Decomposition of A-ideals in $M V$-modules

S. Saidi Goraghani and R. A. Borzooei

Abstract

In this paper, by considering the notion of $M V$-modules, we present definition of radical of an ideal in $M V$-algebras by prime ideals that in last was defined by maximal ideals. Also, we define the notions of primary and P-primary A-ideals in $M V$-modules. Then we show that under conditions, if an A-ideal has a primary decomposition, then it has a reduced primary decomposition. Finally, we characterize proper A-ideals that have a reduced primary decomposition.

2010 Mathematics Subject Classification. 06F35; 06D99; $08 A 05$.
Key words and phrases. MV-algebra, radical, primary and P-primary, primary decomposition.

1. Introduction

$M V$-algebras were defined by C.C. Chang [2, 3] as algebras corresponding to the Lukasiewicz infinite valued propositional calculus. These algebras have appeared in the literature under different names and polynomially equivalent presentation: $C N$ algebras, Wajsberg algebras, bounded commutative $B C K$-algebras and bricks. It is discovered that $M V$-algebras are naturally related to the Murray-von Neumann order of projections in operator algebras on Hilbert spaces and that they play an interesting role as invariants of approximately finite-dimensional C^{*}-algebras. They are also naturally related to Ulam's searching games with lies. $M V$-algebras admit a natural lattice reduct and hence a natural order structure. Many important properties can be derived from the fact, established by Chang that nontrivial $M V$ algebras are subdirect products of $M V$-chains, that is, totally ordered $M V$-algebras. To prove this fundamental result, Chang introduced the notion of prime ideal in an $M V$-algebra. A product $M V$-algebra (or $P M V$-algebra, for short) is an $M V$-algebra which has an associative binary operation ".". It satisfies an extra property which will be explained in preliminaries. During the last years, $P M V$-algebras were considered and their equivalence with a certain class of l-rings with strong unit was proved. It seems quite natural to introduce modules over such algebras, generalizing the divisible $M V$-algebras and the $M V$-algebras obtained from Riesz spaces and to prove natural equivalence theorems. Hence, the notion of $M V$-modules was introduced as an action of a $P M V$-algebra over an $M V$-algebra by A. Di Nola [6]. In 2014, F. Forouzesh, E. Eslami and A. Borumand Saeid defined prime A-ideals and radical of A-ideals by maximal A-ideals in $M V$-modules $[8,9]$. Since $M V$-modules are in their infancy, stating and opening of any subject in this field can be useful. Since the notion of A ideal in $M V$-modules is important, for completion of study of ideals in $M V$-modules,
in this paper, we present definitions of primary decomposition and reduced primary decomposition of an A-ideal by prime A-ideals (no maximal A-ideals). The simplification of an A-ideal helps us for better studying it. Hence, the decomposition of an A-ideal can be useful and important.

2. Preliminaries

Definition 2.1. [4] An $M V$-algebra is a structure $M=\left(M, \oplus,{ }^{\prime}, 0\right)$ of type $(2,1,0)$ such that:
$(M V 1)(M, \oplus, 0)$ is an abelian monoid,
$(M V 2)\left(a^{\prime}\right)^{\prime}=a$,
(MV3) $0^{\prime} \oplus a=0^{\prime}$,
$(M V 4)\left(a^{\prime} \oplus b\right)^{\prime} \oplus b=\left(b^{\prime} \oplus a\right)^{\prime} \oplus a$,
If we define the constant $1=0^{\prime}$ and operations \odot and \ominus by $a \odot b=\left(a^{\prime} \oplus b^{\prime}\right)^{\prime}$, $a \ominus b=a \odot b^{\prime}$, then
$(M V 5)(a \oplus b)=\left(a^{\prime} \odot b^{\prime}\right)^{\prime}$,
$(M V 6) x \oplus 1=1$,
$(M V 7)(a \ominus b) \oplus b=(b \ominus a) \oplus a$,
$(M V 8) a \oplus a^{\prime}=1$,
for every $a, b \in A$. It is clear that $(M, \odot, 1)$ is an abelian monoid. Now, if we define auxiliary operations \vee and \wedge on M by $a \vee b=\left(a \odot b^{\prime}\right) \oplus b$ and $a \wedge b=a \odot\left(a^{\prime} \oplus b\right)$, for every $a, b \in M$, then $(M, \vee, \wedge, 0)$ is a bounded distributive lattice. An $M V$-algebra M is a Boolean algebra if and only if the operation " \oplus " is idempotent, i.e., $x \oplus x=x$, for every $x \in X$. In $M V$-algebra M, the following conditions are equivalent: (i) $a^{\prime} \oplus b=1,(i i) a \odot b^{\prime}=0,(i i i) b=a \oplus(b \ominus a),(i v) \exists c \in A$ such that $a \oplus c=b$, for every $a, b, c \in M$. For any two elements a, b of $M V$-algebra $M, a \leq b$ if and only if a, b satisfy in the above equivalent conditions $(i)-(i v)$. An ideal of $M V$-algebra M is a subset I of M, satisfying the following condition: $(I 1) 0 \in I$, (I2) $x \leq y$ and $y \in I$ implies that $x \in I$, (I3) $x \oplus y \in I$, for every $x, y \in I$. A proper ideal P of M is a prime ideal if and only if $x \ominus y \in P$ or $y \ominus x \in P$, for every $x, y \in M$. Equivalently, P is prime if and only if $x \wedge y \in P$ implies $x \in P$ or $y \in P$, for $x, y \in M$. A proper ideal I of M is a maximal ideal of M if and only if no proper ideal of M strictly contains I. In $M V$-algebra M, the distance function $d: M \times M \rightarrow M$ is defined by $d(x, y)=(x \ominus y) \oplus(y \ominus x)$ which satisfies $(i) d(x, y)=0$ if and only if $x=y,(i i) d(x, y)=d(y, x)$, (iii) $d(x, z) \leq d(x, y) \oplus d(y, z),(i v) d(x, y)=d\left(x^{\prime}, y^{\prime}\right)$, $(v) d(x \oplus z, y \oplus t) \leq d(x, y) \oplus d(z, t)$, for every $x, y, z, t \in M$. Let I be an ideal of $M V$-algebra M. Then we denote $x \sim y\left(x \equiv_{I} y\right)$ if and only if $d(x, y) \in I$, for every $x, y \in M$. So \sim is a congruence relation on M. Denote the equivalence class containing x by $\frac{x}{I}$ and $\frac{M}{I}=\left\{\frac{x}{I}: x \in M\right\}$. Then $\left(\frac{M}{I}, \oplus,{ }^{\prime}, \frac{0}{I}\right)$ is an $M V$-algebra, where $\left(\frac{x}{I}\right)^{\prime}=\frac{x^{\prime}}{I}$ and $\frac{x}{I} \oplus \frac{y}{I}=\frac{x \oplus y}{I}$, for all $x, y \in M$.(See [4])
Lemma 2.1. [4] In every $M V$-algebra A, the natural order " $\leq "$ has the following properties:
(i) $x \leq y$ if and only if $y^{\prime} \leq x^{\prime}$,
(ii) if $x \leq y$, then $x \oplus z \leq y \oplus z$, for every $z \in A$.

