Decomposition of A-ideals in MV-modules

S. SAIDI GORAGHANI AND R. A. BORZOOEI

ABSTRACT. In this paper, by considering the notion of MV-modules, we present definition of radical of an ideal in MV-algebras by prime ideals that in last was defined by maximal ideals. Also, we define the notions of primary and P-primary A-ideals in MV-modules. Then we show that under conditions, if an A-ideal has a primary decomposition, then it has a reduced primary decomposition. Finally, we characterize proper A-ideals that have a reduced primary decomposition.

2010 Mathematics Subject Classification. 06F35; 06D99; 08A05. Key words and phrases. MV-algebra, radical, primary and P-primary, primary decomposition.

1. Introduction

MV-algebras were defined by C.C. Chang [2, 3] as algebras corresponding to the Lukasiewicz infinite valued propositional calculus. These algebras have appeared in the literature under different names and polynomially equivalent presentation: CNalgebras, Wajsberg algebras, bounded commutative BCK-algebras and bricks. It is discovered that MV-algebras are naturally related to the Murray-von Neumann order of projections in operator algebras on Hilbert spaces and that they play an interesting role as invariants of approximately finite-dimensional C^* -algebras. They are also naturally related to Ulam's searching games with lies. MV-algebras admit a natural lattice reduct and hence a natural order structure. Many important properties can be derived from the fact, established by Chang that nontrivial MValgebras are subdirect products of MV-chains, that is, totally ordered MV-algebras. To prove this fundamental result, Chang introduced the notion of prime ideal in an MV-algebra. A product MV-algebra (or PMV-algebra, for short) is an MV-algebra which has an associative binary operation ".". It satisfies an extra property which will be explained in preliminaries. During the last years, PMV-algebras were considered and their equivalence with a certain class of *l*-rings with strong unit was proved. It seems quite natural to introduce modules over such algebras, generalizing the divisible MV-algebras and the MV-algebras obtained from Riesz spaces and to prove natural equivalence theorems. Hence, the notion of MV-modules was introduced as an action of a PMV-algebra over an MV-algebra by A. Di Nola [6]. In 2014, F. Forouzesh, E. Eslami and A. Borumand Saeid defined prime A-ideals and radical of A-ideals by maximal A-ideals in MV-modules [8, 9]. Since MV-modules are in their infancy, stating and opening of any subject in this field can be useful. Since the notion of Aideal in MV-modules is important, for completion of study of ideals in MV-modules,

Received August 16, 2016. Accepted December 5, 2017.

in this paper, we present definitions of primary decomposition and reduced primary decomposition of an A-ideal by prime A-ideals (no maximal A-ideals). The simplification of an A-ideal helps us for better studying it. Hence, the decomposition of an A-ideal can be useful and important.

2. Preliminaries

Definition 2.1. [4] An *MV*-algebra is a structure $M = (M, \oplus, ', 0)$ of type (2, 1, 0) such that:

(MV1) $(M, \oplus, 0)$ is an abelian monoid, (MV2) (a')' = a, (MV3) $0' \oplus a = 0'$, (MV4) $(a' \oplus b)' \oplus b = (b' \oplus a)' \oplus a$, If we define the constant 1 = 0' and operations \odot and \ominus by $a \odot b = (a' \oplus b')'$, $a \ominus b = a \odot b'$, then (MV5) $(a \oplus b) = (a' \odot b')'$, (MV6) $x \oplus 1 = 1$, (MV7) $(a \ominus b) \oplus b = (b \ominus a) \oplus a$, (MV8) $a \oplus a' = 1$, for every $a, b \in A$. It is clear that $(M, \odot, 1)$ is an abelian monoid. Now, if we define

auxiliary operations \lor and \land on M by $a \lor b = (a \odot b') \oplus b$ and $a \land b = a \odot (a' \oplus b)$, for every $a, b \in M$, then $(M, \lor, \land, 0)$ is a bounded distributive lattice. An MV-algebra M is a Boolean algebra if and only if the operation " \oplus " is idempotent, i.e., $x \oplus x = x$, for every $x \in X$. In MV-algebra M, the following conditions are equivalent: (i) $a' \oplus b = 1$, (ii) $a \odot b' = 0$, (iii) $b = a \oplus (b \ominus a)$, (iv) $\exists c \in A$ such that $a \oplus c = b$, for every $a, b, c \in M$. For any two elements a, b of MV-algebra $M, a \leq b$ if and only if a, b satisfy in the above equivalent conditions (i) - (iv). An ideal of MV-algebra M is a subset I of M, satisfying the following condition: (I1) $0 \in I$, (I2) x < yand $y \in I$ implies that $x \in I$, (13) $x \oplus y \in I$, for every $x, y \in I$. A proper ideal P of M is a prime ideal if and only if $x \ominus y \in P$ or $y \ominus x \in P$, for every $x, y \in M$. Equivalently, P is prime if and only if $x \land y \in P$ implies $x \in P$ or $y \in P$, for $x, y \in M$. A proper ideal I of M is a maximal ideal of M if and only if no proper ideal of M strictly contains I. In MV-algebra M, the distance function $d: M \times M \to M$ is defined by $d(x,y) = (x \ominus y) \oplus (y \ominus x)$ which satisfies (i) d(x,y) = 0 if and only if x = y, (ii) d(x, y) = d(y, x), (iii) $d(x, z) \le d(x, y) \oplus d(y, z)$, (iv) d(x, y) = d(x', y'), $(v) \ d(x \oplus z, y \oplus t) \leq d(x, y) \oplus d(z, t)$, for every $x, y, z, t \in M$. Let I be an ideal of MV-algebra M. Then we denote $x \sim y$ $(x \equiv_I y)$ if and only if $d(x, y) \in I$, for every $x, y \in M$. So ~ is a congruence relation on M. Denote the equivalence class containing x by $\frac{x}{I}$ and $\frac{M}{I} = \{\frac{x}{I} : x \in M\}$. Then $(\frac{M}{I}, \oplus, ', \frac{0}{I})$ is an *MV*-algebra, where $(\frac{x}{I})' = \frac{x'}{I}$ and $\frac{x}{I} \oplus \frac{y}{I} = \frac{x \oplus y}{I}$, for all $x, y \in M$.(See [4])

Lemma 2.1. [4] In every MV-algebra A, the natural order " \leq " has the following properties:

(i) $x \leq y$ if and only if $y' \leq x'$, (ii) if $x \leq y$, then $x \oplus z \leq y \oplus z$, for every $z \in A$.

