Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 45(1), 2018, Pages 66-77
ISSN: 1223-6934

Decomposition of A-ideals in MV-modules
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ABSTRACT. In this paper, by considering the notion of MV-modules, we present definition of
radical of an ideal in MV-algebras by prime ideals that in last was defined by maximal ideals.
Also, we define the notions of primary and P-primary A-ideals in MV-modules. Then we
show that under conditions, if an A-ideal has a primary decomposition, then it has a reduced
primary decomposition. Finally, we characterize proper A-ideals that have a reduced primary
decomposition.
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1. Introduction

MYV -algebras were defined by C.C. Chang [2, 3] as algebras corresponding to the
Lukasiewicz infinite valued propositional calculus. These algebras have appeared in
the literature under different names and polynomially equivalent presentation: CN-
algebras, Wajsberg algebras, bounded commutative BCK-algebras and bricks. It
is discovered that MV -algebras are naturally related to the Murray-von Neumann
order of projections in operator algebras on Hilbert spaces and that they play an
interesting role as invariants of approximately finite-dimensional C*-algebras. They
are also naturally related to Ulam's searching games with lies. MV-algebras ad-
mit a natural lattice reduct and hence a natural order structure. Many important
properties can be derived from the fact, established by Chang that nontrivial MV -
algebras are subdirect products of MV -chains, that is, totally ordered M V-algebras.
To prove this fundamental result, Chang introduced the notion of prime ideal in an
MYV-algebra. A product MV -algebra (or PMV-algebra, for short) is an MV-algebra
which has an associative binary operation “.”. It satisfies an extra property which will
be explained in preliminaries. During the last years, PMV-algebras were considered
and their equivalence with a certain class of l-rings with strong unit was proved. It
seems quite natural to introduce modules over such algebras, generalizing the divisible
MV -algebras and the M V-algebras obtained from Riesz spaces and to prove natural
equivalence theorems. Hence, the notion of M V-modules was introduced as an action
of a PMV-algebra over an MV-algebra by A. Di Nola [6]. In 2014, F. Forouzesh,
E. Eslami and A. Borumand Saeid defined prime A-ideals and radical of A-ideals by
maximal A-ideals in MV-modules [8, 9]. Since MV-modules are in their infancy,
stating and opening of any subject in this field can be useful. Since the notion of A-
ideal in M'V-modules is important, for completion of study of ideals in MV -modules,
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in this paper, we present definitions of primary decomposition and reduced primary
decomposition of an A-ideal by prime A-ideals (no maximal A-ideals). The simplifi-
cation of an A-ideal helps us for better studying it. Hence, the decomposition of an
A-ideal can be useful and important.

2. Preliminaries

Definition 2.1. [4] An MV-algebra is a structure M = (M, ®,,0) of type (2,1,0)
such that:

(MV1) (M,®,0) is an abelian monoid,

(MV2) (@) = a,

(MV3)0 ®a=0,

(MV4) (¢’ ®b) ®b=(VV®a) ®a,

If we define the constant 1 = 0’ and operations ® and © by a ®b = (a’ V'),
a©b=a®V, then

(MV5) (a®db)=(a ©b),

(MV6e)zp1l=1,

(MVT) (acb)db=(boa)®a,

(MV8)a®dad =1,

for every a,b € A. Tt is clear that (M,®, 1) is an abelian monoid. Now, if we define
auxiliary operations V and A on M by aVb= (a©b)@®band aAb=a® (¢’ ), for
every a,b € M, then (M, V,A,0) is a bounded distributive lattice. An MV-algebra M
is a Boolean algebra if and only if the operation “ @& ” is idempotent, i.e., t ® = = ,
for every x € X. In MV-algebra M, the following conditions are equivalent: ()
ad®b=1, (i) a@b =0, (i1i) b =a @ (bSa), (iv) Jc € A such that a ® c = b,
for every a,b,c € M. For any two elements a,b of MV-algebra M, a < b if and only
if a, b satisfy in the above equivalent conditions (i) — (iv). An ideal of MV -algebra
M is a subset I of M, satisfying the following condition: (I1) 0 € I, (I12) z < y
and y € I implies that x € I, (I3) v @y € I, for every z,y € I. A proper ideal P
of M is a prime ideal if and only if r ©y € P or yo x € P, for every z,y € M.
Equivalently, P is prime if and only if z Ay € P impliesx € Pory € P, for x,y € M.
A proper ideal I of M is a maximal ideal of M if and only if no proper ideal of M
strictly contains I. In MV-algebra M, the distance function d : M x M — M is
defined by d(z,y) = (z © y) ® (y © x) which satisfies (i) d(z,y) = 0 if and only if
r =1y, (“) d(x,y) = d(y,a:), (“’7/) d(mvz) < d(x,y) @ d(y72)7 (“)) d(x,y) = d(x’,y’),
(v) dxz ® z,y ®t) < d(x,y) ® d(z,t), for every x,y,z,t € M. Let I be an ideal
of MV-algebra M. Then we denote z ~ y (x =; y) if and only if d(z,y) € I, for
every x,y € M. So ~ is a congruence relation on M. Denote the equivalence class
containing z by £ and & = {Z : z € M}. Then (&, @/, 9) is an MV-algebra, where
(£) = %/ and £ @ ¥ = L2 for all z,y € M.(See [4])