Proposition 2.2. [4] Every proper ideal of an $M V$-algebra is an intersection of prime ideals.

Proposition 2.3. [4] Let M be an $M V$-algebra and $z \in M$. Then the principal ideal generated by z is denoted by $\prec z \succ$ and $\prec z \succ=\{x \in M: n z=\underbrace{z \oplus \cdots \oplus z}_{n \text { times }} \geq$ x, for some $n \geq 0\}$ is an ideal of M.

Proposition 2.4. [4] Let I be an ideal of A. Then

$$
\prec I \cup\{z\} \succ=\{x \in A: x \leq n z \oplus a, \text { for some } n \in \mathbb{N} \text { and } a \in I\}
$$

is an ideal of A.
Definition 2.2. [6, 7] (i) An l-group is an algebra $(G,+,-, 0, \vee, \wedge)$, where the following properties hold:
(a) $(G,+,-, 0)$ is a group,
(b) (G, \vee, \wedge) is a lattice,
(c) $x \leq y$ implies that $x+a \leq y+a$, for any $x, y, a, b \in G$.

A strong unit $u>0$ is a positive element with property that for any $g \in G$ there exits $n \in \omega$ such that $g \leq n u$. The Abelian l-groups with strong unit will be simply called $l u$-groups.
The category whose objects are $M V$-algebras and whose homomorphisms are $M V$ homomorphisms is denoted by $M V$. The category whose objects are pairs (G, u), where G is an Abelian l-group and u is a strong unit of G and whose homomorphisms are l-group homomorphisms is denoted by $U g$. The functor that establishes the categorial equivalence between $M V$ and $U g$ is

$$
\Gamma: U g \longrightarrow M V
$$

where $\Gamma(G, u)=[0, u]_{G}$, for every $l u$-group (G, u) and $\Gamma(h)=\left.h\right|_{[0, u]}$, for every $l u$ group homomorphism h. The above results allows us to consider an $M V$-algebra, when necessary, as an interval in the positive cone of an l-group. Thus, many definitions and properties can be transferred from l-groups to $M V$-algebras. For example, the group addition becomes a partial operation when it is restricted to an interval, so we define a partial addition on an $M V$-algebra M as follows:
$x+y$ is defined if and only if $x \leq y^{\prime}$ and in this case, $x+y=x \oplus y$, for every $x, y \in M$. Moreover, if $z+x \leq z+y$, then $x \leq y$.
(ii) A product $M V$-algebra (or $P M V$-algebra, for short) is a structure $A=\left(A, \oplus, .,^{\prime}, 0\right)$, where $\left(A, \oplus,{ }^{\prime}, 0\right)$ is an $M V$-algebra and "." is a binary associative operation on A such that the following property is satisfied: if $x+y$ is defined, then $x . z+y . z$ and $z . x+z . y$ are defined and $(x+y) . z=x . z+y . z, z \cdot(x+y)=z \cdot x+z . y$, for every $x, y, z \in A$, where " + " is the partial addition on A. A unity for the product is an element $e \in A$ such that $e . x=x . e=x$, for every $x \in A$. If A has a unity for product, then $e=1$.

Lemma 2.5. [5] Let A be a PMV-algebra. Then $a \leq b$ implies that $a . c \leq b . c$ and c. $a \leq c . b$, for any $a, b, c \in A$. If A has unity for product, then $a . b \leq a \wedge b$, for any $a, b \in A$.

Lemma 2.6. [5] A finite PMV-algebra A has unity for product if and only if A is a Boolean algebra and in this case $a . b=a \wedge b$, for any $a, b \in A$.

Definition 2.3. [6] Let $A=\left(A, \oplus, .,^{\prime}, 0\right)$ be a $P M V$-algebra, $M=\left(M, \oplus,{ }^{\prime}, 0\right)$ be an $M V$-algebra and the operation $\Phi: A \times M \longrightarrow M$ be defined by $\Phi(a, m)=a m$, which satisfies the following axioms:
(AM1) If $x+y$ is defined in M, then $a x+a y$ is defined in M and $a(x+y)=a x+a y$, (AM2) If $a+b$ is defined in A, then $a x+b x$ is defined in M and $(a+b) x=a x+b x$, (AM3) $(a . b) x=a(b x)$, for every $a, b \in A$ and $x, y \in M$.
Then M is called a (left) $M V$-module over A or briefly an A-module. We say M is a unitary $M V$-module if A has a unity for the product, that is
(AM4) $1_{A} x=x$, for every $x \in M$.
Lemma 2.7. [6] Let A be a $P M V$-algebra and M be an A-module. Then
(a) $0 x=0$,
(b) $a 0=0$,
(c) $a x^{\prime} \leq(a x)^{\prime}$,
(d) $a^{\prime} x \leq(a x)^{\prime}$,
(e) $(a x)^{\prime}=a^{\prime} x+(1 x)^{\prime}$,
(f) $x \leq y$ implies that $a x \leq a y$,
(g) $a \leq b$ implies that $a x \leq b x$,
(h) $a(x \oplus y) \leq a x \oplus a y$,
(i) $d(a x, a y) \leq a d(x, y)$,
(j) if $x \equiv_{I} y$, then $a x \equiv_{I}$ ay, where I is an ideal of A,
(k) if M is a unitary $M V$-module, then $(a x)^{\prime}=a^{\prime} x+x^{\prime}$, for every $a, b \in A$ and $x, y \in M$.

Lemma 2.8. [8] Let A be a PMV-algebra and M be an A-module. Then $(a \oplus b) x \leq$ $a x \oplus b x$, for every $a, b \in A$ and $x \in M$.

Definition 2.4. [6] Let A be a $P M V$-algebra and M be an A-module. Then an ideal $N \subseteq M$ is called an A-ideal of M if (I4) ax $\in N$, for every $a \in A$ and $x \in N$.

Note: From now on, in this paper, we let A is a $P M V$-algebra, M be an $M V$ algebra, $\mathcal{P} \mathcal{I}(M)$ be the set of all prime ideals of M and $\mathcal{P} \mathcal{I}_{J}(M)$ be the set of all prime ideals of M that contain $J \in \mathcal{I}(M)$.

3. Primary ideals in $M V$-algebras

In this section, we present definition of radical of an ideal in $M V$-algebras by prime ideals that in [9] was defined by maximal ideals. Also, we introduce the notion of primary ideals in $M V$-algebras and we get some results that we use in the section 4.

Definition 3.1. Let $I \in \mathcal{I}(M)$. Then the intersection of all prime ideals of M, including I, is called radical of I and it is denoted by $\operatorname{rad}_{M}(I)$ or briefly $\operatorname{rad}(I)$. If there is not any prime ideal of M including I, then we let $\operatorname{rad}(I)=M$.

