

(1 + dp)|Ω| < c2,, we obtain r1 < Φ(u0) < r2. Moreover,
for all u ∈ X such that u ∈ Φ−1(] − ∞, r2[), from (6), one has |u(x)| < c2 for all
x ∈ Ω, from which it follows

Ψ(u) =

∫
Ω

F (x, u(x))dx ≤
∫

Ω

max
|ξ|≤c2

F (x, ξ)dx,

for all u ∈ X such that u ∈ Φ−1(]−∞, r2[). Hence,

sup
u∈Φ−1(]−∞,r2])

Ψ(u) ≤
∫

Ω

max
|ξ|≤c2

F (x, ξ) dx.

Arguing as before, we obtain

sup
u∈Φ−1(]−∞,r1])

Ψ(u) ≤
∫

Ω

max
|ξ|≤c1

F (x, ξ) dx.

Therefore, one has

β(r1, r2) ≤
sup

u∈Φ−1(]−∞,r2[)

Ψ(u)−Ψ(u0)

r2 − Φ(u0)

≤
∫

Ω
max|ξ|≤c2 F (x, ξ) dx−

∫
Ω
F (x, d) dx

1
p

(
c2
k

)p − 1
p (1 + dp)|Ω|

= pkp
∫

Ω
max|ξ|≤c2 F (x, ξ) dx−

∫
Ω
F (x, d) dx

cp2 − kp(1 + dp)|Ω|
= pkpad(c2).

On the other hand, we have

ρ2(r1, r2) ≥
Ψ(u0)− sup

u∈Φ−1(]−∞,r1[)

Ψ(u)

Φ(u0)− r1

≥
∫

Ω
F (x, d) dx−

∫
Ω

max|ξ|≤c1 F (x, ξ) dx
1
p (1 + dp)|Ω| − 1

p

(
c1
k

)p
= pkp

∫
Ω
F (x, d) dx−

∫
Ω

max|ξ|≤c1 F (x, ξ) dx

kp(1 + dp)|Ω| − cp1
= pkpad(c1).

So, from our assumption, it follows that β(r1, r2) < ρ2(r1, r2). Therefore, from The-
orem 2.1, for each λ ∈

]
1

pkpad(c1) ,
1

pkpad(c2)

[
, the functional Tλ admits at least one

critical point u0 such that

r1 < Φ(u0) < r2,

that is,
c1
k
< ‖u0‖ <

c2
k
,

and the proof is complete. �

Now, we point out the following consequence of Theorem 3.1.

Theorem 3.2. Assume that there exist two positive constants c and d, with
k p
√

(1 + dp)|Ω| < c, such that∫
Ω

max|ξ|≤c F (x, ξ) dx

cp
<

1

kp

∫
Ω
F (x, d) dx

(1 + dp)|Ω|
. (7)
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Then, for each

λ ∈
]

1

p

(1 + dp)|Ω|∫
Ω
F (x, d) dx

,
1

pkp
cp∫

Ω
max|ξ|≤c F (x, ξ) dx

[
,

the problem (Nf
λ ) admits at least one non-trivial weak solution ū ∈ X such that

|ū(x)| < c for all x ∈ Ω.

Proof. The conclusion follows from Theorem 3.1, by taking c1 = 0 and c2 = c. Indeed,
owing to assumption (7), one has

ad(c) <

(
1− kp(1+dp)|Ω|

cp

) ∫
Ω

max|ξ|≤c F (x, ξ) dx

cp − kp(1 + dp)|Ω|

<

∫
Ω
F (x, d) dx

kp(1 + dp)|Ω|
= ad(0).

Now, taking (6) into account, Theorem 3.1 ensures the conclusion. �

Now, we point out previous result when the nonlinear term has separable variables.
To be precise, let α ∈ L1(Ω) such that α(x) ≥ 0 a.e. x ∈ Ω, and let g : R → R be

a continuous function. Put G(t) :=

∫ t

0

g(ξ) dξ for all t ∈ R. We have the following

result as a direct consequence of Theorem 3.1.

Theorem 3.3. Assume that g is non-negative and there exist two positive constants
c, d, with k p

√
(1 + dp)|Ω| < c, such that

G(c)

cp
<

1

kp
G(d)

(1 + dp)|Ω|
. (8)

Then, for each

λ ∈
] (1 + dp)|Ω|
p‖α‖1G(d)

,
cp

pkp‖α‖1G(c)

[
,

where ‖α‖1 :=
∫

Ω
|α(x)| dx, the problem −div

((
1 + |∇u|p√

1+|∇u|2p

)
|∇u|p−2∇u

)
+ |u|p−2u = λα(x)g(u) in Ω,

∂u
∂ν = 0 on ∂Ω,

(9)

admits at least one positive weak solution ū ∈ X such that ū(x) < c for all x ∈ Ω.