Lemma 2.1. [4] In every MV -algebra A, the natural order “ <7 has the following
properties:

(i) x <y if and only if y' < o/,

(ii) if © <y, thenx ® z < y @ z, for every z € A.

Proposition 2.2. [4] Every proper ideal of an MV -algebra is an intersection of prime
ideals.
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Proposition 2.3. [4] Let M be an MV -algebra and z € M. Then the principal ideal
generated by z is denoted by < z > and < z == {x € M :nz = z2&--- Dz >
—_——

n times
x, for some n >0} is an ideal of M.

Proposition 2.4. [4] Let I be an ideal of A. Then
<ITU{z} -={rcA:z<nz®a, for somenecNandacl}
is an ideal of A.

Definition 2.2. [6, 7] (i) An [-group is an algebra (G, +,—,0,V,A), where the fol-
lowing properties hold:

(a) (G,+,—,0) is a group,

(b) (G,V,A) is a lattice,

(¢) x <y implies that « +a < y + a, for any z,y,a,b € G.

A strong unit u > 0 is a positive element with property that for any g € G there exits
n € w such that ¢ < nu. The Abelian I-groups with strong unit will be simply called
lu-groups.

The category whose objects are MV-algebras and whose homomorphisms are MV-
homomorphisms is denoted by MV. The category whose objects are pairs (G, u),
where G is an Abelian l-group and u is a strong unit of G and whose homomor-
phisms are l-group homomorphisms is denoted by Ug. The functor that establishes
the categorial equivalence between MV and Ug is

I': Ug— MV,

where T'(G,u) = [0,u]q, for every lu-group (G,u) and I'(h) = h|jg ., for every lu-
group homomorphism h. The above results allows us to consider an MV -algebra,
when necessary, as an interval in the positive cone of an [-group. Thus, many defini-
tions and properties can be transferred from [-groups to M V-algebras. For example,
the group addition becomes a partial operation when it is restricted to an interval, so
we define a partial addition on an MV -algebra M as follows:

x+ is defined if and only if z < 3’ and in this case, z+y = z &y, for every z,y € M.
Moreover, if z +x < z + y, then z < y.

(i) A product MV -algebra (or PMV-algebra, for short) is a structure A = (A, ®,.,”,0),
where (A, ®,”,0) is an MV-algebra and “.” is a binary associative operation on A such
that the following property is satisfied: if x +y is defined, then z.z+y.z and z.x + z.y
are defined and (x +y).z = v.z2 + y.2, z.(x + y) = z.x + z.y, for every z,y,z € A,
where “+ 7 is the partial addition on A. A unity for the product is an element e € A
such that e.x = x.e = x, for every x € A. If A has a unity for product, then e = 1.

Lemma 2.5. [5] Let A be a PMV -algebra. Then a < b implies that a.c < b.c and
c.a < cb, for any a,b,c € A. If A has unity for product, then a.b < a Ab, for any
a,b e A.

Lemma 2.6. [5] A finite PMV -algebra A has unity for product if and only if A is a
Boolean algebra and in this case a.b =a A'b, for any a,b € A.

Definition 2.3. [6] Let A = (A,®,.,/,0) be a PMV-algebra, M = (M, ®,’,0) be an
MYV -algebra and the operation ® : A x M — M be defined by ®(a, m) = am, which
satisfies the following axioms:
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(AM1) If x 4y is defined in M, then ax + ay is defined in M and a(z +y) = ax + ay,
(AM?2) If a + b is defined in A, then ax + bz is defined in M and (a + b)x = ax + bz,
(AM3) (a.b)x = a(bx), for every a,b € A and z,y € M.