Proposition 2.2. [4] Every proper ideal of an MV-algebra is an intersection of prime ideals.

Proposition 2.3. [4] Let M be an MV-algebra and $z \in M$. Then the principal ideal generated by z is denoted by $\prec z \succ$ and $\prec z \succ = \{x \in M : nz = \underbrace{z \oplus \cdots \oplus z}_{n \text{ times}} \geq$

x, for some $n \ge 0$ is an ideal of M.

Proposition 2.4. [4] Let I be an ideal of A. Then

$$\prec I \cup \{z\} \succ = \{x \in A : x \le nz \oplus a, \text{ for some } n \in \mathbb{N} \text{ and } a \in I\}$$

is an ideal of A.

Definition 2.2. [6, 7] (*i*) An *l*-group is an algebra $(G, +, -, 0, \lor, \land)$, where the following properties hold:

(a) (G, +, -, 0) is a group,

(b) (G, \lor, \land) is a lattice,

(c) $x \leq y$ implies that $x + a \leq y + a$, for any $x, y, a, b \in G$.

A strong unit u > 0 is a positive element with property that for any $g \in G$ there exits $n \in \omega$ such that $g \leq nu$. The Abelian *l*-groups with strong unit will be simply called *lu*-groups.

The category whose objects are MV-algebras and whose homomorphisms are MV-homomorphisms is denoted by MV. The category whose objects are pairs (G, u), where G is an Abelian *l*-group and u is a strong unit of G and whose homomorphisms are *l*-group homomorphisms is denoted by Ug. The functor that establishes the categorial equivalence between MV and Ug is

$$\Gamma: Ug \longrightarrow MV,$$

where $\Gamma(G, u) = [0, u]_G$, for every *lu*-group (G, u) and $\Gamma(h) = h|_{[0,u]}$, for every *lu*-group homomorphism *h*. The above results allows us to consider an *MV*-algebra, when necessary, as an interval in the positive cone of an *l*-group. Thus, many definitions and properties can be transferred from *l*-groups to *MV*-algebras. For example, the group addition becomes a partial operation when it is restricted to an interval, so we define a *partial addition* on an *MV*-algebra *M* as follows:

x+y is defined if and only if $x \leq y'$ and in this case, $x+y = x \oplus y$, for every $x, y \in M$. Moreover, if $z + x \leq z + y$, then $x \leq y$.

(ii) A product MV-algebra (or PMV-algebra, for short) is a structure $A = (A, \oplus, ., ', 0)$, where $(A, \oplus, ', 0)$ is an MV-algebra and "." is a binary associative operation on A such that the following property is satisfied: if x + y is defined, then x.z + y.z and z.x + z.yare defined and (x + y).z = x.z + y.z, z.(x + y) = z.x + z.y, for every $x, y, z \in A$, where "+" is the partial addition on A. A unity for the product is an element $e \in A$ such that e.x = x.e = x, for every $x \in A$. If A has a unity for product, then e = 1.

Lemma 2.5. [5] Let A be a PMV-algebra. Then $a \leq b$ implies that $a.c \leq b.c$ and $c.a \leq c.b$, for any $a, b, c \in A$. If A has unity for product, then $a.b \leq a \wedge b$, for any $a, b \in A$.

Lemma 2.6. [5] A finite PMV-algebra A has unity for product if and only if A is a Boolean algebra and in this case $a.b = a \wedge b$, for any $a, b \in A$.

Definition 2.3. [6] Let $A = (A, \oplus, ., ', 0)$ be a *PMV*-algebra, $M = (M, \oplus, ', 0)$ be an *MV*-algebra and the operation $\Phi : A \times M \longrightarrow M$ be defined by $\Phi(a, m) = am$, which satisfies the following axioms:

(AM1) If x + y is defined in M, then ax + ay is defined in M and a(x + y) = ax + ay, (AM2) If a + b is defined in A, then ax + bx is defined in M and (a + b)x = ax + bx, (AM3) (a.b)x = a(bx), for every $a, b \in A$ and $x, y \in M$.

Then M is called a (left) MV-module over A or briefly an A-module. We say M is a unitary MV-module if A has a unity for the product, that is $(AM4) \ 1_A x = x$, for every $x \in M$.

Lemma 2.7. [6] Let A be a PMV-algebra and M be an A-module. Then (a) 0x = 0, (b) a0 = 0, (c) $ax' \leq (ax)'$, (d) $a'x \leq (ax)'$, (e) (ax)' = a'x + (1x)', (f) $x \leq y$ implies that $ax \leq ay$, (g) $a \leq b$ implies that $ax \leq bx$, (h) $a(x \oplus y) \leq ax \oplus ay$, (i) $d(ax, ay) \leq ad(x, y)$, (j) if $x \equiv_I y$, then $ax \equiv_I ay$, where I is an ideal of A, (k) if M is a unitary MV-module, then (ax)' = a'x + x', for every $a, b \in A$ and $x, y \in M$.

Lemma 2.8. [8] Let A be a PMV-algebra and M be an A-module. Then $(a \oplus b)x \leq ax \oplus bx$, for every $a, b \in A$ and $x \in M$.

Definition 2.4. [6] Let A be a PMV-algebra and M be an A-module. Then an ideal $N \subseteq M$ is called an A-ideal of M if (I4) $ax \in N$, for every $a \in A$ and $x \in N$.

Note: From now on, in this paper, we let A is a PMV-algebra, M be an MV-algebra, $\mathcal{PI}(M)$ be the set of all prime ideals of M and $\mathcal{PI}_J(M)$ be the set of all prime ideals of M that contain $J \in \mathcal{I}(M)$.

3. Primary ideals in *MV*-algebras

In this section, we present definition of radical of an ideal in MV-algebras by prime ideals that in [9] was defined by maximal ideals. Also, we introduce the notion of primary ideals in MV-algebras and we get some results that we use in the section 4.

Definition 3.1. Let $I \in \mathcal{I}(M)$. Then the intersection of all prime ideals of M, including I, is called *radical* of I and it is denoted by $rad_M(I)$ or briefly rad(I). If there is not any prime ideal of M including I, then we let rad(I) = M.

