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Decomposition of A-ideals in MV -modules
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Abstract. In this paper, by considering the notion of MV -modules, we present definition of

radical of an ideal in MV -algebras by prime ideals that in last was defined by maximal ideals.
Also, we define the notions of primary and P -primary A-ideals in MV -modules. Then we

show that under conditions, if an A-ideal has a primary decomposition, then it has a reduced

primary decomposition. Finally, we characterize proper A-ideals that have a reduced primary
decomposition.
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1. Introduction

MV -algebras were defined by C.C. Chang [2, 3] as algebras corresponding to the
Lukasiewicz infinite valued propositional calculus. These algebras have appeared in
the literature under different names and polynomially equivalent presentation: CN -
algebras, Wajsberg algebras, bounded commutative BCK-algebras and bricks. It
is discovered that MV -algebras are naturally related to the Murray-von Neumann
order of projections in operator algebras on Hilbert spaces and that they play an
interesting role as invariants of approximately finite-dimensional C∗-algebras. They
are also naturally related to Ulam

,

s searching games with lies. MV -algebras ad-
mit a natural lattice reduct and hence a natural order structure. Many important
properties can be derived from the fact, established by Chang that nontrivial MV -
algebras are subdirect products of MV -chains, that is, totally ordered MV -algebras.
To prove this fundamental result, Chang introduced the notion of prime ideal in an
MV -algebra. A product MV -algebra (or PMV -algebra, for short) is an MV -algebra
which has an associative binary operation “.”. It satisfies an extra property which will
be explained in preliminaries. During the last years, PMV -algebras were considered
and their equivalence with a certain class of l-rings with strong unit was proved. It
seems quite natural to introduce modules over such algebras, generalizing the divisible
MV -algebras and the MV -algebras obtained from Riesz spaces and to prove natural
equivalence theorems. Hence, the notion of MV -modules was introduced as an action
of a PMV -algebra over an MV -algebra by A. Di Nola [6]. In 2014, F. Forouzesh,
E. Eslami and A. Borumand Saeid defined prime A-ideals and radical of A-ideals by
maximal A-ideals in MV -modules [8, 9]. Since MV -modules are in their infancy,
stating and opening of any subject in this field can be useful. Since the notion of A-
ideal in MV -modules is important, for completion of study of ideals in MV -modules,
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in this paper, we present definitions of primary decomposition and reduced primary
decomposition of an A-ideal by prime A-ideals (no maximal A-ideals). The simplifi-
cation of an A-ideal helps us for better studying it. Hence, the decomposition of an
A-ideal can be useful and important.