Then M is called a (left) MV -module over A or briefly an A-module. We say M is a
unitary MV-module if A has a unity for the product, that is

(AM4) 142 = x, for every z € M.

Lemma 2.7. [6] Let A be a PMV -algebra and M be an A-module. Then

(
(c
(d) d'z < (ax)’,

(e) (az) = 'z + (1),

(f) <y implies that ax < ay,

(9) a < b implies that ax < bz,

(h) a(z ®y) < ax @ ay,

(1) d(ax, ay) < ad(z,y),

(j) if x =1 y, then ax =; ay, where I is an ideal of A,

(k) if M is a unitary MV -module, then (ax)" = o'z + 2', for every a,b € A and
z,y € M.

Lemma 2.8. [8] Let A be a PMV -algebra and M be an A-module. Then (a ®b)x <
ax @ bx, for every a,b € A and x € M.

Definition 2.4. [6] Let A be a PMV-algebra and M be an A-module. Then an ideal
N C M is called an A-ideal of M if (I4) ax € N, for every a € A and x € N.

Note: From now on, in this paper, we let A is a PMV-algebra, M be an MV-
algebra, PZ(M) be the set of all prime ideals of M and PZ;(M) be the set of all
prime ideals of M that contain J € Z(M).

3. Primary ideals in MV -algebras

In this section, we present definition of radical of an ideal in MV -algebras by
prime ideals that in [9] was defined by maximal ideals. Also, we introduce the notion
of primary ideals in M V-algebras and we get some results that we use in the section
4.

Definition 3.1. Let I € Z(M). Then the intersection of all prime ideals of M,
including I, is called radical of I and it is denoted by rads(I) or briefly rad(I) . If
there is not any prime ideal of M including I, then we let rad(I) = M.

Example 3.1. (i) Let M = {0,1,2} and operation @ be defined by

o0 1 2
0o 1 2
11 1 2
210 2 2

If0' =2, 1’=1and 2’ =0, then (M,®,’,0,1) is an MV-algebra. It is easy to show
that I = {0, 1} is only prime ideal of M and so rad({0}) = {0,1} and rad(I) = I.
(79) Let M3(R) be the ring of square matrixes of order 2 with real elements and let 0



70 S. SAIDI GORAGHANI AND R. A. BORZOOEI
be the matrix with all elements 0. If we define the order relation on components

A= (a;j)ij=1,2>0if and only if a;; > 0 for any 1, j,
1

then M>(R) is an l-ring. If v = ( ? >, then (M3(R),v) is an lu-ring and so

2
M =T(M>(R),v) is an MV-algebra. It is easy to see that I(M) = {{0}, M} and {0}
is not a prime ideal of M. Then rad({0}) = M.

N[0 | =

Lemma 3.1. In M, the following conditions are equivalent:
(@) a=a (b a),

b)acb=(acb)Sh,

) (ac)e(bec)=(a0b)Oc,

Aa' =0,

Proof. The proof is routine. O

Definition 3.2. M is called an implicative MV-algebra if & (y © x) = z, for every
T,y € M.

Example 3.2. Let M; = {0,1,2,3}, M> = {0,1}, and operations ®; and @2 be
defined by

@ [0 1 2 3
00 T 2 3 @] 0 1
10 1 3 3 0 |0 1
2 |2 3 2 3 1|1 1
3,13 3 3 3

If0'=3,1=2,2 =1and 3 =0, then (My,%1,’,0, 1) is an implicative MV -algebra.
Also, if 0/ =1 and 1’ = 0, then (Ma, &5, ,0,1) is an implicative MV -algebra.

Definition 3.3. Let () # S C M. We say that S is A-closed, if a Ab € S, for all
a,beS.

Example 3.3. In Example 3.2, consider S = {0,1,2} C M; and T = {1,2} C M;.
It is easy to see that S is A-closed and T is not A-closed.

Lemma 3.2. Let [ € Z(M), S C M be A-closed and SN I = (. Then there exists a
mazimal ideal P of M such that P D I and PN S = (). Furthermore, P is a prime
ideal of M.