Example 3.1. (i) Let $M = \{0, 1, 2\}$ and operation \oplus be defined by

\oplus	0	1	2
0	0	1	2
1	1	1	2
2	0	2	2

If 0' = 2, 1' = 1 and 2' = 0, then $(M, \oplus, ', 0, 1)$ is an MV-algebra. It is easy to show that $I = \{0, 1\}$ is only prime ideal of M and so $rad(\{0\}) = \{0, 1\}$ and rad(I) = I. (*ii*) Let $M_2(\mathbb{R})$ be the ring of square matrices of order 2 with real elements and let 0 be the matrix with all elements 0. If we define the order relation on components

$$A = (a_{ij})_{i,j=1,2} \ge 0 \text{ if and only if } a_{ij} \ge 0 \text{ for any } i, j,$$

then $M_2(\mathbb{R})$ is an *l*-ring. If $v = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, then $(M_2(\mathbb{R}), v)$ is an *lu*-ring and so $M = \Gamma(M_2(\mathbb{R}), v)$ is an *MV*-algebra. It is easy to see that $I(M) = \{\{0\}, M\}$ and $\{0\}$ is not a prime ideal of M. Then $rad(\{0\}) = M$.

Lemma 3.1. In M, the following conditions are equivalent: (a) $a = a \ominus (b \ominus a)$, (b) $a \ominus b = (a \ominus b) \ominus b$, (c) $(a \ominus c) \ominus (b \ominus c) = (a \ominus b) \ominus c$, (d) $a \wedge a' = 0$, (e) $a \vee a' = 1$, (f) $a = a \ominus a'$, (g) $a' = a' \ominus a$, (h $b' \wedge a = a \ominus b'$ (i) $b \wedge a = a \ominus b'$ (j) $a \wedge (b \ominus c) = (a \wedge b) \ominus c$, for every $a, b, c \in M$.

Proof. The proof is routine.

Definition 3.2. *M* is called an implicative *MV*-algebra if $x \ominus (y \ominus x) = x$, for every $x, y \in M$.

Example 3.2. Let $M_1 = \{0, 1, 2, 3\}$, $M_2 = \{0, 1\}$, and operations \oplus_1 and \oplus_2 be defined by

\oplus_1	0	1	2	3			
0	0	1	2	3	\oplus_2	0	1
1	0	1	3	3	0	0	1
2	2	3	2	3	1	1	1
3	3	3	3	3			

If 0' = 3, 1' = 2, 2' = 1 and 3' = 0, then $(M_1, \oplus_1, ', 0, 1)$ is an implicative MV-algebra. Also, if 0' = 1 and 1' = 0, then $(M_2, \oplus_2, ', 0, 1)$ is an implicative MV-algebra.

Definition 3.3. Let $\emptyset \neq S \subseteq M$. We say that S is \wedge -closed, if $a \wedge b \in S$, for all $a, b \in S$.

Example 3.3. In Example 3.2, consider $S = \{0, 1, 2\} \subseteq M_1$ and $T = \{1, 2\} \subseteq M_1$. It is easy to see that S is \wedge -closed and T is not \wedge -closed.

Lemma 3.2. Let $I \in \mathcal{I}(M)$, $S \subseteq M$ be \wedge -closed and $S \cap I = \emptyset$. Then there exists a maximal ideal P of M such that $P \supseteq I$ and $P \cap S = \emptyset$. Furthermore, P is a prime ideal of M.

Proof. The existence of an ideal P easily follows from Zorn's Lemma. Let there exist $x, y \in M$ such that $x \wedge y \in P$, $x \notin P$ and $y \notin P$. Then P is properly contained in both $\prec P \cup \{x\} \succ = P_1$ and $\prec P \cup \{y\} \succ = P_2$. By maximality of $P, P_1 \cap S \neq \emptyset$ and $P_2 \cap S \neq \emptyset$. Let $s_i \in P_i \cap S$, i = 1, 2. Then $s_1 \wedge s_2 \leq s_i$, i=1,2 implies $s_1 \wedge s_2 \in P_1 \cap P_2 = P$. On the other hand, $s_1 \wedge s_2 \in S$, which is a contradiction. Therefore, P is a prime ideal of M.

Theorem 3.3. Let M be implicative and $I \in \mathcal{I}(M)$. Then

$$rad(I) = \{ x \in M : \forall P \in \mathcal{PI}_I(M), \exists c \in M \setminus P \text{ such that } c \land x \in I \}.$$

Proof. Let

$$T = \{x \in M : \forall P \in \mathcal{PI}_I(M), \exists c \in M \setminus P \text{ such that } c \land x \in I\}$$

and $x \in rad(I)$. Then $x \in P$, for every $P \in \mathcal{PI}_I(M)$. If $x \in I$, then by considering c = 1, we have $x \in T$. Now, let $x \notin I$. If $x \notin T$, then there exists $P_1 \in \mathcal{PI}_I(M)$ such that $c \wedge x \notin I$, for every $c \in M \setminus P_1$. Let $S = \{(c \wedge x) \ominus y : y \in I \text{ and } c \in M \setminus P_1\}$. First, we show that S is \wedge -closed. Let $(c_1 \wedge x) \ominus y_1, (c_2 \wedge x) \ominus y_2 \in S$, where $c_1, c_2 \in M \setminus P_1$ and $y_1, y_2 \in I$. By Lemma 3.1 (j) and (i),

$$\begin{aligned} ((c_1 \wedge x) \ominus y_1) \wedge ((c_2 \wedge x) \ominus y_2) &= ((c_1 \wedge x) \ominus y_1) \wedge (c_2 \wedge x)) \ominus y_2 \\ &= ((c_2 \wedge x) \wedge ((c_1 \wedge x) \ominus y_1)) \ominus y_2, \\ &= (((c_2 \wedge x) \wedge (c_1 \wedge x)) \ominus y_1) \ominus y_2 \\ &= y'_2 \wedge (((c_1 \wedge c_2) \wedge x) \ominus y_1), \\ &= (y'_2 \wedge ((c_1 \wedge c_2) \wedge x)) \ominus y_1 \\ &= ((y'_2 \wedge c_1 \wedge c_2) \wedge x) \ominus y_1. \end{aligned}$$