Example 3.1. (i) Let $M=\{0,1,2\}$ and operation \oplus be defined by

\oplus	0	1	2
0	0	1	2
1	1	1	2
2	0	2	2

If $0^{\prime}=2,1^{\prime}=1$ and $2^{\prime}=0$, then $\left(M, \oplus,^{\prime}, 0,1\right)$ is an $M V$-algebra. It is easy to show that $I=\{0,1\}$ is only prime ideal of M and so $\operatorname{rad}(\{0\})=\{0,1\}$ and $\operatorname{rad}(I)=I$.
(ii) Let $M_{2}(\mathbb{R})$ be the ring of square matrixes of order 2 with real elements and let 0
be the matrix with all elements 0 . If we define the order relation on components

$$
A=\left(a_{i j}\right)_{i, j=1,2} \geq 0 \text { if and only if } a_{i j} \geq 0 \text { for any } i, j,
$$

then $M_{2}(\mathbb{R})$ is an l-ring. If $v=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$, then $\left(M_{2}(\mathbb{R}), v\right)$ is an $l u$-ring and so $M=\Gamma\left(M_{2}(\mathbb{R}), v\right)$ is an $M V$-algebra. It is easy to see that $I(M)=\{\{0\}, M\}$ and $\{0\}$ is not a prime ideal of M. Then $\operatorname{rad}(\{0\})=M$.

Lemma 3.1. In M, the following conditions are equivalent:
(a) $a=a \ominus(b \ominus a)$,
(b) $a \ominus b=(a \ominus b) \ominus b$,
(c) $(a \ominus c) \ominus(b \ominus c)=(a \ominus b) \ominus c$,
(d) $a \wedge a^{\prime}=0$,
(e) $a \vee a^{\prime}=1$,
(f) $a=a \ominus a^{\prime}$,
(g) $a^{\prime}=a^{\prime} \ominus a$,
(h $b^{\prime} \wedge a=a \ominus b^{\prime}$
(i) $b \wedge a=a \ominus b^{\prime}$
(j) $a \wedge(b \ominus c)=(a \wedge b) \ominus c$, for every $a, b, c \in M$.

Proof. The proof is routine.
Definition 3.2. M is called an implicative $M V$-algebra if $x \ominus(y \ominus x)=x$, for every $x, y \in M$.
Example 3.2. Let $M_{1}=\{0,1,2,3\}, M_{2}=\{0,1\}$, and operations \oplus_{1} and \oplus_{2} be defined by

\oplus_{1}	0	1	2	3
0	0	1	2	3
1	0	1	3	3
2	2	3	2	3
3	3	3	3	3

\oplus_{2}	0	1
0	0	1
1	1	1

If $0^{\prime}=3,1^{\prime}=2,2^{\prime}=1$ and $3^{\prime}=0$, then $\left(M_{1}, \oplus_{1},{ }^{\prime}, 0,1\right)$ is an implicative $M V$-algebra. Also, if $0^{\prime}=1$ and $1^{\prime}=0$, then $\left(M_{2}, \oplus_{2},{ }^{\prime}, 0,1\right)$ is an implicative $M V$-algebra.

Definition 3.3. Let $\emptyset \neq S \subseteq M$. We say that S is \wedge-closed, if $a \wedge b \in S$, for all $a, b \in S$.

Example 3.3. In Example 3.2, consider $S=\{0,1,2\} \subseteq M_{1}$ and $T=\{1,2\} \subseteq M_{1}$. It is easy to see that S is \wedge-closed and T is not \wedge-closed.

Lemma 3.2. Let $I \in \mathcal{I}(M), S \subseteq M$ be \wedge-closed and $S \cap I=\emptyset$. Then there exists a maximal ideal P of M such that $P \supseteq I$ and $P \cap S=\emptyset$. Furthermore, P is a prime ideal of M.

Proof. The existence of an ideal P easily follows from Zorn's Lemma. Let there exist $x, y \in M$ such that $x \wedge y \in P, x \notin P$ and $y \notin P$. Then P is properly contained in both $\prec P \cup\{x\} \succ=P_{1}$ and $\prec P \cup\{y\} \succ=P_{2}$. By maximality of $P, P_{1} \cap S \neq \emptyset$ and $P_{2} \cap S \neq \emptyset$. Let $s_{i} \in P_{i} \cap S, i=1,2$. Then $s_{1} \wedge s_{2} \leq s_{i}$, $\mathrm{i}=1,2$ implies $s_{1} \wedge s_{2} \in P_{1} \cap P_{2}=P$. On the other hand, $s_{1} \wedge s_{2} \in S$, which is a contradiction. Therefore, P is a prime ideal of M.

Theorem 3.3. Let M be implicative and $I \in \mathcal{I}(M)$. Then

$$
\operatorname{rad}(I)=\left\{x \in M: \forall P \in \mathcal{P I}_{I}(M), \exists c \in M \backslash P \text { such that } c \wedge x \in I\right\}
$$

Proof. Let

$$
T=\left\{x \in M: \forall P \in \mathcal{P} \mathcal{I}_{I}(M), \exists c \in M \backslash P \text { such that } c \wedge x \in I\right\}
$$

and $x \in \operatorname{rad}(I)$. Then $x \in P$, for every $P \in \mathcal{P} \mathcal{I}_{I}(M)$. If $x \in I$, then by considering $c=1$, we have $x \in T$. Now, let $x \notin I$. If $x \notin T$, then there exists $P_{1} \in \mathcal{P} \mathcal{I}_{I}(M)$ such that $c \wedge x \notin I$, for every $c \in M \backslash P_{1}$. Let $S=\left\{(c \wedge x) \ominus y: y \in I\right.$ and $\left.c \in M \backslash P_{1}\right\}$. First, we show that S is \wedge-closed. Let $\left(c_{1} \wedge x\right) \ominus y_{1},\left(c_{2} \wedge x\right) \ominus y_{2} \in S$, where $c_{1}, c_{2} \in M \backslash P_{1}$ and $y_{1}, y_{2} \in I$. By Lemma $3.1(j)$ and (i),

$$
\begin{aligned}
\left(\left(c_{1} \wedge x\right) \ominus y_{1}\right) \wedge\left(\left(c_{2} \wedge x\right) \ominus y_{2}\right) & \left.=\left(\left(c_{1} \wedge x\right) \ominus y_{1}\right) \wedge\left(c_{2} \wedge x\right)\right) \ominus y_{2} \\
& =\left(\left(c_{2} \wedge x\right) \wedge\left(\left(c_{1} \wedge x\right) \ominus y_{1}\right)\right) \ominus y_{2} \\
& =\left(\left(\left(c_{2} \wedge x\right) \wedge\left(c_{1} \wedge x\right)\right) \ominus y_{1}\right) \ominus y_{2} \\
& =y_{2}^{\prime} \wedge\left(\left(\left(c_{1} \wedge c_{2}\right) \wedge x\right) \ominus y_{1}\right) \\
& =\left(y_{2}^{\prime} \wedge\left(\left(c_{1} \wedge c_{2}\right) \wedge x\right)\right) \ominus y_{1} \\
& =\left(\left(y_{2}^{\prime} \wedge c_{1} \wedge c_{2}\right) \wedge x\right) \ominus y_{1} .
\end{aligned}
$$