Proof. The existence of an ideal P easily follows from Zorn's Lemma. Let there exist
x,y € M such that t Ay € P,z ¢ P and y ¢ P. Then P is properly contained in
both < PU {2} == P; and < PU {y} »= P,. By maximality of P, P, NS # ()
and P,NS # 0. Let s; € B;NS, 3 = 1,2. Then s; A sy < s;, i=1,2 implies
s1 ANsy € PpN P, = P. On the other hand, s; A so € S, which is a contradiction.
Therefore, P is a prime ideal of M. O
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Theorem 3.3. Let M be implicative and I € T(M). Then
rad(I)={x € M :VYP € PI;(M),3c € M \ P such that c Nz € I}.
Proof. Let
T={xeM:YPePI;(M),Ic € M\ P such that chNz €I}

and z € rad(I). Then xz € P, for every P € PZ;(M). If x € I, then by considering
c=1,we have x € T. Now, let © ¢ I. If x ¢ T, then there exists P, € PZ;(M) such
that cAx ¢ I, for every c € M\ P;. Let S = {(cAz)Oy :y € I and c € M\ P;}. First,
we show that S is A-closed. Let (¢c1 Ax) Sy1,(ca Ax) Sys €S, where ¢1,c0 € M\ Py
and y1,y2 € I. By Lemma 3.1 (5) and (4),

(1 Az)Sy) A((c2 Ax) © o) (et Az)Sy1) A (2 A @) ©yo
= ((2Nh2)A((e1 ANx) S 1)) © o,
= (((enz)N(c1AT)) S Y1) S Y2
= Yo A(((ca Aex) Aa) S ),

= (A(ahe)Ahz))on

= ((yyANer Aea) ANz) © .

Now, we show that yhAci Aca € M\ Py. Let yyAci Acg € Py. Since ciAca & Py, yh € Py
and so 1 € P;. Since x <1 € Py, we get x € Py, for every x € M and so P, = M,
which is a contradiction. Hence, y5Ac1 Aco € M\ Py and so ((yhAc1 Ac)Az)Oyr € S.
It means that((c; Az) ©y1) A ((c2Ax) ©y2) € S and so S is A-closed. Now, we prove
that SNI =0. If SN I # O, then there exist ¢ € M \ P, and 3’ € I such that
(' Ax)oy' € 1. Tt results that ¢ Az € I. But, by definition of S, cAx ¢ I, for every
c € M\ P;, which is a contradiction. Then SN I = @ and so by Lemma 3.2, there
exists P, € PZ;(M) such that P, NS = (. Since (cAz)Sx =0¢€ Pand z € P,
cNz € P, for every ¢ € M\ P and for every P € PZ;(M). Then (cAx) € P;. On the
other hand, cAx = (cAz)©0 € S. Hence, c Az € P, NS, which is a contradiction.
It implies that « € T'. Therefore, rad(l) C T.

Now, let « € T. Hence, for every P € PZ;(M) there exists ¢ € M \ P such that
cNz €I CP. Since ¢ ¢ P, we get x € P, for every P € PZ;(M). It means that
x € rad(I) and so T C rad(I). Therefore, T' = rad([). O

Proposition 3.4. Let M be implicative and I € Z(M). If for every P € PIZ(M),
PN 1I#{0} implies that I C P, then

rad(I)={x € X : VP € PZ(M) with PNI # {0}, 3¢ € M\ P such that cAx € I}.
Proof. By Theorem 3.3, the proof is clear. (]

Theorem 3.5. Let M be an MV -algebra and I, J, I, -- , I, be ideals of M. Then
(i) T C rad(I),

(1) I C J implies rad(I) C rad(J),

(#41) rad(I) Urad(J) C rad(I U J).

Moreover, if M is implicative and P N I, # {0} implies that I, C P, for every
PePI(M) and 1 <k <n, then

() rad(rad(I)) = rad(I),

(v) rad(Mp—; Ir) = Ni—y rad(Iy).
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Proof. The proofs of (i), (i4) and (iii) are easy.

(iv) By (i), rad(I) C rad(rad(I)). Now, let z € rad(rad(l)) and P € PZ(M) with
PNI # {0}. Then by (i), PNrad(I) # {0}. Since z € rad(rad(I)), by Proposition 3.4,
there exists ¢; € M\ P such that c; Az € rad(I). Since c1 Az € rad(I) and PNI # {0},
by Proposition 3.4, there exists co € M \ P such that (ca Aci) Az =caA(ey Ax) €.
It is clear that ¢ = ¢; Acg € M\ P. Similarly, for every P € PZ(M) with PN1T # {0}
there is ¢ € M \ P such that ¢ Az € I. Hence, by Proposition 3.4, z € rad(I).
Therefore, rad(rad(I)) C rad(I).