Proof. Put f(x, ξ) = α(x)g(ξ) for all (x, ξ) ∈ Ω × R. Clearly, one has F (x, t) =
α(x)G(t) for all (x, t) ∈ Ω × R. Therefore, taking into account that G is a non-
decreasing function, Theorem 3.2 ensures the existence of a non-zero weak solution
ū. We claim that it is non-negative. In fact, arguing by a contradiction and setting
A = {x ∈ Ω : ū(x) < 0} one has A 6= ∅. Put ū− = min{ū, 0} one has ū− ∈ X (see,
for instance, [6, Lemma 7.6]). So, taking into account that ū is a weak solution and
by choosing v = ū− one has∫

A

(
|∇ū(x)|p−2∇ū(x) +

|∇ū(x)|2p−2∇ū(x)√
1 + |∇ū(x)|2p

)
∇ū(x) dx

+

∫
A

|ū(x)|p−2ū(x) ū(x) dx = λ

∫
A

f(x, ū(x))ū(x)dx ≤ 0,
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that is, ‖ū‖W 1,p(A) = 0 which is an absurd. Hence, our claim is proved. Now, owing
to the strong maximum principle (see, for instance, [10, Theorem 11.1]) the weak
solution ū, being non-zero, is positive and the conclusion is achieved. �

A further consequence of Theorem 3.1 is the following result.

Theorem 3.4. Let g : R→ R be a non-negative continuous function such that

lim
ξ→0+

g(ξ)

ξp−1
= +∞, (10)

and put λ∗ = 1
pkp‖α‖1 supc>0

cp∫ c
0
g(ξ) dξ

.

Then, for each λ ∈]0, λ∗[, the problem (9) admits at least one positive weak solution.

Proof. Fix λ ∈]0, λ∗[. Then, there is c > 0 such that λ < 1
pkp‖α‖1

cp∫ c
0
g(ξ)dξ

. From (10)

there is a d such that k p
√

(1 + dp)|Ω| < c, and p‖α‖1
|Ω|

∫ d
0
g(ξ) dξ

(1+dp) > 1
λ . Hence, Theorem

3.3 ensures the conclusion. �

Remark 3.1. Given g : R→ R such that (10) holds (that is, without any assumption
of sign). From (10) there is δ > 0 such that g(ξ) > 0 for all ξ ∈]0, δ[. Then put

λ̄ = 1
pkp‖α‖1 supc∈]0,δ[

cp∫ c
0
g(ξ)dξ

. Clearly, λ̄ ≤ λ∗, if g is non-negative. Now, fixed

λ ∈]0, λ̄[ and arguing as in the proof of Theorem 3.4, there are c ∈]0, δ[ and d such

that k p
√

(1 + dp)|Ω| < c, and |Ω|
p‖α‖1

(1+dp)∫ d
0
g(ξ) dξ

< λ < 1
pkp‖α‖1

cp∫ c
0
g(ξ) dξ

. Hence, Theorem

3.3 ensures that, for each λ ∈]0, λ̄[, the problem (9) admits at least one positive weak
solution ūλ such that ūλ(x) < δ for all x ∈ Ω. We also observe that in Theorem 3.4,

condition (10) can be substituted by lim supξ→0+
G(ξ)
ξp .

Finally, we also give an application of Theorem 2.2 which we will use in next section
to obtain multiple solutions.

Theorem 3.5. Assume that there exist two constants c̄, d̄, with

0 < c̄ < k p
√

(1 + d̄p)|Ω|, such that∫
Ω

max
|ξ|≤c̄

F (x, ξ) dx <

∫
Ω

F (x, d̄) dx, (11)

and

lim sup
|ξ|→+∞

F (x, ξ)

|ξ|p
≤ 0 uniformly in X. (12)

Then, for each λ > λ̃, where

λ̃ =
kp(1 + d̄p)|Ω| − c̄p

pkp
( ∫

Ω
F (x, d̄) dx−

∫
Ω

max|ξ|≤c̄ F (x, ξ) dx
) ,

the problem (Nf
λ ) admits at least one non-trivial weak solution ũ such that ‖ũ‖ > c̄

k .

Proof. We take Φ and Ψ as in the proof of Theorem 3.1. They satisfy all regularity
assumptions requested in Theorem 2.2. Moreover, by standard computations, condi-
tion (12) implies that Φ − λΨ, λ > 0, is coercive. So, our aim is to verify condition
(5) of Theorem 2.2. To this end, put

r =
1

p

( c̄
k

)p
and u0(x) = d̄ for all x ∈ Ω.
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Arguing as in the proof of Theorem 3.1 we obtain that

ρ(r) ≥
pkp
( ∫

Ω
F (x, d̄) dx−

∫
Ω

max|ξ|≤c̄ F (x, ξ) dx
)

kp(1 + d̄p)|Ω| − c̄p
.

So, from our assumption it follows that ρ(r) > 0. Hence, from Theorem 2.2 for each

λ > λ̃, the functional Φ−λΨ admits at least one local minimum ũ such that ‖ũ‖ > c̄
k

and our conclusion is achieved. �

4. Some consequences

The main aim of this section is to present multiplicity results. First, as consequence
of Theorem 3.4, we have the following multiplicity result.