Now, we show that $y'_2 \wedge c_1 \wedge c_2 \in M \setminus P_1$. Let $y'_2 \wedge c_1 \wedge c_2 \in P_1$. Since $c_1 \wedge c_2 \notin P_1, y'_2 \in P_1$ and so $1 \in P_1$. Since $x \leq 1 \in P_1$, we get $x \in P_1$, for every $x \in M$ and so $P_1 = M$, which is a contradiction. Hence, $y'_2 \wedge c_1 \wedge c_2 \in M \setminus P_1$ and so $((y'_2 \wedge c_1 \wedge c_2) \wedge x) \ominus y_1 \in S$. It means that $((c_1 \wedge x) \ominus y_1) \wedge ((c_2 \wedge x) \ominus y_2) \in S$ and so S is \wedge -closed. Now, we prove that $S \cap I = \emptyset$. If $S \cap I \neq \emptyset$, then there exist $c' \in M \setminus P_1$ and $y' \in I$ such that $(c' \wedge x) \ominus y' \in I$. It results that $c' \wedge x \in I$. But, by definition of $S, c \wedge x \notin I$, for every $c \in M \setminus P_1$, which is a contradiction. Then $S \cap I = \emptyset$ and so by Lemma 3.2, there exists $P_2 \in \mathcal{PI}_I(M)$ such that $P_2 \cap S = \emptyset$. Since $(c \wedge x) \ominus x = 0 \in P$ and $x \in P$, $c \wedge x \in P$, for every $c \in M \setminus P$ and for every $P \in \mathcal{PI}_I(M)$. Then $(c \wedge x) \in P_2$. On the other hand, $c \wedge x = (c \wedge x) \ominus 0 \in S$. Hence, $c \wedge x \in P_2 \cap S$, which is a contradiction. It implies that $x \in T$. Therefore, $rad(I) \subseteq T$.

Now, let $x \in T$. Hence, for every $P \in \mathcal{PI}_I(M)$ there exists $c \in M \setminus P$ such that $c \wedge x \in I \subseteq P$. Since $c \notin P$, we get $x \in P$, for every $P \in \mathcal{PI}_I(M)$. It means that $x \in rad(I)$ and so $T \subseteq rad(I)$. Therefore, T = rad(I).

Proposition 3.4. Let M be implicative and $I \in \mathcal{I}(M)$. If for every $P \in \mathcal{PI}(M)$, $P \cap I \neq \{0\}$ implies that $I \subseteq P$, then

 $rad(I) = \{ x \in X : \forall P \in \mathcal{PI}(M) \text{ with } P \cap I \neq \{0\}, \exists c \in M \setminus P \text{ such that } c \land x \in I \}.$

Proof. By Theorem 3.3, the proof is clear.

Theorem 3.5. Let M be an MV-algebra and I, J, I_1, \dots, I_n be ideals of M. Then (i) $I \subseteq rad(I)$, (ii) $I \subseteq J$ implies $rad(I) \subseteq rad(J)$, (iii) $rad(I) \cup rad(J) \subseteq rad(I \cup J)$. Moreover, if M is implicative and $P \cap I_k \neq \{0\}$ implies that $I_k \subseteq P$, for every $P \in \mathcal{PI}(M)$ and $1 \leq k \leq n$, then (iv) rad(rad(I)) = rad(I), (v) $rad(\bigcap_{k=1}^n I_k) = \bigcap_{k=1}^n rad(I_k)$.

Proof. The proofs of (i), (ii) and (iii) are easy.

(iv) By (i), $rad(I) \subseteq rad(rad(I))$. Now, let $x \in rad(rad(I))$ and $P \in \mathcal{PI}(M)$ with $P \cap I \neq \{0\}$. Then by (i), $P \cap rad(I) \neq \{0\}$. Since $x \in rad(rad(I))$, by Proposition 3.4, there exists $c_1 \in M \setminus P$ such that $c_1 \wedge x \in rad(I)$. Since $c_1 \wedge x \in rad(I)$ and $P \cap I \neq \{0\}$, by Proposition 3.4, there exists $c_2 \in M \setminus P$ such that $(c_2 \wedge c_1) \wedge x = c_2 \wedge (c_1 \wedge x) \in I$. It is clear that $c = c_1 \wedge c_2 \in M \setminus P$. Similarly, for every $P \in \mathcal{PI}(M)$ with $P \cap I \neq \{0\}$ there is $c \in M \setminus P$ such that $c \wedge x \in I$. Hence, by Proposition 3.4, $x \in rad(I)$. Therefore, $rad(rad(I)) \subseteq rad(I)$.

(v) Let $x \in rad(\bigcap_{k=1}^{n} I_k)$ and $P \in \mathcal{PI}_{I_t}(M)$, for $1 \leq t \leq n$. Since $I_t \subseteq P$, we get $\bigcap_{k=1}^{n} I_k \subseteq I_t \subseteq P$. Since $x \in rad(\bigcap_{k=1}^{n} I_k)$, by Theorem 3.3, there exists $c \in M \setminus P$ such that $c \wedge x \in \bigcap_{k=1}^{n} I_k \subseteq I_t$ and so $c \wedge x \in I_t$. Hence, $x \in rad(I_t)$. Similarly, $x \in rad(I_k)$, for every $1 \leq k \leq n$ and so $x \in \bigcap_{k=1}^{n} rad(I_k)$. Hence, $rad(\bigcap_{k=1}^{n} I_k) \subseteq \bigcap_{k=1}^{n} rad(I_k)$.

Now, let $x \in \bigcap_{k=1}^{n} rad(I_k)$ and $P \in \mathcal{PI}(M)$ with $P \cap (\bigcap_{k=1}^{n} I_k) \neq \{0\}$. Then $P \cap I_k \neq \{0\}$, for every $1 \leq k \leq n$. Since $x \in rad(I_k)$, by Proposition 3.4, there is $c_k \in M \setminus P$ such that $c_k \wedge x \in I_k$, for every $1 \leq k \leq n$. Let $c = c_1 \wedge \cdots \wedge c_n$. It is clear that $c \notin P$. On the other hand, since $(c \wedge x) \leq (c_k \wedge x) \in I_k$, $c \wedge x \in I_k$, for every $1 \leq k \leq n$. Then $c \wedge x \in \bigcap_{k=1}^{n} I_k$. Therefore, by Proposition 3.4, $x \in rad(\bigcap_{k=1}^{n} I_k)$ and so $\bigcap_{k=1}^{n} rad(I_k) \subseteq rad(\bigcap_{k=1}^{n} I_k)$

Definition 3.4. Let Q be a proper ideal of M. Then Q is called a *primary* ideal of M if $a \land b \in Q$, then there exists $c \in M \setminus P$ such that $c \land b \in Q$ or $a \land c \in Q$, for every $P \in \mathcal{PI}_Q(M)$ and $a, b \in M$.