(v) Let = € rad(Ny_, Ir) and P € PZ;,(M), for 1 < ¢ < n. Since I; C P, we get
Np—y Ix € I, C P. Since z € rad((;_, Ir), by Theorem 3.3, there exists ¢ € M \ P
such that c Az € (;_; Iy € I; and so ¢ Az € I,. Hence, z € rad(l;). Similarly,
z € rad(Iy), for every 1 < k < n and so z € (,_, rad(I}). Hence, rad((\;_, Ix) C
ey rad(Ii).

Now, let @ € (,_,rad(I;) and P € PIZ(M) with P N (N;_, Ix) # {0}. Then
P NI # {0}, for every 1 < k < n. Since z € rad(I}), by Proposition 3.4, there is
¢, € M\ P such that ¢y Ax € I, for every 1 <k <n. Let c=cy A---Acy. It is clear
that ¢ ¢ P. On the other hand, since (¢ A z) < (cp Ax) € Iy, c Az € I, for every
1 <k <n. Then c Az € (;_, Ix. Therefore, by Proposition 3.4, z € rad((,_, Ir)
and so (y_, rad(Iy) C rad((p_; Ix) O

Definition 3.4. Let @) be a proper ideal of M. Then Q is called a primary ideal of
M if aAb € Q, then there exists ¢ € M \ P such that cAb € Q or aAc € Q, for every
PePIg(M)anda,be M.

Example 3.4. In Example 3.2, I = {0,1} and J = {0, 2} are primary ideals of Mj.

Proposition 3.6. Let M be implicative and Q be an ideal of M. Then Q is a primary
ideal of M if and only if a AN b € Q implies that a € rad(Q) or b € rad(Q), for any
a,be M.

Proof. (=) Let @ be a primary ideal of M and a Ab € Q, for a,b € M. If a € Q,
then a € rad(Q). Let a ¢ (). Then there exits ¢ € M \ P such that cAb € Q or
alNc € Q, for every P € PZo(M). If cAb € @, then cAb € P, for every P € PLg(M).
Since ¢ ¢ P, b € P, for every P € PZg(M). It results that b € (o p P = rad(Q).
Similarly, if a A ¢ € @, then a € rad(Q). -

(<)Let Qe Z(M). If anb € Q, then a € rad(Q) or b € rad(Q), for a,b € M and so
by Theorem 3.3, there exists ¢ € M \ P such that cAb € Q or a A ¢ € Q, for every
P € PIg(M). It means that @ is a primary ideal of M. O

Theorem 3.7. In an MV -algebra, every prime tdeal is a primary ideal.

Proof. Let M be an MV-algebra, @ be a prime ideal of M, a Ab € Q and a ¢ Q,
for a,b € M. Then by considering ¢ =1 € M \ P, for every P € PZy(M), we have
cANb=0b¢e Q. Hence, P is a primary ideal of M. O

Example 3.5. In Example 3.1 (i¢), I = {0} is a primary ideal of M, but it is not a
prime ideal of M.

Theorem 3.8. Let M be implicative and I N P # {0} implies that I C P, for every
I €Z(M) and P € PZL(M). Then the radical of every primary ideal of M is a prime
ideal of M.
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Proof. Let @ be a primary ideal of M. If rad(Q) = M, then 1 € rad(Q). Hence,
by Theorem 3.3, for every P € PZg(M), there exists ¢ € M \ P such that cA 1l =
¢ € @ C P and so ¢ € P, which is a contradiction. Now, let a A b € rad(Q), for
a,b € M. Then there exists ¢ € M \ P such that (cAa) Ab=cA(aAb) € Q, for every
P e PIo(M). If a ¢ rad(Q), then by Theorem 3.3, there is P € PZg(M) such that
cAha¢@Q,for every c € M\ P. Since @ is a primary ideal of M and (cAa) Ab€ Q,
there is ¢/ € M \ P such that ¢/ Ab € Q, for every P € PZo(M) and so b € rad(Q).
Therefore, rad(Q) is a prime ideal of M. O

4. Primary decomposition of A-ideals in MV -modules

In this section, we define the notions of primary and P-primary A-ideals of an MV -
module. As a fundamental result, we introduce an M V-module that all its proper
A-ideals have reduced primary decomposition.

Proposition 4.1. Let M be an A-module and N be an A-ideal of M. Then Qn =
{r € A:xM C N} is an ideal of A.