2. Preliminaries

Definition 2.1. [4] An MV-algebra is a structure M = (M,⊕,′ , 0) of type (2, 1, 0)
such that:
(MV 1) (M,⊕, 0) is an abelian monoid,
(MV 2) (a′)′ = a,
(MV 3) 0′ ⊕ a = 0′,
(MV 4) (a′ ⊕ b)′ ⊕ b = (b′ ⊕ a)′ ⊕ a,
If we define the constant 1 = 0′ and operations � and 	 by a � b = (a′ ⊕ b′)′,
a	 b = a� b′, then
(MV 5) (a⊕ b) = (a′ � b′)′,
(MV 6) x⊕ 1 = 1,
(MV 7) (a	 b)⊕ b = (b	 a)⊕ a,
(MV 8) a⊕ a′ = 1,
for every a, b ∈ A. It is clear that (M,�, 1) is an abelian monoid. Now, if we define
auxiliary operations ∨ and ∧ on M by a∨ b = (a� b′)⊕ b and a∧ b = a� (a′⊕ b), for
every a, b ∈M , then (M,∨,∧, 0) is a bounded distributive lattice. An MV -algebra M
is a Boolean algebra if and only if the operation “⊕ ” is idempotent, i.e., x⊕ x = x,
for every x ∈ X. In MV -algebra M , the following conditions are equivalent: (i)
a′ ⊕ b = 1, (ii) a � b′ = 0, (iii) b = a ⊕ (b 	 a), (iv) ∃c ∈ A such that a ⊕ c = b,
for every a, b, c ∈ M . For any two elements a, b of MV -algebra M , a ≤ b if and only
if a, b satisfy in the above equivalent conditions (i) − (iv). An ideal of MV -algebra
M is a subset I of M , satisfying the following condition: (I1) 0 ∈ I, (I2) x ≤ y
and y ∈ I implies that x ∈ I, (I3) x ⊕ y ∈ I, for every x, y ∈ I. A proper ideal P
of M is a prime ideal if and only if x 	 y ∈ P or y 	 x ∈ P , for every x, y ∈ M .
Equivalently, P is prime if and only if x∧y ∈ P implies x ∈ P or y ∈ P , for x, y ∈M .
A proper ideal I of M is a maximal ideal of M if and only if no proper ideal of M
strictly contains I. In MV -algebra M , the distance function d : M ×M → M is
defined by d(x, y) = (x 	 y) ⊕ (y 	 x) which satisfies (i) d(x, y) = 0 if and only if
x = y, (ii) d(x, y) = d(y, x), (iii) d(x, z) ≤ d(x, y) ⊕ d(y, z), (iv) d(x, y) = d(x′, y′),
(v) d(x ⊕ z, y ⊕ t) ≤ d(x, y) ⊕ d(z, t), for every x, y, z, t ∈ M . Let I be an ideal
of MV -algebra M . Then we denote x ∼ y (x ≡I y) if and only if d(x, y) ∈ I, for
every x, y ∈ M . So ∼ is a congruence relation on M . Denote the equivalence class
containing x by x

I and M
I = {xI : x ∈M}. Then (M

I ,⊕,′ , 0
I ) is an MV -algebra, where

(x
I )′ = x′

I and x
I ⊕

y
I = x⊕y

I , for all x, y ∈M .(See [4])

Lemma 2.1. [4] In every MV -algebra A, the natural order “ ≤ ” has the following
properties:
(i) x ≤ y if and only if y′ ≤ x′,
(ii) if x ≤ y, then x⊕ z ≤ y ⊕ z, for every z ∈ A.

Proposition 2.2. [4] Every proper ideal of an MV -algebra is an intersection of prime
ideals.
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Proposition 2.3. [4] Let M be an MV -algebra and z ∈M . Then the principal ideal
generated by z is denoted by ≺ z � and ≺ z �= {x ∈ M : nz = z ⊕ · · · ⊕ z︸ ︷︷ ︸

n times

≥

x, for some n ≥ 0} is an ideal of M .

Proposition 2.4. [4] Let I be an ideal of A. Then

≺ I ∪ {z} �= {x ∈ A : x ≤ nz ⊕ a, for some n ∈ N and a ∈ I}

is an ideal of A.

Definition 2.2. [6, 7] (i) An l-group is an algebra (G,+,−, 0,∨,∧), where the fol-
lowing properties hold:
(a) (G,+,−, 0) is a group,
(b) (G,∨,∧) is a lattice,
(c) x ≤ y implies that x + a ≤ y + a, for any x, y, a, b ∈ G.
A strong unit u > 0 is a positive element with property that for any g ∈ G there exits
n ∈ ω such that g ≤ nu. The Abelian l-groups with strong unit will be simply called
lu-groups.
The category whose objects are MV -algebras and whose homomorphisms are MV -
homomorphisms is denoted by MV. The category whose objects are pairs (G, u),
where G is an Abelian l-group and u is a strong unit of G and whose homomor-
phisms are l-group homomorphisms is denoted by Ug. The functor that establishes
the categorial equivalence between MV and Ug is

