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1. Introduction

Let f be a continuous convex function defined on an interval I ⊆ R. In 1905,
Jensen showed that for any finite subset {xj | j ∈ J} of I, and for any family of
non-negative scalars {λj | j ∈ J} in R, with

∑
j∈J λj = 1,

f
(∑
j∈J

λjxj

)
≤
∑
j∈J

λjf(xj) (1)

(see [15, 16]). One can also pass from the discrete case to a more general case and
obtain an integral formula extending (1). Let (X,Σ, µ) be a probability measure
space; i.e. Σ be a σ-algebra of subsets of a non-empty set X and µ : Σ → [0, 1] be a
probability measure. Then for an integrable function ϕ : X → R, with ϕ(X) ⊆ I, we
have

f
(∫

X

ϕdµ
)
≤
∫
X

(f ◦ ϕ) dµ (2)

The above inequalities, widely known as Jensen’s inequalities, can be generalized to
more general contexts. (see [1, 4, 6, 7, 9, 12, 13, 17, 18]).

If f is a real continuous function on some interval I in R and A is a bounded self-
adjoint operator on a Hilbert space with spectrum in I, we can use spectral theory
to define a bounded self-adjoint operator

f(A) =

∫ +∞

−∞
f(λ)dEA(λ), (3)

where EA is the spectral measure of A. A continuous function f : I → R is said to
be operator convex if

f
(
αA+ (1− α)B

)
≤ αf(A) + (1− α)f(B) (4)
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for any α ∈ [0, 1] and every pair of self-adjoint operators A and B on an infinite-
dimensional Hilbert space H with spectra in I.

In [13], Hansen and Pedersen proved that if f is a continuous, operator convex
function defined on an interval I, then for each natural number n, Jensen’ s operator
inequality

f
( n∑
i=1

a∗i xiai
)
≤

n∑
i=1

a∗i f(xi)ai (5)

holds for every n-tuple (x1, ..., xn) of bounded, self-adjoint operators on an arbitrary
Hilbert space H with spectra contained in I and every n-tuple (a1, ..., an) of operators
on H with

∑n
i=1 a

∗
i ai = 1H.

In [9], a Bochner integral formation of Jensen’s inequality is presented for self-
adjoint matrix-valued functions and measures. Farenick and Zhou proved that for
a matrix-valued probability measure space (X,Σ, µ), if I is an open interval such
that [α, β] ⊆ I and if ϕ is a measurable map from X to the real vector space of all
self-adjoint operators on Cn for which the spectra σ(ϕ(x)) ⊆ [α, β] for every x ∈ X,
then

f
(∫

X

ϕdµ
)
≤
∫
X

(f ◦ ϕ)dµ (6)

for every operator convex function f : I → R.
The aim of this paper is to generalize Jensen’s inequality to operator s-convex

functions.

2. Preliminaries

First, we review the operator order in B(H) and the continuous functional calculus
for a bounded selfadjoint operator. For selfadjoint operators A,B ∈ B(H) we write
A ≤ B(or B ≥ A) if 〈Ah, h〉 ≤ 〈Bh, h〉 for every vector h ∈ H, we call it the operator
order. Now, let A be a bounded selfadjoint linear operator on a complex Hilbert space
(H; 〈., .〉) and C(σ(A)) the C∗ -algebra of all continuous complex-valued functions on
the spectrum of A. The Gelfand map establishes a ∗-isometrically isomorphism ψ
between C(σ(A)) and the C∗-algebra C∗(A) generated by A and the identity operator
1H on H as follows (see for instance [10, p.3]): For f, g ∈ C(σ(A)) and α, β ∈ C

(i) ψ(αf + βg) = αψ(f) + βψ(g);
(ii) ψ(fg) = ψ(f)ψ(g) and ψ(f∗) = ψ(f)∗;
(iii) ‖ψ(f)‖ = ‖f‖ := supt∈σ(A) |f(t)|;
(iv) ψ(f0) = 1H and ψ(f1) = A, where f0(t) = 1 and f1(t) = t, for
t ∈ σ(A).

If f is a continuous complex-valued functions on σ(A), the element ψ(f) of C∗(A)
is denoted by f(A), and we call it the continuous functional calculus for a bounded
selfadjoint operator A.

If A is a bounded selfadjoint operator and f is a real-valued continuous function
on σ(A), then f(t) ≥ 0 for any t ∈ σ(A) implies that f(A) ≥ 0, i.e., f(A) is a positive
operator on H. Moreover, if both f and g are real-valued functions on σ(A) such that
f(t) ≤ g(t) for any t ∈ σ(A), then f(A) ≤ g(A) in the operator order in B(H).
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A real valued continuous function f on an interval I is said to be operator convex
(operator concave) if

f((1− λ)A+ λB) ≤ (≥)(1− λ)f(A) + λf(B) (7)

in the operator order in B(H), for all λ ∈ [0, 1] and for every bounded self-adjoint
operators A and B in B(H) whose spectra are contained in I. When considering n-
by-n symmetric or hermitian matrices, an operator convex function is called a matrix
convex function of order n.