Proof. Let xz,y € Qn, for x,y € A. Then xm, ym € N and so xm @ ym € N, for
every m € M. Since by Lemma 2.8, (z @ y)m < axzm @ ym € N, (x D y)m € N, for
every m € M. Hence, z ®y € Qn. Now, let z <y and y € Qn, for x,y € A. By
Lemma 2.7 (g), xm < ym € N and so am € N, for every m € M. Therefore, x € Qn
and so @ is an ideal of A. O

Definition 4.1. Let M be an A-module and N be a proper A-ideal of M. Then N
is called a primary A-ideal of M, if for any x € A and m € M, xm € N implies that
m € N or 3c € A\ P such that (cAz)M C N, for every P € PZLg, (A).

Example 4.1. Let A ={0,1,2,3} and the operations “@®” and “.” on A are defined
as follows:

@0 1 2 3 o 1 2 3
0o 1 2 3 0/0 0 0 0
1|11 3 3 101 0 1
212 3 2 3 2/0 0 2 2
313 3 3 3 3/0 1 2 3

Consider 0’ =3, 1’ =2, 2/ =1 and 3’ = 0. Then it is easy to show that (A, &, ,.,0)
is a PMV-algebra and (A,®,,0) is an MV-algebra. Now, let the operation e :
A x A — A be defined by a e b = a.b, for every a,b € A. It is easy to show that A
is an MV-module on A and I = {0,1}, J = {0, 2} are primary A-ideals of A.

Proposition 4.2. Let M be a unitary A-module and N be a prime A-ideal of M.
Then N is a primary A-ideal of M.

Proof. Let am € N and m ¢ N, for x € A and m € M. Then we consider ¢ =1 €
A\ P and so (cANz)M =zM C N, for every P € PZg, (A). O

Theorem 4.3. Let M be a unitary A-module and N be a primary A-ideal of M.
Then Qn is a primary ideal of A.
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Proof. If Qn = A, then 1 € Qn and so M = N, which is a contradiction. Let
aANbe Qy and a ¢ Qn, for a,b € A. Then by Lemmas 2.5 and 2.7 (g), (b.a)m <
(bAa)m € N and so b(am) = (b.a)m € N, for every m € M. Since a ¢ Qu, there
exists m’ € M such that am’ ¢ N. Moreover, since b(am’) € N and am’ ¢ N, there
exists ¢ € A\ P such that (c Ab)M C N, for every P € PIg, (A). It results that
cANb € Qy. Therefore, Qu is a primary ideal of A. O

Note. In Theorem 4.3, if A is implicative such that I N P # {0} implies that
I C P, then by Theorem 3.8, rad(Qy) is a prime ideal of A and

rad(@Qn) ={z € A: VP € PIg,(A),3c € A\ P such that (cNz)M C N}.

Definition 4.2. Let M be an A-module and N be a proper A-ideal of M. Then N is
called a P-primary A-ideal of M, if N is a primary A-ideal of M and rad(Qy) = P.

Lemma 4.4. Let A be implicative, M be an A-module, Ny,---, Ny be P'-primary
A-ideal of M such that Qnr_ n, # 0. If PN # {0} implies that I C P, for every

ideal I € Z(A) and P € PI(A), then ﬂf;l N, is a P'-primary A-ideal of M.

Proof. Tt is clear that ﬂle N; # M. Let zm € ﬂle N; and m ¢ ﬂle N;, forxz e A
and m € M. Then xm € N;, for every 1 <14 < k and there exists 1 < 5 < k such that
m ¢ Nj. Since zm € N; and m ¢ Nj, there exists ¢; € A\ P such that (¢;Az)M C Nj,
for every P € PLgy, (A). It results that = € rad(Qn,) = P' = rad(Qx,), for every
1 < i < k. Hence, there exists ¢; € A\ P such that (¢; Az)M C N, for every
P € PIqy, (A). Now, we show that 7’ad(ch:1 n,) = P'. Forevery 1 <i <k,

k

k
xEanleiﬁxMQﬂNi@)xMQNi@xEQNiﬁzeﬂQNi.
i=1 =1

Then Q@ n, = ﬂle Qn, and so by Theorem 3.5 (v),

k k k
rad(Qne_ n,) = rad(m Qn,) = m rad(Qp,) = ﬂ P =P
i=1 i=1

i=1

Let ¢ = ¢1 Aca - - - Acy, and there exists P € PIan . (A) such that ¢ € P. Then there
=1 7

is 1 <4 < k such that ¢; € P. Since {0} # Qqr_ n, € @n,, We get Qn, N P # {0}

and so Qn, C P, for every 1 < ¢ < k. It results that ¢; ¢ P, for every 1 < i < k,
which is a contradiction. Hence, c € A\ P, for every P € PIq, (A). On the
nk_. N,

i=1""1

other hand, since (¢; A z).m € N,
(chz)ym=(c1t NN Ax)m = (¢; ANx)m € N;

and so (¢ Ax)m € ﬂle N;, for every m € M. Therefore, ﬂle N; is a P’-primary
A-ideal of M. O