Example 3.4. In Example 3.2, $I = \{0, 1\}$ and $J = \{0, 2\}$ are primary ideals of M_1 .

Proposition 3.6. Let M be implicative and Q be an ideal of M. Then Q is a primary ideal of M if and only if $a \land b \in Q$ implies that $a \in rad(Q)$ or $b \in rad(Q)$, for any $a, b \in M$.

Proof. (\Rightarrow) Let Q be a primary ideal of M and $a \wedge b \in Q$, for $a, b \in M$. If $a \in Q$, then $a \in rad(Q)$. Let $a \notin Q$. Then there exits $c \in M \setminus P$ such that $c \wedge b \in Q$ or $a \wedge c \in Q$, for every $P \in \mathcal{PI}_Q(M)$. If $c \wedge b \in Q$, then $c \wedge b \in P$, for every $P \in \mathcal{PI}_Q(M)$. Since $c \notin P$, $b \in P$, for every $P \in \mathcal{PI}_Q(M)$. It results that $b \in \bigcap_{Q \subseteq P} P = rad(Q)$. Similarly, if $a \wedge c \in Q$, then $a \in rad(Q)$.

(⇐) Let $Q \in \mathcal{I}(M)$. If $a \land b \in Q$, then $a \in rad(Q)$ or $b \in rad(Q)$, for $a, b \in M$ and so by Theorem 3.3, there exists $c \in M \setminus P$ such that $c \land b \in Q$ or $a \land c \in Q$, for every $P \in \mathcal{PI}_Q(M)$. It means that Q is a primary ideal of M. \Box

Theorem 3.7. In an MV-algebra, every prime ideal is a primary ideal.

Proof. Let M be an MV-algebra, Q be a prime ideal of M, $a \land b \in Q$ and $a \notin Q$, for $a, b \in M$. Then by considering $c = 1 \in M \setminus P$, for every $P \in \mathcal{PI}_Q(M)$, we have $c \land b = b \in Q$. Hence, P is a primary ideal of M.

Example 3.5. In Example 3.1 (*ii*), $I = \{0\}$ is a primary ideal of M, but it is not a prime ideal of M.

Theorem 3.8. Let M be implicative and $I \cap P \neq \{0\}$ implies that $I \subseteq P$, for every $I \in \mathcal{I}(M)$ and $P \in \mathcal{PI}(M)$. Then the radical of every primary ideal of M is a prime ideal of M.

Proof. Let Q be a primary ideal of M. If rad(Q) = M, then $1 \in rad(Q)$. Hence, by Theorem 3.3, for every $P \in \mathcal{PI}_Q(M)$, there exists $c \in M \setminus P$ such that $c \wedge 1 = c \in Q \subseteq P$ and so $c \in P$, which is a contradiction. Now, let $a \wedge b \in rad(Q)$, for $a, b \in M$. Then there exists $c \in M \setminus P$ such that $(c \wedge a) \wedge b = c \wedge (a \wedge b) \in Q$, for every $P \in \mathcal{PI}_Q(M)$. If $a \notin rad(Q)$, then by Theorem 3.3, there is $P \in \mathcal{PI}_Q(M)$ such that $c \wedge a \notin Q$, for every $c \in M \setminus P$. Since Q is a primary ideal of M and $(c \wedge a) \wedge b \in Q$, there is $c' \in M \setminus P$ such that $c' \wedge b \in Q$, for every $P \in \mathcal{PI}_Q(M)$ and so $b \in rad(Q)$. Therefore, rad(Q) is a prime ideal of M.

4. Primary decomposition of A-ideals in MV-modules

In this section, we define the notions of primary and P-primary A-ideals of an MV-module. As a fundamental result, we introduce an MV-module that all its proper A-ideals have reduced primary decomposition.

Proposition 4.1. Let M be an A-module and N be an A-ideal of M. Then $Q_N = \{x \in A : xM \subseteq N\}$ is an ideal of A.

Proof. Let $x, y \in Q_N$, for $x, y \in A$. Then $xm, ym \in N$ and so $xm \oplus ym \in N$, for every $m \in M$. Since by Lemma 2.8, $(x \oplus y)m \leq xm \oplus ym \in N$, $(x \oplus y)m \in N$, for every $m \in M$. Hence, $x \oplus y \in Q_N$. Now, let $x \leq y$ and $y \in Q_N$, for $x, y \in A$. By Lemma 2.7 (g), $xm \leq ym \in N$ and so $xm \in N$, for every $m \in M$. Therefore, $x \in Q_N$ and so Q_N is an ideal of A.

Definition 4.1. Let M be an A-module and N be a proper A-ideal of M. Then N is called a *primary* A-ideal of M, if for any $x \in A$ and $m \in M$, $xm \in N$ implies that $m \in N$ or $\exists c \in A \setminus P$ such that $(c \wedge x)M \subseteq N$, for every $P \in \mathcal{PI}_{Q_N}(A)$.

Example 4.1. Let $A = \{0, 1, 2, 3\}$ and the operations " \oplus " and "." on A are defined as follows:

\oplus	0	1	2	3		0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	1	3	3	1	0	1	0	1
2	2	3	2	3	2	0	0	2	2
3	3	3	3	3	3	0	1	2	3

Consider 0' = 3, 1' = 2, 2' = 1 and 3' = 0. Then it is easy to show that $(A, \oplus, ', .., 0)$ is a *PMV*-algebra and $(A, \oplus, ', 0)$ is an *MV*-algebra. Now, let the operation \bullet : $A \times A \longrightarrow A$ be defined by $a \bullet b = a.b$, for every $a, b \in A$. It is easy to show that A is an *MV*-module on A and $I = \{0, 1\}, J = \{0, 2\}$ are primary A-ideals of A.

Proposition 4.2. Let M be a unitary A-module and N be a prime A-ideal of M. Then N is a primary A-ideal of M.

Proof. Let $xm \in N$ and $m \notin N$, for $x \in A$ and $m \in M$. Then we consider $c = 1 \in A \setminus P$ and so $(c \wedge x)M = xM \subseteq N$, for every $P \in \mathcal{PI}_{Q_N}(A)$.