J. Bendat and S. Sherman in [3] proved the following lemma:

Lemma 2.1. A function is an operator convex function in (a, b) if and only if it is a
matrix convex function in (a, b) for all finite orders n.

As examples of such functions, we give the following examples, another proof of
them and further examples can be found in [10].

Example 2.1. (i) The convex function f(t) = αt2 + βt + γ (α ≥ 0, β, γ ∈ R) is
operator convex on every interval. To see it, for all self-adjoint operators A and B:

f(A) + f(B)

2
− f

(
A+B

2

)
= α

(
A2 +B2

2
−
(
A+B

2

)2
)

+ β

(
A+B

2
− A+B

2

)
+ (γ − γ)

=
α

4
(A2 +B2 −AB −BA) =

α

4
(A−B)2 ≥ 0.

(ii) The convex function f(t) = t3 on [0,∞) is not operator convex. In fact, if we put

A =

[
3 −1
−1 1

]
& B =

[
1 0
0 0

]
,

then

A3 +B3

2
−
(
A+B

2

)3

=
1

8

[
67 −34
−34 17

]
� 0.

In this section, we also mention some useful lemmas, which is frequently applied
in the next sections (see [10]).

Lemma 2.2. Let H be a Hilbert space. If A ∈ Bh(H) is selfadjoint and U is unitary,
i.e. U∗U = UU∗ = 1H, then f(U∗AU) = U∗f(A)U for every f ∈ C(σ(A)).

Lemma 2.3. Let H be a Hilbert space, I be an interval in R and Aj ∈ Bh(H),
(j = 1, 2, ..., n), be selfadjoint with σ(Aj) ⊆ I. If f is a real value function on I, then

f


A1 0

A2

. . .

0 An

 =


f(A1) 0

f(A2)
. . .

0 f(An)


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3. Some discrete inequalities of Jensen’s type for operator s-convex func-
tions

In this section we establish an operator Jensen’s inequality and some new inequal-
ities of Jensen’s type, for operator s-convex functions. Then, we compere these in-
equalities. First, we recall some definitions and properties of s-convex and operator
s-convex functions.

Definition 3.1. i) A function f : [0,∞)→ R is said to be s-convex in the first sense
if

f (αx+ βy) ≤ αsf(x) + βsf(y)

holds for all x, y ∈ [0,∞) and α, β ≥ 0 with αs + βs = 1. The class of s-convex
functions in the first sense is usually denoted with K1

s .
ii) A function f : [0,∞)→ R is said to be s-convex in the second sense if

f (λx+ (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

holds for all x, y ∈ [0,∞), λ ∈ [0, 1] and for some fixed s ∈ (0, 1]. The class of s-convex
functions in the second sense is usually denoted with K2

s . It can be easily seen that
for s = 1, s-convexity reduces to ordinary convexity of functions defined on [0,∞).

It is proved in [14] that if s ∈ (0, 1) then f ∈ K2
s implies f([0,∞)) ∈ [0,∞), i.e.,

they proved that all functions from K2
s , s ∈ (0, 1), are nonnegative.

In [5], Chen proved that f : [0,∞) → R is an s-convex function in the second
sense if and only if for every x1, ...xn ≥ 0 and no-negative real number α1, ...αn with∑n
i=1 αi = 1, we have

f

(
n∑
i=1

αixi

)
≤

n∑
i=1

αsi f(xi). (8)

In the special case, if αi = 1
n for every i ∈ {1, 2, ..., n}, we have

f

(
1

n

n∑
i=1

xi

)
≤ 1

ns

n∑
i=1

f(xi), (9)

for every s-convex function f . Note that (8) is Jensen’s inequality for s-convex function
f .

We denoted by B(H)+ the set of all positive operators in B(H) and

C(H) := {A ∈ B(H)+ : AB +BA ≥ 0, for allB ∈ B(H)+}

It is obvious that C(H) is a closed convex cone in B(H).

Definition 3.2. Let I be an interval in [0,∞) and K be a convex subset of B(H)+.
A continuous function f : I → R is said to be operator s-convex on I for operators in
K if

f((1− λ)A+ λB) ≤ (1− λ)sf(A) + λsf(B) (10)

in the operator order in B(H), for all λ ∈ [0, 1] and for every positive operators A and
B in K whose spectra are contained in I and for some fixed s ∈ (0, 1]. For K = B(H)+

we say f is operator s-convex on I. It is easy to show that every operator s-convex
function on I is s-convex in the second sense on I.
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When considering n-by-n real symmetric or hermitian matrices with non-negative
eigenvalues, an operator s-convex function is called a matrix s-convex function of order
n.

The following lemma will turn out to be useful in the proof of results (see [2,
Lemma 4.1]).

Lemma 3.1. Let (An)n∈N be a sequence of self-adjoint operators in B(H) converging
to some A ∈ Bh(H) (in the norm topology of B(H)). Suppose I is an open interval of
R which encompasses σ(A) and σ(An) for every n ∈ N. If f : I → R is a continuous
function, then f(An)→ f(A).