Definition 4.3. Let M be an A-module, N be a proper A-ideal of M and there
exist proper A-ideals Ai, As,---, A, of M such that A; is a P;-primary of M, for
every 1 <i<nand N=A4;NA;N---NA,. Then wesay AjNAsN---NA,isa
primary decomposition of N and so N has a primary decomposition. Furthermore,
this decomposition is reduced if
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(i) Ai 2 ﬂi;éj Aj,
(it) rad(Qa4,) # rad(Q4,), for every 1 <i,j <n.

Example 4.2. (i) Let A be unital and finite. If we consider A as A-module, where
xy = x.y, for every z,y € A, then since ax < la = z, for every a,z € A, any ideal of
Ais an A-ideal of A and by Lemma 2.6, every prime ideal of A is a prime A-ideal of A.
Hence, by Proposition 2.2, every proper A-ideal of A has a primary decomposition.
(#4) In Example 4.1, {0,2} N {0,1} is a primary decomposition of {0}. This decom-
position is reduced, too.

Theorem 4.5. Let A be implicative, M be an A-module, N be an A-ideal of M that
has a primary decomposition and I NP # {0} implies that I C P, for every I € Z(A)
and P € PZ(A). Then N has a reduced primary decomposition.

Proof. Let N = AjN---NA,, where A; is a primary ideal of M, for every 1 < i <n. If
A; DN, Ai, where i # j, then we set N = Alﬂ ‘NA;_1NAj11N---NA,, for every
1 < j < n and so by renumbering, N = ﬂ L Aj, where k < n and A} 2 ﬂle Al

for every 1 < j < k. Let T = {P1, -+, Pn}, where P, # P; and m < k, for every
1<4,j7 <m and rad(QAg) = P;, for some 1 < i < k. Now, we resume

=, N nA )N AL N nA ) N--n (AL NN AL,
where by Lemma 4.4,

t t
md(Qm:lA' ﬂ rad QA' = ﬂ P1=DpP1, ",

h=1 h=1
w

Tad(Qﬂ;f:l A;h) = m Tad(QA’Sh) =

h=1 h

D)

Pm = Pm-
1

Therefore, I has a reduced primary decomposition. ]

Definition 4.4. Let M be an A-module. Then

(1) M is called Noetherian if M satisfies the ascending chain condition (ACC): that
is any chain N1 C Ny C -+ of A-ideal of M is stationary.

(i1) We say M satisfies the mazimum condition, if every non-empty family of sub-
modules of M has a maximum element.

Example 4.3. Every finite A-module is a Noetherian A-module.

Theorem 4.6. Let M be an A-module. Then M is Noetherian if and only if M has
maximum condition.

Proof. The proof is routine. O

Definition 4.5. Let M be an A-module. Then M is called a Boolean A-module if
ax ® ay < a(x @ y), for every a € A and x,y € M.

Example 4.4. If M is a Boolean-algebra, then every A-module M is a Boolean
A-module. Since z < z @y and y < x @y, by Lemma 2.7 (f), ax < a(z & y)
and ay < a(x @ y), for every a € A and z,y € M and so by Lemma 2.1 (i),
ar®ay <alz@y)®ay and a(z®y) Pay < alzdy) Palz ®y) = a(r ®y). Hence,
ax ® ay < a(x B y), for every a € A and z,y € M.
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Theorem 4.7. Let A be finite and M be a Boolean Noetherian A-module. Then
every proper A-ideal of M has a reduced primary decomposition.