Γ : Ug −→ MV,

where Γ(G, u) = [0, u]G, for every lu-group (G, u) and Γ(h) = h|[0,u], for every lu-
group homomorphism h. The above results allows us to consider an MV -algebra,
when necessary, as an interval in the positive cone of an l-group. Thus, many defini-
tions and properties can be transferred from l-groups to MV -algebras. For example,
the group addition becomes a partial operation when it is restricted to an interval, so
we define a partial addition on an MV -algebra M as follows:
x+y is defined if and only if x ≤ y′ and in this case, x+y = x⊕y, for every x, y ∈M .
Moreover, if z + x ≤ z + y, then x ≤ y.
(ii) A product MV -algebra (or PMV -algebra, for short) is a structure A = (A,⊕, .,′ , 0),
where (A,⊕,′ , 0) is an MV -algebra and “.” is a binary associative operation on A such
that the following property is satisfied: if x+y is defined, then x.z+y.z and z.x+z.y
are defined and (x + y).z = x.z + y.z, z.(x + y) = z.x + z.y, for every x, y, z ∈ A,
where “ + ” is the partial addition on A. A unity for the product is an element e ∈ A
such that e.x = x.e = x, for every x ∈ A. If A has a unity for product, then e = 1.

Lemma 2.5. [5] Let A be a PMV -algebra. Then a ≤ b implies that a.c ≤ b.c and
c.a ≤ c.b, for any a, b, c ∈ A. If A has unity for product, then a.b ≤ a ∧ b, for any
a, b ∈ A.

Lemma 2.6. [5] A finite PMV -algebra A has unity for product if and only if A is a
Boolean algebra and in this case a.b = a ∧ b, for any a, b ∈ A.

Definition 2.3. [6] Let A = (A,⊕, .,′ , 0) be a PMV -algebra, M = (M,⊕,′ , 0) be an
MV -algebra and the operation Φ : A×M −→M be defined by Φ(a,m) = am, which
satisfies the following axioms:
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(AM1) If x+ y is defined in M , then ax+ay is defined in M and a(x+ y) = ax+ay,
(AM2) If a + b is defined in A, then ax + bx is defined in M and (a + b)x = ax + bx,
(AM3) (a.b)x = a(bx), for every a, b ∈ A and x, y ∈M .
Then M is called a (left) MV -module over A or briefly an A-module. We say M is a
unitary MV -module if A has a unity for the product, that is
(AM4) 1Ax = x, for every x ∈M .

Lemma 2.7. [6] Let A be a PMV -algebra and M be an A-module. Then
(a) 0x = 0,
(b) a0 = 0,
(c) ax′ ≤ (ax)′,
(d) a′x ≤ (ax)′,
(e) (ax)′ = a′x + (1x)′,
(f) x ≤ y implies that ax ≤ ay,
(g) a ≤ b implies that ax ≤ bx,
(h) a(x⊕ y) ≤ ax⊕ ay,
(i) d(ax, ay) ≤ ad(x, y),
(j) if x ≡I y, then ax ≡I ay, where I is an ideal of A,
(k) if M is a unitary MV -module, then (ax)′ = a′x + x′, for every a, b ∈ A and
x, y ∈M .

Lemma 2.8. [8] Let A be a PMV -algebra and M be an A-module. Then (a⊕ b)x ≤
ax⊕ bx, for every a, b ∈ A and x ∈M .

Definition 2.4. [6] Let A be a PMV -algebra and M be an A-module. Then an ideal
N ⊆M is called an A-ideal of M if (I4) ax ∈ N , for every a ∈ A and x ∈ N .

Note: From now on, in this paper, we let A is a PMV -algebra, M be an MV -
algebra, PI(M) be the set of all prime ideals of M and PIJ(M) be the set of all
prime ideals of M that contain J ∈ I(M).

3. Primary ideals in MV -algebras

In this section, we present definition of radical of an ideal in MV -algebras by
prime ideals that in [9] was defined by maximal ideals. Also, we introduce the notion
of primary ideals in MV -algebras and we get some results that we use in the section
4.

Definition 3.1. Let I ∈ I(M). Then the intersection of all prime ideals of M ,
including I, is called radical of I and it is denoted by radM (I) or briefly rad(I) . If
there is not any prime ideal of M including I, then we let rad(I) = M .