Lemma 3.2. A function is an operator s-convex function on I if and only if it is a
matrix s-convex function on I for all finite orders n.

Proof. It is obvious that an operator s-convex function on I is a matrix s-convex
function on I for all finite orders n. To see the converse, without loss of generality,
assume that f(x) defined in interval I containing the origin. Let A be a bounded
positive operator in a Hilbert space H, with spectrum in I, represented in a special
coordinate system (x1, x2, ..., xn, ...) of H by the matrix (aik)∞i,k=1. Define An by the
matrix

An =

 a11 ... a1n

...
...

an1 ... ann

 .

Now the strong limit, limn→∞An = A, i.e. ‖Anx−Ax‖ → 0 for each x in H. Since f
is a matrix s-convex function on I for all finite order n, f is continuous on I. So, by
Lemma 3.1, we have limn→∞ f(An) = f(A). Let A and B be two bounded positive
operators with spectrum in I. Then f ((1− λ)An + λBn) ≤ (1−λ)sf(An)+λsf(Bn),
since s-convexity of the nth order is assumed. Now, letting n→∞, we obtain

f ((1− λ)A+ λB)← f ((1− λ)An + λBn)

≤ (1− λ)sf(An) + λsf(Bn)→ (1− λ)sf(A) + λsf(B)

or f((1− λ)A+ λB) ≤ (1− λ)sf(A) + λsf(B), since f(x) converges uniformly in the
closed convex hull of the combined spectra of A and B contained in I. It proves that
f(x) is an operator s-convex function. �

Lemma 3.3. If f is operator s-convex on [0,∞) for operators in K, then f(A) is
positive for every A ∈ K.

One can see the proof of this lemma in [11].
In [19], Moslehian and Najafi proved the following theorem for positive operators as
follows:

Theorem 3.4. Let A,B ∈ B(H)+ . Then AB +BA is positive if and only if f(A+
B) ≤ f(A) + f(B) for all non-negative operator monotone functions f on [0,∞).

As an example of operator s-convex function, we give the following example.

Example 3.1. Since for every positive operators A,B ∈ C(H), AB + BA ≥ 0,
utilizing Theorem 3.4 we get

((1− t)A+ tB)s ≤ (1− t)sAs + tsBs.
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Therefore the continuous function f(t) = ts (0 < s ≤ 1) is operator s-convex on [0,∞)
for operators in C(H).

Proposition 3.5. (Jensen’s inequality) Let H be a Hilbert space, I be an interval
in [0,∞) and f be a real valued continuous function on I. The following statements
are equivalent:

(i) f is an operator s-convex function on I,
(ii) For every A1, ..., An ∈ B(H)+ with spectra contained in I, and non-negative

real number λ1, ..., λn with
∑n
j=1 λj = 1, we have

f

 n∑
j=1

λjAj

 ≤ n∑
j=1

λsjf(Aj). (11)

Proof. Suppose that f is an operator s-convex function on I. We will prove (ii) by
induction on n ∈ N, n ≥ 2. For n = 2, the inequality is obvious by definition. Suppose
that the above inequality is valid for n. For natural number n+ 1, let A1, ..., An+1 ∈
B(H)+ with spectra contained in I, and λ1, ..., λn+1 ∈ R+ with

∑n+1
j=1 λj = 1. Then

f

n+1∑
j=1

λjAj

 = f

(1− λn+1)

n∑
j=1

λj
1− λn+1

Aj + λn+1An+1


≤ (1− λn+1)sf

 n∑
j=1

λj
1− λn+1

Aj

+ λsn+1f(An+1)

≤ (1− λn+1)s
n∑
j=1

(
λj

1− λn+1

)s
f(Aj) + λsn+1f(An+1)

=

n+1∑
j=1

λsjf(Aj),

then, (ii) is proved.
It is obvious that (ii) implies (i). �

Theorem 3.6. Let H and K be Hilbert space, I be an interval in [0,∞) and f be a
real valued continuous function on I. Let A and Aj be positive operators on H with
spectra contained in I (j = 1, 2, ..., n). If f is an operator s-convex function on I then
the following conditions hold:

(i) For every A ∈ B(H)+ and isometry C ∈ B(K,H), i.e., C∗C = 1K, we have

f(C∗AC) ≤ 21−sC∗f(A)C. (12)

(ii) For every Aj ∈ B(H)+ and Cj ∈ B(K,H) with
∑n
j=1 C

∗
jCj = 1K (j = 1, ..., n),

we have

f(

n∑
j=1

C∗jAjCj) ≤ 21−s
n∑
j=1

C∗j f(Aj)Cj . (13)
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Proof. (i) Let X =

(
A 0
0 B

)
∈ B(H⊕K)+ for some positive operator B ∈ B(K)+

with spectra contained in I and

U =

(
C D
0 −C∗

)
, V =

(
C −D
0 C∗

)
∈ B(K ⊕H,H⊕K),

where D =
√

1H − CC∗. Since C∗D =
√

1K − C∗CC∗ = 0 ∈ B(H,K) and DC =
C
√

1K − C∗C = 0 ∈ B(K,H), it follows that both U and V are unitary operators on
H⊕K. Then

U∗XU =

(
C∗AC C∗AD
DAC DAD + CBC∗

)
and

V ∗XV =

(
C∗AC −C∗AD
−DAC DAD + CBC∗

)
.