Now, we show that $y_{2}^{\prime} \wedge c_{1} \wedge c_{2} \in M \backslash P_{1}$. Let $y_{2}^{\prime} \wedge c_{1} \wedge c_{2} \in P_{1}$. Since $c_{1} \wedge c_{2} \notin P_{1}, y_{2}^{\prime} \in P_{1}$ and so $1 \in P_{1}$. Since $x \leq 1 \in P_{1}$, we get $x \in P_{1}$, for every $x \in M$ and so $P_{1}=M$, which is a contradiction. Hence, $y_{2}^{\prime} \wedge c_{1} \wedge c_{2} \in M \backslash P_{1}$ and so $\left(\left(y_{2}^{\prime} \wedge c_{1} \wedge c_{2}\right) \wedge x\right) \ominus y_{1} \in S$. It means that $\left(\left(c_{1} \wedge x\right) \ominus y_{1}\right) \wedge\left(\left(c_{2} \wedge x\right) \ominus y_{2}\right) \in S$ and so S is \wedge-closed. Now, we prove that $S \cap I=\emptyset$. If $S \cap I \neq \emptyset$, then there exist $c^{\prime} \in M \backslash P_{1}$ and $y^{\prime} \in I$ such that $\left(c^{\prime} \wedge x\right) \ominus y^{\prime} \in I$. It results that $c^{\prime} \wedge x \in I$. But, by definition of $S, c \wedge x \notin I$, for every $c \in M \backslash P_{1}$, which is a contradiction. Then $S \cap I=\emptyset$ and so by Lemma 3.2, there exists $P_{2} \in \mathcal{P} \mathcal{I}_{I}(M)$ such that $P_{2} \cap S=\emptyset$. Since $(c \wedge x) \ominus x=0 \in P$ and $x \in P$, $c \wedge x \in P$, for every $c \in M \backslash P$ and for every $P \in \mathcal{P} \mathcal{I}_{I}(M)$. Then $(c \wedge x) \in P_{2}$. On the other hand, $c \wedge x=(c \wedge x) \ominus 0 \in S$. Hence, $c \wedge x \in P_{2} \cap S$, which is a contradiction. It implies that $x \in T$. Therefore, $\operatorname{rad}(I) \subseteq T$.
Now, let $x \in T$. Hence, for every $P \in \mathcal{P} \mathcal{I}_{I}(M)$ there exists $c \in M \backslash P$ such that $c \wedge x \in I \subseteq P$. Since $c \notin P$, we get $x \in P$, for every $P \in \mathcal{P} \mathcal{I}_{I}(M)$. It means that $x \in \operatorname{rad}(I)$ and so $T \subseteq \operatorname{rad}(I)$. Therefore, $T=\operatorname{rad}(I)$.

Proposition 3.4. Let M be implicative and $I \in \mathcal{I}(M)$. If for every $P \in \mathcal{P} \mathcal{I}(M)$, $P \cap I \neq\{0\}$ implies that $I \subseteq P$, then
$\operatorname{rad}(I)=\{x \in X: \forall P \in \mathcal{P} \mathcal{I}(M)$ with $P \cap I \neq\{0\}, \exists c \in M \backslash P$ such that $c \wedge x \in I\}$.
Proof. By Theorem 3.3, the proof is clear.
Theorem 3.5. Let M be an $M V$-algebra and $I, J, I_{1}, \cdots, I_{n}$ be ideals of M. Then (i) $I \subseteq \operatorname{rad}(I)$,
(ii) $I \subseteq J$ implies $\operatorname{rad}(I) \subseteq \operatorname{rad}(J)$,
(iii) $\operatorname{rad}(I) \cup \operatorname{rad}(J) \subseteq \operatorname{rad}(I \cup J)$.

Moreover, if M is implicative and $P \cap I_{k} \neq\{0\}$ implies that $I_{k} \subseteq P$, for every $P \in \mathcal{P I}(M)$ and $1 \leq k \leq n$, then
(iv) $\operatorname{rad}(\operatorname{rad}(I))=\operatorname{rad}(I)$,
(v) $\operatorname{rad}\left(\bigcap_{k=1}^{n} I_{k}\right)=\bigcap_{k=1}^{n} \operatorname{rad}\left(I_{k}\right)$.

Proof. The proofs of $(i),(i i)$ and (iii) are easy.
(iv) By $(i), \operatorname{rad}(I) \subseteq \operatorname{rad}(\operatorname{rad}(I))$. Now, let $x \in \operatorname{rad}(\operatorname{rad}(I))$ and $P \in \mathcal{P} \mathcal{I}(M)$ with $P \cap I \neq\{0\}$. Then by $(i), P \cap \operatorname{rad}(I) \neq\{0\}$. Since $x \in \operatorname{rad}(\operatorname{rad}(I))$, by Proposition 3.4, there exists $c_{1} \in M \backslash P$ such that $c_{1} \wedge x \in \operatorname{rad}(I)$. Since $c_{1} \wedge x \in \operatorname{rad}(I)$ and $P \cap I \neq\{0\}$, by Proposition 3.4, there exists $c_{2} \in M \backslash P$ such that $\left(c_{2} \wedge c_{1}\right) \wedge x=c_{2} \wedge\left(c_{1} \wedge x\right) \in I$. It is clear that $c=c_{1} \wedge c_{2} \in M \backslash P$. Similarly, for every $P \in \mathcal{P I}(M)$ with $P \cap I \neq\{0\}$ there is $c \in M \backslash P$ such that $c \wedge x \in I$. Hence, by Proposition 3.4, $x \in \operatorname{rad}(I)$. Therefore, $\operatorname{rad}(\operatorname{rad}(I)) \subseteq \operatorname{rad}(I)$.
(v) Let $x \in \operatorname{rad}\left(\bigcap_{k=1}^{n} I_{k}\right)$ and $P \in \mathcal{P} \mathcal{I}_{I_{t}}(M)$, for $1 \leq t \leq n$. Since $I_{t} \subseteq P$, we get $\bigcap_{k=1}^{n} I_{k} \subseteq I_{t} \subseteq P$. Since $x \in \operatorname{rad}\left(\bigcap_{k=1}^{n} I_{k}\right)$, by Theorem 3.3, there exists $c \in M \backslash P$ such that $c \wedge x \in \bigcap_{k=1}^{n} I_{k} \subseteq I_{t}$ and so $c \wedge x \in I_{t}$. Hence, $x \in \operatorname{rad}\left(I_{t}\right)$. Similarly, $x \in \operatorname{rad}\left(I_{k}\right)$, for every $1 \leq k \leq n$ and so $x \in \bigcap_{k=1}^{n} \operatorname{rad}\left(I_{k}\right)$. Hence, $\operatorname{rad}\left(\bigcap_{k=1}^{n} I_{k}\right) \subseteq$ $\bigcap_{k=1}^{n} \operatorname{rad}\left(I_{k}\right)$.
Now, let $x \in \bigcap_{k=1}^{n} \operatorname{rad}\left(I_{k}\right)$ and $P \in \mathcal{P} \mathcal{I}(M)$ with $P \cap\left(\bigcap_{k=1}^{n} I_{k}\right) \neq\{0\}$. Then $P \cap I_{k} \neq\{0\}$, for every $1 \leq k \leq n$. Since $x \in \operatorname{rad}\left(I_{k}\right)$, by Proposition 3.4, there is $c_{k} \in M \backslash P$ such that $c_{k} \wedge x \in I_{k}$, for every $1 \leq k \leq n$. Let $c=c_{1} \wedge \cdots \wedge c_{n}$. It is clear that $c \notin P$. On the other hand, since $(c \wedge x) \leq\left(c_{k} \wedge x\right) \in I_{k}, c \wedge x \in I_{k}$, for every $1 \leq k \leq n$. Then $c \wedge x \in \bigcap_{k=1}^{n} I_{k}$. Therefore, by Proposition 3.4, $x \in \operatorname{rad}\left(\bigcap_{k=1}^{n} I_{k}\right)$ and so $\bigcap_{k=1}^{n} \operatorname{rad}\left(I_{k}\right) \subseteq \operatorname{rad}\left(\bigcap_{k=1}^{n} I_{k}\right)$