Theorem 4.3. Let M be a unitary A-module and N be a primary A-ideal of M. Then Q_N is a primary ideal of A. *Proof.* If $Q_N = A$, then $1 \in Q_N$ and so M = N, which is a contradiction. Let $a \wedge b \in Q_N$ and $a \notin Q_N$, for $a, b \in A$. Then by Lemmas 2.5 and 2.7 (g), $(b.a)m \leq (b \wedge a)m \in N$ and so $b(am) = (b.a)m \in N$, for every $m \in M$. Since $a \notin Q_N$, there exists $m' \in M$ such that $am' \notin N$. Moreover, since $b(am') \in N$ and $am' \notin N$, there exists $c \in A \setminus P$ such that $(c \wedge b)M \subseteq N$, for every $P \in \mathcal{PI}_{Q_N}(A)$. It results that $c \wedge b \in Q_N$. Therefore, Q_N is a primary ideal of A.

Note. In Theorem 4.3, if A is implicative such that $I \cap P \neq \{0\}$ implies that $I \subseteq P$, then by Theorem 3.8, $rad(Q_N)$ is a prime ideal of A and

 $rad(Q_N) = \{ x \in A : \forall P \in \mathcal{PI}_{Q_N}(A), \exists c \in A \setminus P \text{ such that } (c \land x)M \subseteq N \}.$

Definition 4.2. Let M be an A-module and N be a proper A-ideal of M. Then N is called a P-primary A-ideal of M, if N is a primary A-ideal of M and $rad(Q_N) = P$.

Lemma 4.4. Let A be implicative, M be an A-module, N_1, \dots, N_k be P'-primary A-ideal of M such that $Q_{\bigcap_{i=1}^k N_i} \neq 0$. If $P \cap I \neq \{0\}$ implies that $I \subseteq P$, for every ideal $I \in \mathcal{I}(A)$ and $P \in \mathcal{PI}(A)$, then $\bigcap_{i=1}^k N_i$ is a P'-primary A-ideal of M.

Proof. It is clear that $\bigcap_{i=1}^{k} N_i \neq M$. Let $xm \in \bigcap_{i=1}^{k} N_i$ and $m \notin \bigcap_{i=1}^{k} N_i$, for $x \in A$ and $m \in M$. Then $xm \in N_i$, for every $1 \leq i \leq k$ and there exists $1 \leq j \leq k$ such that $m \notin N_j$. Since $xm \in N_j$ and $m \notin N_j$, there exists $c_j \in A \setminus P$ such that $(c_j \wedge x)M \subseteq N_j$, for every $P \in \mathcal{PI}_{Q_{N_j}}(A)$. It results that $x \in rad(Q_{N_j}) = P' = rad(Q_{N_i})$, for every $1 \leq i \leq k$. Hence, there exists $c_i \in A \setminus P$ such that $(c_i \wedge x)M \subseteq N$, for every $P \in \mathcal{PI}_{Q_{N_i}}(A)$. Now, we show that $rad(Q_{\bigcap_{i=1}^k N_i}) = P'$. For every $1 \leq i \leq k$,

$$x \in Q_{\bigcap_{i=1}^{k} N_{i}} \Leftrightarrow xM \subseteq \bigcap_{i=1}^{k} N_{i} \Leftrightarrow xM \subseteq N_{i} \Leftrightarrow x \in Q_{N_{i}} \Leftrightarrow x \in \bigcap_{i=1}^{k} Q_{N_{i}}.$$

Then $Q_{\bigcap_{i=1}^{k} N_i} = \bigcap_{i=1}^{k} Q_{N_i}$ and so by Theorem 3.5 (v),

$$rad(Q_{\bigcap_{i=1}^{k} N_{i}}) = rad(\bigcap_{i=1}^{k} Q_{N_{i}}) = \bigcap_{i=1}^{k} rad(Q_{N_{i}}) = \bigcap_{i=1}^{k} P' = P'.$$

Let $c = c_1 \wedge c_2 \cdots \wedge c_k$ and there exists $P \in \mathcal{PI}_{Q_{\bigcap_{i=1}^k N_i}}(A)$ such that $c \in P$. Then there is $1 \leq i \leq k$ such that $c_i \in P$. Since $\{0\} \neq Q_{\bigcap_{i=1}^k N_i} \subseteq Q_{N_i}$, we get $Q_{N_i} \cap P \neq \{0\}$ and so $Q_{N_i} \subseteq P$, for every $1 \leq i \leq k$. It results that $c_i \notin P$, for every $1 \leq i \leq k$, which is a contradiction. Hence, $c \in A \setminus P$, for every $P \in \mathcal{PI}_{Q_{N_{\bigcap_{i=1}^k N_i}}}(A)$. On the other hand, since $(c_i \wedge x) \dots \in N_i$,

$$(c \wedge x)m = (c_1 \wedge \dots \wedge c_i \wedge x)m = (c_i \wedge x)m \in N_i$$

and so $(c \wedge x)m \in \bigcap_{i=1}^{k} N_i$, for every $m \in M$. Therefore, $\bigcap_{i=1}^{k} N_i$ is a P'-primary A-ideal of M.

Definition 4.3. Let M be an A-module, N be a proper A-ideal of M and there exist proper A-ideals A_1, A_2, \dots, A_n of M such that A_i is a P_i -primary of M, for every $1 \leq i \leq n$ and $N = A_1 \cap A_2 \cap \dots \cap A_n$. Then we say $A_1 \cap A_2 \cap \dots \cap A_n$ is a primary decomposition of N and so N has a primary decomposition. Furthermore, this decomposition is reduced if

(i) $A_i \not\supseteq \bigcap_{i \neq j} A_j$, (ii) $rad(Q_{A_i}) \neq rad(Q_{A_j})$, for every $1 \le i, j \le n$.

Example 4.2. (*i*) Let A be unital and finite. If we consider A as A-module, where xy = x.y, for every $x, y \in A$, then since $ax \leq 1x = x$, for every $a, x \in A$, any ideal of A is an A-ideal of A and by Lemma 2.6, every prime ideal of A is a prime A-ideal of A. Hence, by Proposition 2.2, every proper A-ideal of A has a primary decomposition. (*ii*) In Example 4.1, $\{0, 2\} \cap \{0, 1\}$ is a primary decomposition of $\{0\}$. This decomposition is reduced, too.

Theorem 4.5. Let A be implicative, M be an A-module, N be an A-ideal of M that has a primary decomposition and $I \cap P \neq \{0\}$ implies that $I \subseteq P$, for every $I \in \mathcal{I}(A)$ and $P \in \mathcal{PI}(A)$. Then N has a reduced primary decomposition.