So, we have (
C∗AC 0

0 D∗AD + CBC∗

)
=
U∗XU + V ∗XV

2
.

Hence, it follows from the operator s-convexity of f and Lemmas 2.2, 2.3 that(
f(C∗AC) 0

0 f(D∗AD + CBC∗)

)
= f

(
C∗AC 0

0 D∗AD + CBC∗

)
= f

(
U∗XU + V ∗XV

2

)
≤ f(U∗XU) + f(V ∗XV )

2s

= 21−sU
∗f(X)U + V ∗f(X)V

2

= 21−s
(
C∗f(A)C 0

0 D∗f(A)D + Cf(B)C∗

)
.

Thus we have f(C∗AC) ≤ 21−sC∗f(A)C by seeing the (1,1)-components.
(ii) Let

A =


A1 0

A2

. . .

0 An

 , C =


C1

C2

...
Cn

 .

Then A ∈ B(H ⊕ ... ⊕ H) is a positive operator with spectra contained in I and
C ∈ B(K,H⊕ ...⊕H) is an isometry, i.e., C∗C = 1K. Hence it follows from (i) that

f(

n∑
j=1

C∗jAjCj) = f(C∗AC) ≤ 21−sC∗f(A)C = 21−s
n∑
j=1

C∗j f(Aj)Cj

�
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Corollary 3.7. Let H be a Hilbert space, I be an interval in [0,∞) that contains 0
and f be a real valued continuous function on I. If f is an operator s-convex function
on I with f(0) = 0 then for each natural number n, the inequality

f(

n∑
j=1

C∗jAjCj) ≤ 21−s
n∑
j=1

C∗j f(Aj)Cj

holds for every n-tuple (A1, ..., An) of bounded positive operators on H with spectra
contained in I and every n-tuple (C1, ..., Cn) of operators on H with

∑n
j=1 C

∗
jCj ≤ 1H.

Proof. Define Cn+1 := (1H −
∑n
j=1 C

∗
jCj)

1
2 . Then Cn+1 ∈ B(H) and

∑n+1
j=1 C

∗
jCj =

1H. Put An+1 = 0, by Theorem 3.6, we obtain

f

 n∑
j=1

C∗jAjC

 = f

n+1∑
j=1

C∗jAjCj


≤ 21−s

n+1∑
j=1

C∗j f(Aj)Cj = 21−s
n∑
j=1

C∗j f(Aj)Cj .

�

Corollary 3.8. Let H be a Hilbert space and f an operator s-convex function on
[0,∞) with f(0) = 0 and A,B ∈ B(H) with spectra contained in (0,∞). If A ≤ B,
then

A−1f(A) ≤ 21−sB−1f(B)

Proof. We define C := B−1/2A1/2. Then CC∗ = B−1/2AB−1/2 ≤ 1H, so C∗C ≤ 1H.
Now by Corollary 3.7 we have

f(A) = f(C∗BC) ≤ 21−sC∗f(B)C = 21−sA1/2B−1/2f(B)B−1/2A1/2.

Using the commutativity of A and f(A) and the commutativity of B and f(B), we
have the desired result. �

Remark 3.1. Let f : I ⊆ [0,∞) → R be an operator s-convex function. Let Aj ∈
B(H)+ be positive operators on H with spectra contained in I, and λj ∈ R+ (j =
1, 2, ...) with

∑n
j=1 λj = 1. Let

A =


A1 0

A2

. . .

0 An

 , C =


√
λ1√
λ2

...√
λn

 .

It is easy to show that A ∈ B(H⊕...⊕H) is a positive operator with spectra contained
in I and C is an isometry in B(H,H⊕ ...⊕H). Using Theorem 3.6, we have

f(

n∑
j=1

λjAj) ≤ 21−s
n∑
j=1

λjf(Aj). (14)
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We define

γf (λ,A) : =

n∑
j=1

λsjf(Aj)− 21−s
n∑
j=1

λjf(Aj) (15)

=

n∑
j=1

λj
(
λs−1
j − 21−s) f(Aj).

where λ = (λ1, ..., λn) and A = (A1, ..., An). Note that if λj ≤ 1
2 for j = 1, 2, ..., n,

then γf (λ,A) ≥ 0 (since f(Aj), λj ≥ 0 for j = 1, 2, ..., n). It shows that if λj ≤ 1
2 for

j = 1, 2, ..., n, then the inequality in (14) is a refinement of (11). But it is not true
generally. For example, let s ∈ (0, 1], f(t) = ts, A1 = 0 and λ > 1

2 . By Example 3.1,
we know that f is an operator s-convex function on [0,∞). Using positivity of f , we
have

(1− λ)sf(A1) + λsf(A2) = λsf(A2) < 21−sλf(A2) = 21−s ((1− λ)f(A1) + λf(A2)) ,

where A2 is an arbitrary operator in B(H)+. So, in this case, (14) is not refinement
of (11).