Proof. Let

T ={N : N is a proper A-ideal of M such that N has no any reduced

primary decomposition} .
We show that T'= 0. Let T # (. Since M is Noetherian, by Theorem 4.6, T has
a maximum element G. It is clear that G is not a primary A-ideal of M. So there
exists z € A and m € M such that am € G, m ¢ G and for every ¢ € A\ P,
(eANz)M ¢ G, where P € PZg.(A). We give an index i > 1 to every ¢ € A\ P. Let
Bi={meM:(ciNca---Nc; ANz)m € G}, for every ¢ > 1 and m € B;. Then

(1 ANea N~ ANeg A Azm < (aa A~ A Az)m € G

and so (g Aea A+ Ae; Aciyr Ax)m € G. Hence, m € B;11 and so B; C Bji1,
for every ¢ > 1. Since M is Noetherian, there exists £ € N such that By = B,,
for every n > k. We show that By is an A-ideal of M. Let mq,mo € Bg. Then
(et Ao ANeg Ax)ma, (1 A+ Aeg Ax)mg € G. By Lemma 2.7 (h),

(ci A ANeg Ax)(mp @ma) < (et A Aeg Ax)my @ (er A~ Acg ANx)me € G
and so (c1 A+ Acg Ax).(my @mgy) € G. Hence, mi ®@mgy € Bg. Now, let m; < mgy €
By. Since (ci A+ Acg Ax)my < (1 A~ Aegk Ax)me € G, (1 A+~ Aeg Ax)mg € G
and so my € Bg. On the other hand,

(ci A ANep Ax)(am) = ((er A+ Aeg Ax).a)m
<(aaAANegAhxham <(ctA---ANegk Ax)m € G
and so am € By, for every a € A and m € By. Hence, By, is an A-ideal of M.
Let D={(ciA--Aex Az)m’ @g:m' € M and g € G}. We show that D is an
A-ideal of M. Let dy,dy € D. 1t is easy to show that di ® dy € D. Let d € D and
a € A. So there exist m’ € M and g € G such that
ad = allct AN ANegAx)m' Dg) <allcy A+ Aeg Az)m') @ ag
(a.(ci A+ ANeg Ax))m’ @ ag
(aNci A Aeg Az)m' @ag < (c1 A+ Aep Az)m’ @ ag € D

AN

Hence, D is an A-ideal of M. Now, we prove that G = DN By, G € D and G C
Bi. Let g € G. Then g = (4 A+ Acpg Ax)0 B g € D. On the other hand,
(1N~ ANegANx)g € G. So g € By, and so G C DN Bg. Let m € DN By. Since
m € By, (i A+ Aeg Ax)m € G and since m € D, there exist m’ € M and g € G
such that m = (¢c; A+ Acg Az)m’ & g. Since
((cr Ao ANeg Aa).(ct A Aeg Ax))m' @ (et A+ A Ax)g

= (aNAcgAx)((ct A~ Aeg Ax)m') D (c1 A+ Aek Ax)g

= (A AcgAx)((ct A Aeg Ax)m’ @ g) = (c1 A+ Aeg Az)m € G,
by Lemma 2.6,

(e Ao Aeg Ax)m’ = ((ey Ao~ Aeg Ax) A(eg A Aeg Az))m/
=(c1 A AepAx)(ct A Aep Az))m' € G
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and so m € G. Hence, D N B, C G. It is enough to show that G C D and G C By.
We have (¢ Az)M € G, for every ¢ € A\ P, where P € PZg,,(A). Then there exists
t € M such that (cAz)t ¢ G. Butif c =c¢3 A+ Acg, then (cAx)t = (cAz)t+0€ D
and so G C D. On the other hand, there existed m € M and x € A such that xm € G
and m ¢ G, but (c; A---AcgAx)m = ((e1 A+ Aeg).x)m = (1 A---Acg)(xm) € G. Tt
means that m € By, and so G C By. By the maximality of G, D and By have primary
decomposition. It results that G has primary decomposition, which is a contradiction.
Therefore, T = §).

O

5. Conclusion

The equivalence between the category of lu-modules over (R,v) and the category
of MV-modules over I'(R,v) was proved by Di Nola, where (R,v) is an [u-ring [6].
We studied ideals in MV -algebras and presented definition of radical of an ideal in
MV -algebras by prime ideals that it was defined by maximal ideals in [9]. Also, we
introduced the notion of primary ideals in MV -algebras. Then we studied A-ideals in
MV-modules and defined the notions of primary and P-primary A-ideals of an MV -
module in order to define primary decomposition of A-ideals. Also, we introduced
MV-modules that their proper A-ideals have reduced primary decomposition. In
fact, we opened new fields to anyone that is interested to studying and development
of MV-modules.
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