Theorem 4.1. Assume that g is non-negative and

(j) lim supξ→0+
G(ξ)
ξp = +∞,

(jj) there are constants µ > p and r > 0 such that, for all |ξ| ≥ r, one has

0 < µG(ξ) < ξg(ξ). (13)

Then, for each λ ∈]0, λ∗[, where λ∗ = 1
pkp‖α‖1 supc>0

cp

G(c) the problem (9) admits at

least two non-negative weak solutions.

Proof. Fix λ ∈]0, λ∗[.Owing to (j), Theorem 3.4 (see also Remark 3.1) ensures that the
problem (9) admits at least one positive weak solution ū which is local minimum of the
functional Φ−λΨ as defined before. We can assume that ū is a strict local minimum for
Φ−λΨ in X. Therefore, there is ρ > 0 such that inf‖u−ū‖=ρ(Φ−λΨ)(u) > (Φ−λΨ)(ū).
By standard computations from (jj) one has that Φ− λΨ is unbounded from below.
So, there is u2 such that (Φ − λΨ)(u2) < (Φ − λΨ)(ū), for which Φ − λΨ satisfies
the geometry of mountain pass. Again from (jj), by standard computations, Φ− λΨ
satisfies the Palais-Smale condition. Hence, the classical theorem of Ambrosetti and
Rabinowitz ensures a critical point u∗ of Φ−λΨ such that (Φ−λΨ)(u∗) > (Φ−λΨ)(ū).
So, ū and u∗ are two distinct weak solutions of (9) and the proof is complete. �

Next, as a consequence of Theorems 3.2, 3.5 the following theorem of the existence
of three solutions is obtained and its consequence for the nonlinearity with separable
variables is presented.

Theorem 4.2. Assume that (12) holds. Moreover, assume that there exist four
positive constants c, d, c̄, d̄ with

k p
√

(1 + dp)|Ω| < c ≤ c̄ < k p

√
(1 + d̄p)|Ω|,

such that (7), (11) and∫
Ω

max|ξ|≤c F (x, ξ) dx

cp
<

∫
Ω
F (x, d̄) dx−

∫
Ω

max|ξ|≤c̄ F (x, ξ) dx

kp(1 + d̄p)|Ω| − c̄p
(14)

are satisfied.

Then, for each λ ∈ Λ =
]

max
{
λ̃, (1+dp)|Ω|

p
∫
Ω
F (x,d)dx

}
, 1
pkp

cp∫
Ω

max|ξ|≤c F (x,ξ) dx

[
, the prob-

lem (Nf
λ ) admits at least three weak solutions.
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Proof. First, we observe that Λ 6= ∅ owing to (14). Next, fix λ ∈ Λ. Theorem 3.2
ensures a non-trivial weak solution ū such that ‖ū‖ < c

k which is a local minimum
for the associated functional Φ− λΨ, as well as Theorem 3.5 guarantees a non-trivial
weak solution ũ such that ‖ũ‖ > c̄

k which is a local minimum for Φ− λΨ. Hence, the
mountain pass theorem as given by Pucci and Serrin (see [9]) ensures the conclusion.

�

Theorem 4.3. Assume that g is a non-negative function such that

lim sup
ξ→0+

G(ξ)

ξp
= +∞, (15)

lim sup
ξ→+∞

G(ξ)

ξp
= 0. (16)

Further, assume that there exist two positive constants c̄, d̄, with c̄ < k p
√

(1 + d̄p)|Ω|,
such that

G(c̄)

c̄p
<

G(d̄)

kp(1 + d̄p)|Ω|
. (17)

Then, for each λ ∈
]

1
p‖α‖1

(1+d̄p)|Ω|
G(d̄)

, 1
pkp‖α‖1

c̄p

G(c̄)

[
, the problem (9) admits at least three

weak non-negative solutions.

Proof. Clearly, (16) implies (12). Moreover, by choosing d small enough and c = c̄,
simple computations show that (15) implies (7). Finally, from (17) we get (11) and,
arguing as in the proof of Theorem 3.2, also (14). Hence, Theorem 4.2 ensures the
conclusion. �

Remark 4.1. If g(0) 6= 0 Theorem 4.1 ensures two positive weak solutions while
Theorem 4.3 ensures three positive weak solutions (see proof of Theorem 3.3).

Finally, we present an example of a problem that admits two positive solutions
owing to Theorem 4.1.

Example 4.1. owing to Theorem 4.1, for each λ ∈
]
0, 1

pkp|Ω|
2p+1
2p+2

[
, the problem −div

((
1 + |∇u|p√

1+|∇u|2p

)
|∇u|p−2∇u

)
+ |u|p−2u = λ(u2p + 1) in Ω,

∂u
∂ν = 0 on ∂Ω,

admits at least two positive weak solutions. In fact,

lim
u→0+

g(u)

up−1
= lim
u→0+

u2p + 1

up−1
= +∞,

and (13) is satisfied as a simple computation shows. Moreover, we have

λ∗ =
1

pkp‖α‖1
sup
c>0

cp

G(c)
=

1

pkp|Ω|
sup

c∈]0,+∞[

cp

c2p+1

2p+1 + c
≥ 1

pkp|Ω|
2p+ 1

2p+ 2
.
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