4. Davis-Choi-Jensen’s type inequality for operator s-convex functions

In this section, we introduce an inequality of Davis-Choi-Jensen’s type and making
use of it, we give another version of Jensen’s inequality for operator s-convex functions.
Now, we recall the definition of normalized positive linear maps which will be used
throughout this section.

Definition 4.1. A linear map Φ : B(H) → B(K) is called positive if A ∈ B(H)+

implies Φ(A) ∈ B(K)+.
A linear map Φ : B(H)→ B(K) is called normalized if Φ(1H) = 1K.
We denote P [B(H), B(K)] as the set of all positive linear maps Φ : B(H)→ B(K) and
PN [B(H), B(K)] as the set of all normalized positive linear maps Φ ∈ P [B(H), B(K)].

Theorem 4.1. Let Φ be a normalized positive linear map in PN [B(H), B(K)], and
f is an operator s-convex function on an interval I. Then

f (Φ(A)) ≤ 21−sΦ (f(A)) (16)

for every positive operator A on H with spectra contained in I.

Proof. Note that a C∗-algebra C∗(A) generated by A and 1H is a commutative C∗-
algebra, since A is positive. By Stinespring decomposition theorem, Φ restricted to
C∗(A) admits a decomposition Φ(X) = C∗φ(X)C for all X ∈ C∗(A), where φ is a
representation of C∗(A) ⊂ B(H), and C is an isometry in B(K,H). Hence it follows
from Theorem 3.6 that

f(Φ(A)) = f(C∗φ(A)C) ≤ 21−sC∗f(φ(A))C = 21−sC∗φ(f(A))C = 21−sΦ(f(A))

�

Using Proposition 3.5, Theorem 4.1 and Remark 3.1 , we obtain the following
theorem.
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Theorem 4.2. Let I be an interval in [0,∞) and A1, ..., An ∈ B(H) be positive
operators on H, with spectra contained in I. Let Φj ∈ PN [B(H), B(K)] be normalized
positive maps and λ1, ..., λn ∈ R+ be any finite number of positive real numbers with∑n
j=1 λj = 1. If f, g ∈ C(I), f ≤ g and f is operator s-convex on I, then the following

inequalities hold:

f

 n∑
j=1

λjΦj(Aj)

 ≤ 21−s
n∑
j=1

λsjΦj (g(Aj)) , (17)

f

 n∑
j=1

λjΦj(Aj)

 ≤ 41−s
n∑
j=1

λjΦj (g(Aj)) (18)

Proof. Using (11) and (16), we have

f

 n∑
j=1

λjΦj(Aj)

 ≤ n∑
j=1

λsjf (Φj(Aj)) ≤ 21−s
n∑
j=1

λsjΦj (f(Aj)) . (19)

On the other hand, by the spectral theorem and the positivity of Φj , it follows that

Φj (f(Aj)) ≤ Φj (g(Aj)) , j = 1, 2, ...n. (20)

Now, by (19) and (20), we have (17).
Similarly, by (14) and (16), we have

f

 n∑
j=1

λjΦj(Aj)

 ≤ 21−s
n∑
j=1

λjf (Φj(Aj)) ≤ 41−s
n∑
j=1

λjΦj (f(Aj)) . (21)

Now, by (20) and (21), we have the desired result. �

We note that, there is an analogue of Remark 3.1, for the inequalities in (17) and
(18). We omit the details.

Here we present converses of inequality in (18). Notice that we don’t assume the
operator s-convexity of f .
Let f : [m,M ] ⊆ R+ → R be a continuous s-convex function on [m,M ]. For conve-
nience, we define:

µf :=
f(M)− f(m)

M −m
, νf :=

Mf(m)−mf(M)

M −m
(22)

We remark that a straight line l(t) = µf t+ νf is a line thought two points (m, f(m))
and (M,f(M)). By (13) we have

f(λm+ (1− λ)M) ≤ 21−s (λf(m) + (1− λ)f(M)) ,

for every λ ∈ [0, 1]. Therefore we have f(t) ≤ 21−sl(t) for every t ∈ [m,M ], since
for every t ∈ [m,M ] there exist a unique λ ∈ [0, 1] such that t = λm+ (1− λ)M , so
l(t) = l(λm+ (1− λ)M) = λf(m) + (1− λ)f(M).