Definition 3.4. Let Q be a proper ideal of M. Then Q is called a primary ideal of M if $a \wedge b \in Q$, then there exists $c \in M \backslash P$ such that $c \wedge b \in Q$ or $a \wedge c \in Q$, for every $P \in \mathcal{P I}_{Q}(M)$ and $a, b \in M$.

Example 3.4. In Example 3.2, $I=\{0,1\}$ and $J=\{0,2\}$ are primary ideals of M_{1}.
Proposition 3.6. Let M be implicative and Q be an ideal of M. Then Q is a primary ideal of M if and only if $a \wedge b \in Q$ implies that $a \in \operatorname{rad}(Q)$ or $b \in \operatorname{rad}(Q)$, for any $a, b \in M$.

Proof. (\Rightarrow) Let Q be a primary ideal of M and $a \wedge b \in Q$, for $a, b \in M$. If $a \in Q$, then $a \in \operatorname{rad}(Q)$. Let $a \notin Q$. Then there exits $c \in M \backslash P$ such that $c \wedge b \in Q$ or $a \wedge c \in Q$, for every $P \in \mathcal{P} \mathcal{I}_{Q}(M)$. If $c \wedge b \in Q$, then $c \wedge b \in P$, for every $P \in \mathcal{P} \mathcal{I}_{Q}(M)$. Since $c \notin P, b \in P$, for every $P \in \mathcal{P I}_{Q}(M)$. It results that $b \in \bigcap_{Q \subseteq P} P=\operatorname{rad}(Q)$. Similarly, if $a \wedge c \in Q$, then $a \in \operatorname{rad}(Q)$.
(\Leftarrow) Let $Q \in \mathcal{I}(M)$. If $a \wedge b \in Q$, then $a \in \operatorname{rad}(Q)$ or $b \in \operatorname{rad}(Q)$, for $a, b \in M$ and so by Theorem 3.3, there exists $c \in M \backslash P$ such that $c \wedge b \in Q$ or $a \wedge c \in Q$, for every $P \in \mathcal{P} \mathcal{I}_{Q}(M)$. It means that Q is a primary ideal of M.

Theorem 3.7. In an $M V$-algebra, every prime ideal is a primary ideal.
Proof. Let M be an $M V$-algebra, Q be a prime ideal of $M, a \wedge b \in Q$ and $a \notin Q$, for $a, b \in M$. Then by considering $c=1 \in M \backslash P$, for every $P \in \mathcal{P} \mathcal{I}_{Q}(M)$, we have $c \wedge b=b \in Q$. Hence, P is a primary ideal of M.

Example 3.5. In Example $3.1(i i), I=\{0\}$ is a primary ideal of M, but it is not a prime ideal of M.

Theorem 3.8. Let M be implicative and $I \cap P \neq\{0\}$ implies that $I \subseteq P$, for every $I \in \mathcal{I}(M)$ and $P \in \mathcal{P} \mathcal{I}(M)$. Then the radical of every primary ideal of M is a prime ideal of M.

Proof. Let Q be a primary ideal of M. If $\operatorname{rad}(Q)=M$, then $1 \in \operatorname{rad}(Q)$. Hence, by Theorem 3.3, for every $P \in \mathcal{P} \mathcal{I}_{Q}(M)$, there exists $c \in M \backslash P$ such that $c \wedge 1=$ $c \in Q \subseteq P$ and so $c \in P$, which is a contradiction. Now, let $a \wedge b \in \operatorname{rad}(Q)$, for $a, b \in M$. Then there exists $c \in M \backslash P$ such that $(c \wedge a) \wedge b=c \wedge(a \wedge b) \in Q$, for every $P \in \mathcal{P} \mathcal{I}_{Q}(M)$. If $a \notin \operatorname{rad}(Q)$, then by Theorem 3.3, there is $P \in \mathcal{P} \mathcal{I}_{Q}(M)$ such that $c \wedge a \notin Q$, for every $c \in M \backslash P$. Since Q is a primary ideal of M and $(c \wedge a) \wedge b \in Q$, there is $c^{\prime} \in M \backslash P$ such that $c^{\prime} \wedge b \in Q$, for every $P \in \mathcal{P} \mathcal{I}_{Q}(M)$ and so $b \in \operatorname{rad}(Q)$. Therefore, $\operatorname{rad}(Q)$ is a prime ideal of M.

4. Primary decomposition of A-ideals in $M V$-modules

In this section, we define the notions of primary and P-primary A-ideals of an $M V$ module. As a fundamental result, we introduce an $M V$-module that all its proper A-ideals have reduced primary decomposition.

Proposition 4.1. Let M be an A-module and N be an A-ideal of M. Then $Q_{N}=$ $\{x \in A: x M \subseteq N\}$ is an ideal of A.

Proof. Let $x, y \in Q_{N}$, for $x, y \in A$. Then $x m, y m \in N$ and so $x m \oplus y m \in N$, for every $m \in M$. Since by Lemma 2.8, $(x \oplus y) m \leq x m \oplus y m \in N,(x \oplus y) m \in N$, for every $m \in M$. Hence, $x \oplus y \in Q_{N}$. Now, let $x \leq y$ and $y \in Q_{N}$, for $x, y \in A$. By Lemma $2.7(g), x m \leq y m \in N$ and so $x m \in N$, for every $m \in M$. Therefore, $x \in Q_{N}$ and so Q_{N} is an ideal of A.

Definition 4.1. Let M be an A-module and N be a proper A-ideal of M. Then N is called a primary A-ideal of M, if for any $x \in A$ and $m \in M, x m \in N$ implies that $m \in N$ or $\exists c \in A \backslash P$ such that $(c \wedge x) M \subseteq N$, for every $P \in \mathcal{P} \mathcal{I}_{Q_{N}}(A)$.