Proof. Let $N = A_1 \cap \cdots \cap A_n$, where A_i is a primary ideal of M, for every $1 \leq i \leq n$. If $A_j \supseteq \bigcap_{i=1}^n A_i$, where $i \neq j$, then we set $N = A_1 \cap \cdots \cap A_{j-1} \cap A_{j+1} \cap \cdots \cap A_n$, for every $1 \leq j \leq n$ and so by renumbering, $N = \bigcap_{i=1}^k A'_i$, where $k \leq n$ and $A'_j \not\supseteq \bigcap_{i=1}^k A'_i$, for every $1 \leq j \leq k$. Let $T = \{P_1, \cdots, P_m\}$, where $P_i \neq P_j$ and $m \leq k$, for every $1 \leq i, j \leq m$ and $rad(Q_{A'_i}) = P_i$, for some $1 \leq i \leq k$. Now, we resume

 $N = (A'_{i_1} \cap \dots \cap A'_{i_t}) \cap (A'_{j_1} \cap \dots \cap A'_{j_l}) \cap \dots \cap (A'_{s_1} \cap \dots \cap A'_{s_w}),$

where by Lemma 4.4,

$$rad(Q_{\bigcap_{h=1}^{t}A'_{i_{h}}}) = \bigcap_{h=1}^{t} rad(Q_{A'_{i_{h}}}) = \bigcap_{h=1}^{t} p_{1} = p_{1}, \cdots$$
$$rad(Q_{\bigcap_{h=1}^{w}A'_{s_{h}}}) = \bigcap_{h=1}^{w} rad(Q_{A'_{s_{h}}}) = \bigcap_{h=1}^{w} p_{m} = p_{m}.$$

Therefore, I has a reduced primary decomposition.

Definition 4.4. Let M be an A-module. Then

(i) M is called Noetherian if M satisfies the ascending chain condition (ACC): that is any chain $N_1 \subseteq N_2 \subseteq \cdots$ of A-ideal of M is stationary.

(ii) We say M satisfies the maximum condition, if every non-empty family of submodules of M has a maximum element.

Example 4.3. Every finite *A*-module is a Noetherian *A*-module.

Theorem 4.6. Let M be an A-module. Then M is Noetherian if and only if M has maximum condition.

Proof. The proof is routine.

Definition 4.5. Let M be an A-module. Then M is called a *Boolean* A-module if $ax \oplus ay \leq a(x \oplus y)$, for every $a \in A$ and $x, y \in M$.

Example 4.4. If M is a Boolean-algebra, then every A-module M is a Boolean A-module. Since $x \leq x \oplus y$ and $y \leq x \oplus y$, by Lemma 2.7 (f), $ax \leq a(x \oplus y)$ and $ay \leq a(x \oplus y)$, for every $a \in A$ and $x, y \in M$ and so by Lemma 2.1 (ii), $ax \oplus ay \leq a(x \oplus y) \oplus ay$ and $a(x \oplus y) \oplus ay \leq a(x \oplus y) \oplus a(x \oplus y) = a(x \oplus y)$. Hence, $ax \oplus ay \leq a(x \oplus y)$, for every $a \in A$ and $x, y \in M$.

Theorem 4.7. Let A be finite and M be a Boolean Noetherian A-module. Then every proper A-ideal of M has a reduced primary decomposition.

Proof. Let

 $T = \{N : N \text{ is a proper } A \text{-ideal of } M \text{ such that } N \text{ has no any reduced } \}$

primary decomposition \.

We show that $T = \emptyset$. Let $T \neq \emptyset$. Since M is Noetherian, by Theorem 4.6, T has a maximum element G. It is clear that G is not a primary A-ideal of M. So there exists $x \in A$ and $m \in M$ such that $xm \in G$, $m \notin G$ and for every $c \in A \setminus P$, $(c \wedge x)M \nsubseteq G$, where $P \in \mathcal{PI}_{Q_G}(A)$. We give an index $i \ge 1$ to every $c \in A \setminus P$. Let $B_i = \{m \in M : (c_1 \wedge c_2 \cdots \wedge c_i \wedge x)m \in G\}$, for every $i \ge 1$ and $m \in B_i$. Then

$$(c_1 \wedge c_2 \wedge \dots \wedge c_i \wedge c_{i+1} \wedge x)m \le (c_1 \wedge \dots \wedge c_i \wedge x)m \in G$$

and so $(c_1 \wedge c_2 \wedge \cdots \wedge c_i \wedge c_{i+1} \wedge x)m \in G$. Hence, $m \in B_{i+1}$ and so $B_i \subseteq B_{i+1}$, for every $i \geq 1$. Since M is Noetherian, there exists $k \in \mathbb{N}$ such that $B_k = B_n$, for every $n \geq k$. We show that B_k is an A-ideal of M. Let $m_1, m_2 \in B_k$. Then $(c_1 \wedge \cdots \wedge c_k \wedge x)m_1, (c_1 \wedge \cdots \wedge c_k \wedge x)m_2 \in G$. By Lemma 2.7 (h),

$$(c_1 \wedge \dots \wedge c_k \wedge x) \cdot (m_1 \oplus m_2) \le (c_1 \wedge \dots \wedge c_k \wedge x) m_1 \oplus (c_1 \wedge \dots \wedge c_k \wedge x) m_2 \in G$$

and so $(c_1 \wedge \cdots \wedge c_k \wedge x).(m_1 \oplus m_2) \in G$. Hence, $m_1 \oplus m_2 \in B_K$. Now, let $m_1 \leq m_2 \in B_k$. Since $(c_1 \wedge \cdots \wedge c_k \wedge x)m_1 \leq (c_1 \wedge \cdots \wedge c_k \wedge x)m_2 \in G$, $(c_1 \wedge \cdots \wedge c_k \wedge x)m_1 \in G$ and so $m_1 \in B_k$. On the other hand,

$$(c_1 \wedge \dots \wedge c_k \wedge x)(am) = ((c_1 \wedge \dots \wedge c_k \wedge x).a)m$$

$$\leq (c_1 \wedge \dots \wedge c_k \wedge x \wedge a)m \leq (c_1 \wedge \dots \wedge c_k \wedge x)m \in G$$

and so $am \in B_k$, for every $a \in A$ and $m \in B_k$. Hence, B_k is an A-ideal of M. Let $D = \{(c_1 \land \cdots \land c_k \land x)m' \oplus g : m' \in M \text{ and } g \in G\}$. We show that D is an A-ideal of M. Let $d_1, d_2 \in D$. It is easy to show that $d_1 \oplus d_2 \in D$. Let $d \in D$ and $a \in A$. So there exist $m' \in M$ and $g \in G$ such that

$$ad = a((c_1 \wedge \dots \wedge c_k \wedge x)m' \oplus g) \le a((c_1 \wedge \dots \wedge c_k \wedge x)m') \oplus ag$$