Theorem 4.3. Let Aj ∈ B(H)+ be positive operators with spectra contained in
[m,M ], Φj ∈ PN [B(H), B(K)] normalized positive linear maps (j=1,...,n). Let λ1, ..., λn ∈
R+ be any finite number of positive real numbers such that

∑n
j=1 λj = 1. Let

f, g ∈ C([m,M ]) and F (u, v) be a real valued continuous function defined on U × V ,
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where f [m,M ] ⊂ U, g[m,M ] ⊂ V . If F (u, v) is operator monotone on a first variable
u and f is s-convex on [m,M ], then

F

 n∑
j=1

λjΦj (f(Aj)) , g

 n∑
j=1

λjΦj(Aj)


≤
{

max
m≤t≤M

F
[
21−s(µf t+ νf ), g(t)

]}
1K (23)

Proof. From f(t) ≤ 21−sl(t) = 21−s(µf t + νf ) for every t ∈ [m,M ], it follows that
f(Aj) ≤ 21−s(µfAj + νf1H) for all j = 1, ..., n. Since Φj is normalized positive linear
map, we have

Φj (f(Aj)) ≤ Φj
(
21−s (µfAj + νf1H)

)
= 21−s (µfΦj(Aj) + νf1K) ,

for j = 1, ..., n. Further, multiplying them with λj , summing of all j = 1, ..., n, and
using

∑n
j=1 λj = 1, we have

n∑
j=1

λjΦj (f(Aj)) ≤ 21−s

µf n∑
j=1

λjΦj(Aj) + νf1K

 . (24)

On the other hand, since m1H ≤ Aj ≤ M1H, we have m1K ≤
∑n
j=1 λjΦj(Aj) ≤

M1K. i.e.
∑n
j=1 λjΦj(Aj) is a positive operator on K with spectra contained in

[m,M ]. Using Operator monotonicity of F (., v), we have

F

 n∑
j=1

λjΦj (f(Aj)) , g

 n∑
j=1

λjΦj(Aj)


≤ F

21−s

µf n∑
j=1

λjΦj(Aj) + νf1K

 , g

 n∑
j=1

λjΦj(Aj)


≤
{

max
m≤t≤M

F
[
21−s(µf t+ νf ), g(t)

]}
1K. (25)

Therefore, desired result is proved. �

In the following theorems we consider complementary problems to Jensen’s type
inequality (18) in Theorem 4.2.

Theorem 4.4. Let Aj ,Φj , λj , j = 1, ..., n be as in Theorem 4.3 and f, g ∈ C([m,M ]).
If f is s-convex function on [m,M ], then for every real number α ∈ R, we have

n∑
j=1

λjΦj (f(Aj)) ≤ αg

 n∑
j=1

λjΦj(Aj)

+ β1K, (26)

where

β = max
m≤t≤M

{
21−s(µf t+ νf )− αg(t)

}
.
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Proof. It is easy to show thatm1K ≤
∑n
j=1 λjΦj(Aj) ≤M1K. Hence g

(∑n
j=1 λjΦj(Aj)

)
is well defined.

Let F (u, v) = u−αv. Then F is operator monotone on u and hence it follows from
Theorem 4.3 that

n∑
j=1

λjΦj (f(Aj))− αg

 n∑
j=1

λjΦj(Aj)

 ≤ max
m≤t≤M

F
(
21−s(µf t+ νf ), αg(t)

)
1K

= max
m≤t≤M

{
21−s(µf t+ νf )− αg(t)

}
1K,

which gives the desired inequality (27). �

If we let g = f in Theorem 4.4, then we obtain the following corollary.

Corollary 4.5. Let Aj ,Φj , λj , j = 1, ..., n be as in Theorem 4.3 and f ∈ C([m,M ]).
If f is s-convex function on [m,M ], then for every real number α ∈ R we have

n∑
j=1

λjΦj (f(Aj)) ≤ αf

 n∑
j=1

λjΦj(Aj)

+ β1K, (27)

where

β = max
m≤t≤M

{
21−s(µf t+ νf )− αf(t)

}
.

Theorem 4.6. Let Aj ,Φj , λj , j = 1, ..., n be as in Theorem 4.3 and f, g ∈ C([m,M ])
and suppose that either of the following conditions holds:

(i) g(t) > 0 for all t ∈ [m,M ],
(ii) g(t) < 0 for all t ∈ [m,M ].

If f is s-convex function on [m,M ], then

n∑
j=1

λjΦj (f(Aj)) ≤ α0g

 n∑
j=1

λjΦj(Aj)

 , (28)

where α0 = maxm≤t≤M

{
21−s

g(t) (µf t+ νf )
}

in the case (i),

or α0 = minm≤t≤M

{
21−s

g(t) (µf t+ νf )
}

in the case (ii).

Proof. Suppose that (i) holds. let F (u, v) := v−1/2uv−1/2. By Theorem 4.3 we have

n∑
j=1

λjΦj (f(Aj)) ≤ max
m≤t≤M

{
21−s

g(t)
(µf t+ νf )

}
g

 n∑
j=1

λjΦj(Aj)

 ,

then the proof in the case (i) is complete.
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Next, Suppose that (ii) holds. Let g1(t) = −g(t) > 0 for all t ∈ [m,M ]. Then we
have

n∑
j=1

λjΦj (f(Aj)) ≤ max
m≤t≤M

{
21−s

g1(t)
(µf t+ νf )

}
g1

 n∑
j=1

λjΦj(Aj)


= − max

m≤t≤M

{
21−s

−g(t)
(µf t+ νf )

}
g

 n∑
j=1

λjΦj(Aj)


= min
m≤t≤M

{
21−s

g(t)
(µf t+ νf )

}
g

 n∑
j=1

λjΦj(Aj)

 .