Example 4.1. Let $A=\{0,1,2,3\}$ and the operations " \oplus " and "." on A are defined as follows:

\oplus	0	1	2	3
0	0	1	2	3
1	1	1	3	3
2	2	3	2	3
3	3	3	3	3

.	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

Consider $0^{\prime}=3,1^{\prime}=2,2^{\prime}=1$ and $3^{\prime}=0$. Then it is easy to show that $\left(A, \oplus,^{\prime}, ., 0\right)$ is a $P M V$-algebra and $\left(A, \oplus,{ }^{\prime}, 0\right)$ is an $M V$-algebra. Now, let the operation • : $A \times A \longrightarrow A$ be defined by $a \bullet b=a . b$, for every $a, b \in A$. It is easy to show that A is an $M V$-module on A and $I=\{0,1\}, J=\{0,2\}$ are primary A-ideals of A.

Proposition 4.2. Let M be a unitary A-module and N be a prime A-ideal of M. Then N is a primary A-ideal of M.

Proof. Let $x m \in N$ and $m \notin N$, for $x \in A$ and $m \in M$. Then we consider $c=1 \in$ $A \backslash P$ and so $(c \wedge x) M=x M \subseteq N$, for every $P \in \mathcal{P} \mathcal{I}_{Q_{N}}(A)$.

Theorem 4.3. Let M be a unitary A-module and N be a primary A-ideal of M. Then Q_{N} is a primary ideal of A.

Proof. If $Q_{N}=A$, then $1 \in Q_{N}$ and so $M=N$, which is a contradiction. Let $a \wedge b \in Q_{N}$ and $a \notin Q_{N}$, for $a, b \in A$. Then by Lemmas 2.5 and 2.7 (g), (b.a)m \leq $(b \wedge a) m \in N$ and so $b(a m)=(b . a) m \in N$, for every $m \in M$. Since $a \notin Q_{N}$, there exists $m^{\prime} \in M$ such that $a m^{\prime} \notin N$. Moreover, since $b\left(a m^{\prime}\right) \in N$ and $a m^{\prime} \notin N$, there exists $c \in A \backslash P$ such that $(c \wedge b) M \subseteq N$, for every $P \in \mathcal{P} \mathcal{I}_{Q_{N}}(A)$. It results that $c \wedge b \in Q_{N}$. Therefore, Q_{N} is a primary ideal of A.

Note. In Theorem 4.3, if A is implicative such that $I \cap P \neq\{0\}$ implies that $I \subseteq P$, then by Theorem 3.8, $\operatorname{rad}\left(Q_{N}\right)$ is a prime ideal of A and

$$
\operatorname{rad}\left(Q_{N}\right)=\left\{x \in A: \forall P \in \mathcal{P} \mathcal{I}_{Q_{N}}(A), \exists c \in A \backslash P \text { such that }(c \wedge x) M \subseteq N\right\}
$$

Definition 4.2. Let M be an A-module and N be a proper A-ideal of M. Then N is called a P-primary A-ideal of M, if N is a primary A-ideal of M and $\operatorname{rad}\left(Q_{N}\right)=P$.
Lemma 4.4. Let A be implicative, M be an A-module, N_{1}, \cdots, N_{k} be P^{\prime}-primary A-ideal of M such that $Q_{\bigcap_{i=1}^{k} N_{i}} \neq 0$. If $P \cap I \neq\{0\}$ implies that $I \subseteq P$, for every ideal $I \in \mathcal{I}(A)$ and $P \in \mathcal{P} \mathcal{I}(A)$, then $\bigcap_{i=1}^{k} N_{i}$ is a P^{\prime}-primary A-ideal of M.
Proof. It is clear that $\bigcap_{i=1}^{k} N_{i} \neq M$. Let $x m \in \bigcap_{i=1}^{k} N_{i}$ and $m \notin \bigcap_{i=1}^{k} N_{i}$, for $x \in A$ and $m \in M$. Then $x m \in N_{i}$, for every $1 \leq i \leq k$ and there exists $1 \leq j \leq k$ such that $m \notin N_{j}$. Since $x m \in N_{j}$ and $m \notin N_{j}$, there exists $c_{j} \in A \backslash P$ such that $\left(c_{j} \wedge x\right) M \subseteq N_{j}$, for every $P \in \mathcal{P} \mathcal{I}_{Q_{N_{j}}}(A)$. It results that $x \in \operatorname{rad}\left(Q_{N_{j}}\right)=P^{\prime}=\operatorname{rad}\left(Q_{N_{i}}\right)$, for every $1 \leq i \leq k$. Hence, there exists $c_{i} \in A \backslash P$ such that $\left(c_{i} \wedge x\right) M \subseteq N$, for every $P \in \mathcal{P} \mathcal{I}_{Q_{N_{i}}}(A)$. Now, we show that $\operatorname{rad}\left(Q_{\bigcap_{i=1}^{k} N_{i}}\right)=P^{\prime}$. For every $1 \leq i \leq k$,

$$
x \in Q_{\bigcap_{i=1}^{k} N_{i}} \Leftrightarrow x M \subseteq \bigcap_{i=1}^{k} N_{i} \Leftrightarrow x M \subseteq N_{i} \Leftrightarrow x \in Q_{N_{i}} \Leftrightarrow x \in \bigcap_{i=1}^{k} Q_{N_{i}} .
$$

Then $Q_{\bigcap_{i=1}^{k} N_{i}}=\bigcap_{i=1}^{k} Q_{N_{i}}$ and so by Theorem $3.5(v)$,

$$
\operatorname{rad}\left(Q_{\bigcap_{i=1}^{k} N_{i}}\right)=\operatorname{rad}\left(\bigcap_{i=1}^{k} Q_{N_{i}}\right)=\bigcap_{i=1}^{k} \operatorname{rad}\left(Q_{N_{i}}\right)=\bigcap_{i=1}^{k} P^{\prime}=P^{\prime}
$$

Let $c=c_{1} \wedge c_{2} \cdots \wedge c_{k}$ and there exists $P \in \mathcal{P} \mathcal{I}_{Q_{\cap_{i=1}^{k} N_{i}}}(A)$ such that $c \in P$. Then there is $1 \leq i \leq k$ such that $c_{i} \in P$. Since $\{0\} \neq Q_{\bigcap_{i=1}^{k} N_{i}} \subseteq Q_{N_{i}}$, we get $Q_{N_{i}} \cap P \neq\{0\}$ and so $Q_{N_{i}} \subseteq P$, for every $1 \leq i \leq k$. It results that $c_{i} \notin P$, for every $1 \leq i \leq k$, which is a contradiction. Hence, $c \in A \backslash P$, for every $P \in \mathcal{P} \mathcal{I}_{Q_{N_{\cap_{i=1}^{k}} N_{i}}}(A)$. On the other hand, since $\left(c_{i} \wedge x\right) . m \in N_{i}$,

$$
(c \wedge x) m=\left(c_{1} \wedge \cdots \wedge c_{i} \wedge x\right) m=\left(c_{i} \wedge x\right) m \in N_{i}
$$

and so $(c \wedge x) m \in \bigcap_{i=1}^{k} N_{i}$, for every $m \in M$. Therefore, $\bigcap_{i=1}^{k} N_{i}$ is a P^{\prime}-primary A-ideal of M.