= $(a.(c_1 \wedge \dots \wedge c_k \wedge x))m' \oplus ag$
 $\le (a \wedge c_1 \wedge \dots \wedge c_k \wedge x)m' \oplus ag \le (c_1 \wedge \dots \wedge c_k \wedge x)m' \oplus ag \in D$

Hence, D is an A-ideal of M. Now, we prove that $G = D \cap B_k$, $G \subsetneq D$ and $G \subsetneq B_k$. Let $g \in G$. Then $g = (c_1 \land \cdots \land c_k \land x) 0 \oplus g \in D$. On the other hand, $(c_1 \land \cdots \land c_k \land x)g \in G$. So $g \in B_k$ and so $G \subseteq D \cap B_k$. Let $m \in D \cap B_k$. Since $m \in B_k$, $(c_1 \land \cdots \land c_k \land x)m \in G$ and since $m \in D$, there exist $m' \in M$ and $g \in G$ such that $m = (c_1 \land \cdots \land c_k \land x)m' \oplus g$. Since

$$\begin{aligned} ((c_1 \wedge \dots \wedge c_k \wedge x).(c_1 \wedge \dots \wedge c_k \wedge x))m' \oplus (c_1 \wedge \dots \wedge c_k \wedge x)g \\ &= (c_1 \wedge \dots \wedge c_k \wedge x)((c_1 \wedge \dots \wedge c_k \wedge x)m') \oplus (c_1 \wedge \dots \wedge c_k \wedge x)g \\ &= (c_1 \wedge \dots \wedge c_k \wedge x)((c_1 \wedge \dots \wedge c_k \wedge x)m' \oplus g) = (c_1 \wedge \dots \wedge c_k \wedge x)m \in G, \end{aligned}$$

by Lemma 2.6,

$$(c_1 \wedge \dots \wedge c_k \wedge x)m' = ((c_1 \wedge \dots \wedge c_k \wedge x) \wedge (c_1 \wedge \dots \wedge c_k \wedge x))m'$$
$$= ((c_1 \wedge \dots \wedge c_k \wedge x).(c_1 \wedge \dots \wedge c_k \wedge x))m' \in G$$

and so $m \in G$. Hence, $D \cap B_k \subseteq G$. It is enough to show that $G \subsetneq D$ and $G \subsetneq B_k$. We have $(c \land x)M \nsubseteq G$, for every $c \in A \setminus P$, where $P \in \mathcal{PI}_{Q_G}(A)$. Then there exists $t \in M$ such that $(c \land x)t \notin G$. But if $c = c_1 \land \cdots \land c_k$, then $(c \land x)t = (c \land x)t + 0 \in D$ and so $G \subsetneq D$. On the other hand, there existed $m \in M$ and $x \in A$ such that $xm \in G$ and $m \notin G$, but $(c_1 \land \cdots \land c_k \land x)m = ((c_1 \land \cdots \land c_k).x)m = (c_1 \land \cdots \land c_k)(xm) \in G$. It means that $m \in B_k$ and so $G \subsetneq B_k$. By the maximality of G, D and B_k have primary decomposition. It results that G has primary decomposition, which is a contradiction. Therefore, $T = \emptyset$.

5. Conclusion

The equivalence between the category of lu-modules over (R, v) and the category of MV-modules over $\Gamma(R, v)$ was proved by Di Nola, where (R, v) is an lu-ring [6]. We studied ideals in MV-algebras and presented definition of radical of an ideal in MV-algebras by prime ideals that it was defined by maximal ideals in [9]. Also, we introduced the notion of primary ideals in MV-algebras. Then we studied A-ideals in MV-modules and defined the notions of primary and P-primary A-ideals of an MVmodule in order to define primary decomposition of A-ideals. Also, we introduced MV-modules that their proper A-ideals have reduced primary decomposition. In fact, we opened new fields to anyone that is interested to studying and development of MV-modules.

References

- L.P. Belluce, A. Di Nola, A. Lettieri, Local MV-algebras, Rendiconti del Circolo Matematico di Palermo 42 (1993), 347–361.
- [2] C.C. Chang, Algebric analysis of many-valued logic, Transactions of American Mathematical Society 88 (1958), 467–490.
- [3] C.C. Chang, A new proof of the completeness of the Lukasiewicz axioms, Transactions of American Mathematical Society 93 (1959), 74–80.
- [4] R. Cignoli, M. L. D'Ottaviano, D. Mundici, Algebric Foundation of Many-valued Reasoning, Kluwer Academic, Dordrecht, 2000.
- [5] A. Di Nola, A. Dvurečenskij, Product MV-algebras, Multiple-Valued Logics 6 (2001), 193–215.
- [6] A. Di Nola, P. Flondor, I. Leustean, MV-modules, Journal of Algebra 267 (2003), 21–40.
- [7] A. Dvurečenskij, On Partial addition in Pseudo MV-algebras, Proceedings of the Fourth International Symposium on Economic Informatics, (1999), 952–960.
- [8] F. Forouzesh, E. Eslami, A. Borumand, On Prime A-ideals in MV-modules, Politehnica University of Bucharest Scientific Bulletin, 76, (2014), no. 3, 181-198.
- [9] F. Forouzesh, E. Eslami, A. Borumand Saeid, Radical of A-ideals in MV-modules, Annals of the Alexandru Loan Cuza University-Mathematics 10 (2014), 1–24.
- [10] T. Kroupa, Conditional probability on MV-algebras, Fuzzy Sets and Systems 149 (2005), 369-381.
- [11] J. Meng, Y.B. Jun, BCK-algebras, Kyungmoon Sa Co, Korea, 1994.
- [12] D. Mundici, Interpretation of AF C*-algebras in Lukasiewicz sentential calculus, International Journal of Functional Analysis 65 (1986), 15-63.

(S. Saidi Goraghani) DEPARTMENT OF MATHEMATICS, FARHANGIAN UNIVERSITY, IRAN *E-mail address*: SiminSaidi@yahoo.com

(R. A. Borzooei) DEPARTMENT OF MATHEMATICS, SHAHID BEHESHTI UNIVERSITY, TEHRAN, IRAN *E-mail address*: borzooei@sbu.ac.ir