Then we have the desired results. �

If we let g = f in Theorem 4.6, then we obtain the following corollary.

Corollary 4.7. Let Aj ,Φj , λj , j = 1, ..., n be as in Theorem 4.6 and f ∈ C([m,M ]).
Suppose that either of the following conditions holds:

(i) f(t) > 0 for all t ∈ [m,M ],
(ii) f(t) < 0 for all t ∈ [m,M ].

If f is s-convex function on [m,M ], then

n∑
j=1

λjΦj (f(Aj)) ≤ α0f

 n∑
j=1

λjΦj(Aj)

 , (29)

where α0 = maxm≤t≤M

{
21−s

f(t) (µf t+ νf )
}

in the case (i),

or α0 = minm≤t≤M

{
21−s

f(t) (µf t+ νf )
}

in the case (ii).

5. Some integral inequalities of Jensen’s type for operator s-convex func-
tions

If (X,Σ, µ) is a measure space and B is a Banach space, a map ϕ : X → B is called
simple if there exist b1, ..., bn ∈ B and E1, ..., En ∈ Σ which satisfy that Ei ∩ Ej = ∅
for i 6= j, such that

ϕ(x) =

n∑
i=1

biχEi(x), x ∈ X

where χEi(x) = 1 if x ∈ Ei and χEi(x) = 0 if x /∈ Ei. A map ϕ : X → B is called
µ-measurable if there exists a sequence of simple maps ϕn from X to B with

lim
n→∞

‖ϕn(x)− ϕ(x)‖ = 0

µ-almost everywhere.
A map ϕ : X → B is called weakly µ-measurable if for each Ψ ∈ B∗ the function

Ψ(ϕ) is µ-measurable, where B∗ is the dual space of B. By Pettiss measurability
theorem, a µ-measurable map from a measure space to a Banach space is weakly
µ-measurable [8].

Let H be a Hilbert space and B = B(H). If ϕ : X → B(H) is measurable, then it
is easily seen that for every pair of elements h1, h2 in H, the function ϕh1,h2

: X → C
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defined by ϕh1,h2
(x) = 〈ϕ(x)h1, h2〉 is also measurable. IfH is finite dimensional, then

clearly the converse is also true. This explains why in [9] the notion of measurability
is given in this latter form.
For A,B ∈ Bh(H) the subsets (A,+∞) and [A,+∞) of B(H) are defined as follows:

(A,+∞) = {C ∈ Bh(H)|σ(C −A) ⊆ (0,+∞)},
[A,+∞) = {C ∈ Bh(H)|σ(C −A) ⊆ [0,+∞)}.

The subsets (−∞, B) and (−∞, B] are defined similarly. Using these subsets, we may
define other intervals. For example (A,B) is defined as (−∞, B) ∩ (A,+∞).

Note that the subsets (−∞, B] and [A,+∞) are closed subsets of B(H), while,
unlike its apparent form, an interval in the form (A,B) is not necessarily open.

The following proposition asserts that for a measurable function ϕ : X → Bh(H)
the sequence of measurable simple functions which converges a.e. on X to ϕ maybe
chosen to satisfy some more properties.

Proposition 5.1. Let (X,Σ) be a measurable space and suppose that ϕ : X → Bh(H)
is a measurable function. If there is an open interval (α, β) ⊆ R with σ(ϕ(x)) ⊆ (α, β)
for all x ∈ X, then there is a sequence of measurable simple functions ϕn : X →
Bh(H) which converges a.e. on X to ϕ, moreover satisfies

∀n ∈ N, ∀x ∈ X, σ(ϕn(x)) ⊆ (α, β)

One can see the proof of this proposition in [2].
Let (X,Σ, µ) be a measure space, and let B be a Banach space. A µ-measurable

map ϕ : X → B is said to be Bochner integrable if there exists a sequence of simple
maps {ϕn} from X to B such that

lim
n→∞

∫
Ω

‖ϕ(x)− ϕn(x)‖dµ = 0. (30)

In this case, for any E ∈ Σ, the Bochner integral of ϕ over E is defined by∫
E

ϕ(x)dµ = lim
n→∞

∫
E

ϕn(x)dµ,

in the sense of strong convergence in B, where
∫
E
ϕn(x)dµ is defined in an obvious

way [8]. By [8, Chapter II, Theorem 2], a µ-measurable function ϕ : X → B is
Bochner integrable if and only if

∫
X
‖ϕ‖dµ < ∞. Hence in the case where (X,Σ, µ)

is a finite measure space, if a measurable function ϕ : X → B is bounded, then it
is integrable. We can see that the sequence {ϕn}n∈N satisfying (30) may be chosen
so that it converges everywhere on X to ϕ and ‖ϕn(x)‖ ≤ ‖ϕ(x)‖ for all n ∈ N and
x ∈ X.