Definition 4.3. Let M be an A-module, N be a proper A-ideal of M and there exist proper A-ideals $A_{1}, A_{2}, \cdots, A_{n}$ of M such that A_{i} is a P_{i}-primary of M, for every $1 \leq i \leq n$ and $N=A_{1} \cap A_{2} \cap \cdots \cap A_{n}$. Then we say $A_{1} \cap A_{2} \cap \cdots \cap A_{n}$ is a primary decomposition of N and so N has a primary decomposition. Furthermore, this decomposition is reduced if
(i) $A_{i} \nsupseteq \bigcap_{i \neq j} A_{j}$,
(ii) $\operatorname{rad}\left(Q_{A_{i}}\right) \neq \operatorname{rad}\left(Q_{A_{j}}\right)$, for every $1 \leq i, j \leq n$.

Example 4.2. (i) Let A be unital and finite. If we consider A as A-module, where $x y=x . y$, for every $x, y \in A$, then since $a x \leq 1 x=x$, for every $a, x \in A$, any ideal of A is an A-ideal of A and by Lemma 2.6, every prime ideal of A is a prime A-ideal of A. Hence, by Proposition 2.2, every proper A-ideal of A has a primary decomposition.
(ii) In Example 4.1, $\{0,2\} \cap\{0,1\}$ is a primary decomposition of $\{0\}$. This decomposition is reduced, too.

Theorem 4.5. Let A be implicative, M be an A-module, N be an A-ideal of M that has a primary decomposition and $I \cap P \neq\{0\}$ implies that $I \subseteq P$, for every $I \in \mathcal{I}(A)$ and $P \in \mathcal{P} \mathcal{I}(A)$. Then N has a reduced primary decomposition.

Proof. Let $N=A_{1} \cap \cdots \cap A_{n}$, where A_{i} is a primary ideal of M, for every $1 \leq i \leq n$. If $A_{j} \supseteq \bigcap_{i=1}^{n} A_{i}$, where $i \neq j$, then we set $N=A_{1} \cap \cdots \cap A_{j-1} \cap A_{j+1} \cap \cdots \cap A_{n}$, for every $1 \leq j \leq n$ and so by renumbering, $N=\bigcap_{i=1}^{k} A_{i}^{\prime}$, where $k \leq n$ and $A_{j}^{\prime} \nsupseteq \bigcap_{i=1}^{k} A_{i}^{\prime}$, for every $1 \leq j \leq k$. Let $T=\left\{P_{1}, \cdots, P_{m}\right\}$, where $P_{i} \neq P_{j}$ and $m \leq k$, for every $1 \leq i, j \leq m$ and $\operatorname{rad}\left(Q_{A_{i}^{\prime}}\right)=P_{i}$, for some $1 \leq i \leq k$. Now, we resume

$$
N=\left(A_{i_{1}}^{\prime} \cap \cdots \cap A_{i_{t}}^{\prime}\right) \cap\left(A_{j_{1}}^{\prime} \cap \cdots \cap A_{j_{l}}^{\prime}\right) \cap \cdots \cap\left(A_{s_{1}}^{\prime} \cap \cdots \cap A_{s_{w}}^{\prime}\right),
$$

where by Lemma 4.4,

$$
\begin{aligned}
& \operatorname{rad}\left(Q_{\bigcap_{h=1}^{t} A_{i_{h}}^{\prime}}\right)=\bigcap_{h=1}^{t} \operatorname{rad}\left(Q_{A_{i_{h}^{\prime}}^{\prime}}\right)=\bigcap_{h=1}^{t} p_{1}=p_{1}, \cdots, \\
& \operatorname{rad}\left(Q_{\bigcap_{h=1}^{w} A_{s_{h}}^{\prime}}\right)=\bigcap_{h=1}^{w} \operatorname{rad}\left(Q_{A_{s_{h}^{\prime}}^{\prime}}\right)=\bigcap_{h=1}^{w} p_{m}=p_{m} .
\end{aligned}
$$

Therefore, I has a reduced primary decomposition.
Definition 4.4. Let M be an A-module. Then
(i) M is called Noetherian if M satisfies the ascending chain condition (ACC): that is any chain $N_{1} \subseteq N_{2} \subseteq \cdots$ of A-ideal of M is stationary.
(ii) We say M satisfies the maximum condition, if every non-empty family of submodules of M has a maximum element.

Example 4.3. Every finite A-module is a Noetherian A-module.
Theorem 4.6. Let M be an A-module. Then M is Noetherian if and only if M has maximum condition.

Proof. The proof is routine.
Definition 4.5. Let M be an A-module. Then M is called a Boolean A-module if $a x \oplus a y \leq a(x \oplus y)$, for every $a \in A$ and $x, y \in M$.

Example 4.4. If M is a Boolean-algebra, then every A-module M is a Boolean A-module. Since $x \leq x \oplus y$ and $y \leq x \oplus y$, by Lemma $2.7(f)$, $a x \leq a(x \oplus y)$ and $a y \leq a(x \oplus y)$, for every $a \in A$ and $x, y \in M$ and so by Lemma 2.1 (ii), $a x \oplus a y \leq a(x \oplus y) \oplus a y$ and $a(x \oplus y) \oplus a y \leq a(x \oplus y) \oplus a(x \oplus y)=a(x \oplus y)$. Hence, $a x \oplus a y \leq a(x \oplus y)$, for every $a \in A$ and $x, y \in M$.

Theorem 4.7. Let A be finite and M be a Boolean Noetherian A-module. Then every proper A-ideal of M has a reduced primary decomposition.

Proof. Let
$T=\{N: N$ is a proper A-ideal of M such that N has no any reduced

primary decomposition $\}.$

We show that $T=\emptyset$. Let $T \neq \emptyset$. Since M is Noetherian, by Theorem 4.6, T has a maximum element G. It is clear that G is not a primary A-ideal of M. So there exists $x \in A$ and $m \in M$ such that $x m \in G, m \notin G$ and for every $c \in A \backslash P$, $(c \wedge x) M \nsubseteq G$, where $P \in \mathcal{P} \mathcal{I}_{Q_{G}}(A)$. We give an index $i \geq 1$ to every $c \in A \backslash P$. Let $B_{i}=\left\{m \in M:\left(c_{1} \wedge c_{2} \cdots \wedge c_{i} \wedge x\right) m \in G\right\}$, for every $i \geq 1$ and $m \in B_{i}$. Then

$$
\left(c_{1} \wedge c_{2} \wedge \cdots \wedge c_{i} \wedge c_{i+1} \wedge x\right) m \leq\left(c_{1} \wedge \cdots \wedge c_{i} \wedge x\right) m \in G
$$

and so $\left(c_{1} \wedge c_{2} \wedge \cdots \wedge c_{i} \wedge c_{i+1} \wedge x\right) m \in G$. Hence, $m \in B_{i+1}$ and so $B_{i} \subseteq B_{i+1}$, for every $i \geq 1$. Since M is Noetherian, there exists $k \in \mathbb{N}$ such that $B_{k}=B_{n}$, for every $n \geq k$. We show that B_{k} is an A-ideal of M. Let $m_{1}, m_{2} \in B_{k}$. Then $\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m_{1},\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m_{2} \in G$. By Lemma 2.7 (h),

$$
\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) .\left(m_{1} \oplus m_{2}\right) \leq\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m_{1} \oplus\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m_{2} \in G
$$