Since in the next section we will consider the special case B = B(H), the following
lemma will turn out to be useful (see [2, Lemma 3.4]).

Lemma 5.2. (i) If the measurable function ϕ : X → B(H) is integrable then∫
X
ϕdµ ∈ B(H) satisfies

∀h ∈ H,
〈(∫

X

ϕdµ

)
h, h

〉
=

∫
X

〈ϕh, h〉dµ,
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where 〈ϕh, h〉 : X → C is given by 〈ϕh, h〉(x) = 〈ϕ(x)h, h〉.
(ii) If ϕ,ψ : X → Bh(H) are integrable and if ϕ(x) ≤ ψ(x) for all x ∈ X, then∫

X

ϕdµ ≤
∫
X

ψdµ.

Theorem 5.3. Let (X,Σ, µ) be a probability measure space, H be a Hilbert space, I
be an open interval in [0,∞) and f : I → R be an operator s-convex function on I.
Suppose ϕ : X → B(H)+ is a measurable function for which there exist α and β in R
such that

∀x ∈ X, σ(ϕ(x)) ⊆ [α, β] ⊂ I.
Then f ◦ ϕ is Bochner integrable and

f

(∫
X

ϕdµ

)
≤ 21−s

∫
X

f ◦ ϕdµ. (31)

Proof. First suppose ϕ is a measurable simple function in the form
∑n
j=1 ajχEj

with

aj ∈ B(H)+ for all j = 1..., n. Clearly, f ◦ ϕ =
∑n
j=1 f(aj)χEj

is also a measurable

simple function and hence Bochner integrable. Since σ(aj) ⊂ [α, β] for every j =
1, ..., n and

∑n
j=1 µ(Ej) = 1, we have also

σ

(∫
X

ϕdµ

)
= σ

 n∑
j=1

µ(Ej)aj

 ⊂ [α, β].

Hence f
(∫
X
ϕdµ

)
is well defined and

f

(∫
X

ϕdµ

)
= f

 n∑
j=1

µ(Ej)aj

 ≤ 21−s
n∑
j=1

µ(Ej)f(aj) = 21−s
∫
X

f ◦ ϕdµ.

Now for the general case, using the assumption, there are α′ and β′ in R with

∀x ∈ X, σ(ϕ(x)) ⊂ [α, β] ⊂ (α′, β′) ⊂ [α′, β′] ⊂ I.

Then there is a sequence (ϕn)n∈N of measurable simple functions which converges
everywhere on X to ϕ. and which satisfies

∀n ∈ N, ∀x ∈ X, σ(ϕn(x)) ⊂ (α′, β′).

Hence (ϕn)n∈N is uniformly bounded. By the dominated convergence theorem,
∫
X
‖ϕ−

ϕn‖dµ → 0, whence
∫
X
ϕndµ →

∫
X
ϕdµ. Note also, since α1H ≤ ϕ(x) ≤ β1H for

all x ∈ X, α1H ≤
∫
X
ϕdµ ≤ β1H. Hence σ

(∫
X
ϕdµ

)
⊂ [α, β] ⊂ I. Similarly,

σ
(∫
X
ϕndµ

)
⊂ [α′, β′] ⊂ I. Thus, by Lemma 2.3, we have

f

(∫
X

ϕndµ

)
→ f

(∫
X

ϕdµ

)
. (32)

Moreover, the same lemma implies that the sequence (f ◦ϕn)n∈N of measurable simple
functions converges pointwise on X to f ◦ ϕ. Hence f ◦ ϕ : X → B(H)+ is also
measurable. On the other hand,

∀x ∈ X, ‖f ◦ ϕ(x)‖ = ‖f‖∞,σ(ϕ(x)) ≤ ‖f‖∞,[α,β].
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Again by the dominated convergence theorem,∫
X

f ◦ ϕndµ→
∫
X

f ◦ ϕdµ. (33)

Finally, by the first part of the proof, for each n ∈ N we have

f

(∫
X

ϕndµ

)
≤ 21−s

∫
X

f ◦ ϕndµ.

By using (32) and (33) we have the desired result in (31). �
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Math. 30 (1906), 175–193.

[17] B. Mond, J. Pecaric, Converses of Jensen’s inequality for several operators, Rev. Anal. Numer.

Theor. Approx. 23 (1994), 179–183.
[18] B. Mond, J. Pecaric, On Jensen’s inequality for operator convex functions, Houston J. Math.

21 (1995), 739–754.

[19] M.S. Moslehian, H. Najafi, Around operator monotone functions, Integr. Equ. Oper. Theory.
71 (2011), 575–582, doi: 10.1007/s00020-011-1921-0.

(Marziyeh Shafiei, Amir Ghasem Ghazanfari) Department of Mathematics, Lorestan
University, P.O.Box 465, Khoramabad, Iran

E-mail address: shafieimarziyeh@gmail.com, ghazanfari.a@lu.ac.ir