and so $\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) .\left(m_{1} \oplus m_{2}\right) \in G$. Hence, $m_{1} \oplus m_{2} \in B_{K}$. Now, let $m_{1} \leq m_{2} \in$ B_{k}. Since $\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m_{1} \leq\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m_{2} \in G,\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m_{1} \in G$ and so $m_{1} \in B_{k}$. On the other hand,

$$
\begin{aligned}
\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right)(a m) & =\left(\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) . a\right) m \\
& \leq\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x \wedge a\right) m \leq\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m \in G
\end{aligned}
$$

and so $a m \in B_{k}$, for every $a \in A$ and $m \in B_{k}$. Hence, B_{k} is an A-ideal of M.
Let $D=\left\{\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m^{\prime} \oplus g: m^{\prime} \in M\right.$ and $\left.g \in G\right\}$. We show that D is an A-ideal of M. Let $d_{1}, d_{2} \in D$. It is easy to show that $d_{1} \oplus d_{2} \in D$. Let $d \in D$ and $a \in A$. So there exist $m^{\prime} \in M$ and $g \in G$ such that

$$
\begin{aligned}
a d & =a\left(\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m^{\prime} \oplus g\right) \leq a\left(\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m^{\prime}\right) \oplus a g \\
& =\left(a \cdot\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right)\right) m^{\prime} \oplus a g \\
& \leq\left(a \wedge c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m^{\prime} \oplus a g \leq\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m^{\prime} \oplus a g \in D
\end{aligned}
$$

Hence, D is an A-ideal of M. Now, we prove that $G=D \cap B_{k}, G \subsetneq D$ and $G \subsetneq$ B_{k}. Let $g \in G$. Then $g=\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) 0 \oplus g \in D$. On the other hand, $\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) g \in G$. So $g \in B_{k}$ and so $G \subseteq D \cap B_{k}$. Let $m \in D \cap B_{k}$. Since $m \in B_{k},\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m \in G$ and since $m \in D$, there exist $m^{\prime} \in M$ and $g \in G$ such that $m=\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m^{\prime} \oplus g$. Since

$$
\begin{aligned}
\left(\left(c_{1}\right.\right. & \wedge \\
& \left.=\left(c_{1} \wedge \cdots c_{k} \wedge x\right) \cdot\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right)\right) m^{\prime} \oplus\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) g \\
& =\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right)\left(\left(c_{1} \wedge \cdots \wedge\right.\right. \\
& \left.\left.=\cdots \wedge c_{k} \wedge x\right) m^{\prime}\right) \oplus\left(c_{1} \wedge \cdots \wedge m^{\prime} \oplus g\right)=\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) g \\
& =x) m \in G
\end{aligned}
$$

by Lemma 2.6,

$$
\begin{aligned}
\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m^{\prime} & =\left(\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) \wedge\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right)\right) m^{\prime} \\
& =\left(\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) \cdot\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right)\right) m^{\prime} \in G
\end{aligned}
$$

and so $m \in G$. Hence, $D \cap B_{k} \subseteq G$. It is enough to show that $G \subsetneq D$ and $G \subsetneq B_{k}$. We have $(c \wedge x) M \nsubseteq G$, for every $c \in A \backslash P$, where $P \in \mathcal{P} \mathcal{I}_{Q_{G}}(A)$. Then there exists $t \in M$ such that $(c \wedge x) t \notin G$. But if $c=c_{1} \wedge \cdots \wedge c_{k}$, then $(c \wedge x) t=(c \wedge x) t+0 \in D$ and so $G \subsetneq D$. On the other hand, there existed $m \in M$ and $x \in A$ such that $x m \in G$ and $m \notin G$, but $\left(c_{1} \wedge \cdots \wedge c_{k} \wedge x\right) m=\left(\left(c_{1} \wedge \cdots \wedge c_{k}\right) \cdot x\right) m=\left(c_{1} \wedge \cdots \wedge c_{k}\right)(x m) \in G$. It means that $m \in B_{k}$ and so $G \subsetneq B_{k}$. By the maximality of G, D and B_{k} have primary decomposition. It results that G has primary decomposition, which is a contradiction. Therefore, $T=\emptyset$.

5. Conclusion

The equivalence between the category of $l u$-modules over (R, v) and the category of $M V$-modules over $\Gamma(R, v)$ was proved by Di Nola, where (R, v) is an lu-ring [6]. We studied ideals in $M V$-algebras and presented definition of radical of an ideal in $M V$-algebras by prime ideals that it was defined by maximal ideals in [9]. Also, we introduced the notion of primary ideals in $M V$-algebras. Then we studied A-ideals in $M V$-modules and defined the notions of primary and P-primary A-ideals of an $M V$ module in order to define primary decomposition of A-ideals. Also, we introduced $M V$-modules that their proper A-ideals have reduced primary decomposition. In fact, we opened new fields to anyone that is interested to studying and development of $M V$-modules.

References

[1] L.P. Belluce, A. Di Nola, A. Lettieri, Local MV-algebras, Rendiconti del Circolo Matematico di Palermo 42 (1993), 347-361.
[2] C.C. Chang, Algebric analysis of many-valued logic, Transactions of American Mathematical Society 88 (1958), 467-490.
[3] C.C. Chang, A new proof of the completeness of the Lukasiewicz axioms, Transactions of American Mathematical Society 93 (1959), 74-80.
[4] R. Cignoli, M. L. D'Ottaviano, D. Mundici, Algebric Foundation of Many-valued Reasoning, Kluwer Academic, Dordrecht, 2000.
[5] A. Di Nola, A. Dvurečenskij, Product MV-algebras, Multiple-Valued Logics 6 (2001), 193-215.
[6] A. Di Nola, P. Flondor, I. Leustean, MV-modules, Journal of Algebra 267 (2003), 21-40.
[7] A. Dvurečenskij, On Partial addition in Pseudo MV-algebras, Proceedings of the Fourth International Symposium on Economic Informatics, (1999), 952-960.
[8] F. Forouzesh, E. Eslami, A. Borumand, On Prime A-ideals in MV-modules, Politehnica University of Bucharest Scientific Bulletin, 76, (2014), no. 3, 181-198.
[9] F. Forouzesh, E. Eslami, A. Borumand Saeid, Radical of A-ideals in $M V$-modules, Annals of the Alexandru Loan Cuza University-Mathematics 10 (2014), 1-24.
[10] T. Kroupa, Conditional probability on MV-algebras, Fuzzy Sets and Systems 149 (2005), 369381.
[11] J. Meng, Y.B. Jun, BCK-algebras, Kyungmoon Sa Co, Korea, 1994.
[12] D. Mundici, Interpretation of AF C^{*}-algebras in Lukasiewicz sentential calculus, International Journal of Functional Analysis 65 (1986), 15-63.
(S. Saidi Goraghani) Department of Mathematics, Farhangian University, Iran

E-mail address: SiminSaidi@yahoo.com
(R. A. Borzooei) Department of Mathematics, Shahid Beheshti University, Tehran, Iran

E-mail address: borzooei@sbu.ac.ir