Example 3.1. (i) Let M = {0, 1, 2} and operation ⊕ be defined by

⊕ 0 1 2
0 0 1 2
1 1 1 2
2 0 2 2

If 0′ = 2, 1′ = 1 and 2′ = 0, then (M,⊕,′ , 0, 1) is an MV -algebra. It is easy to show
that I = {0, 1} is only prime ideal of M and so rad({0}) = {0, 1} and rad(I) = I.
(ii) Let M2(R) be the ring of square matrixes of order 2 with real elements and let 0
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be the matrix with all elements 0. If we define the order relation on components

A = (aij)i,j=1,2 ≥ 0 if and only if aij ≥ 0 for any i, j,

then M2(R) is an l-ring. If v =

(
1
2

1
2

1
2

1
2

)
, then (M2(R), v) is an lu-ring and so

M = Γ(M2(R), v) is an MV -algebra. It is easy to see that I(M) = {{0},M} and {0}
is not a prime ideal of M . Then rad({0}) = M .

Lemma 3.1. In M , the following conditions are equivalent:
(a) a = a	 (b	 a),
(b) a	 b = (a	 b)	 b,
(c) (a	 c)	 (b	 c) = (a	 b)	 c,
(d) a ∧ a′ = 0,
(e) a ∨ a′ = 1,
(f) a = a	 a′,
(g) a′ = a′ 	 a,
(h b′ ∧ a = a	 b’
(i) b ∧ a = a	 b′

(j) a ∧ (b	 c) = (a ∧ b)	 c, for every a, b, c ∈M .

Proof. The proof is routine. �

Definition 3.2. M is called an implicative MV -algebra if x	 (y	 x) = x, for every
x, y ∈M .

Example 3.2. Let M1 = {0, 1, 2, 3}, M2 = {0, 1}, and operations ⊕1 and ⊕2 be
defined by

⊕1 0 1 2 3
0 0 1 2 3
1 0 1 3 3
2 2 3 2 3
3 3 3 3 3

⊕2 0 1
0 0 1
1 1 1

If 0′ = 3, 1′ = 2, 2′ = 1 and 3′ = 0, then (M1,⊕1,
′ , 0, 1) is an implicative MV -algebra.

Also, if 0′ = 1 and 1′ = 0, then (M2,⊕2,
′ , 0, 1) is an implicative MV -algebra.

Definition 3.3. Let ∅ 6= S ⊆ M . We say that S is ∧-closed, if a ∧ b ∈ S, for all
a, b ∈ S.

Example 3.3. In Example 3.2, consider S = {0, 1, 2} ⊆ M1 and T = {1, 2} ⊆ M1.
It is easy to see that S is ∧-closed and T is not ∧-closed.

Lemma 3.2. Let I ∈ I(M), S ⊆ M be ∧-closed and S ∩ I = ∅. Then there exists a
maximal ideal P of M such that P ⊇ I and P ∩ S = ∅. Furthermore, P is a prime
ideal of M .

Proof. The existence of an ideal P easily follows from Zorn′s Lemma. Let there exist
x, y ∈ M such that x ∧ y ∈ P , x /∈ P and y /∈ P . Then P is properly contained in
both ≺ P ∪ {x} �= P1 and ≺ P ∪ {y} �= P2. By maximality of P , P1 ∩ S 6= ∅
and P2 ∩ S 6= ∅. Let si ∈ Pi ∩ S, i = 1, 2. Then s1 ∧ s2 ≤ si, i=1,2 implies
s1 ∧ s2 ∈ P1 ∩ P2 = P . On the other hand, s1 ∧ s2 ∈ S, which is a contradiction.
Therefore, P is a prime ideal of M . �
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Theorem 3.3. Let M be implicative and I ∈ I(M). Then

rad(I) = {x ∈M : ∀P ∈ PII(M),∃c ∈M \ P such that c ∧ x ∈ I}.

Proof. Let

T = {x ∈M : ∀P ∈ PII(M),∃c ∈M \ P such that c ∧ x ∈ I}

and x ∈ rad(I). Then x ∈ P , for every P ∈ PII(M). If x ∈ I, then by considering
c = 1, we have x ∈ T . Now, let x /∈ I. If x /∈ T , then there exists P1 ∈ PII(M) such
that c∧x /∈ I, for every c ∈M \P1. Let S = {(c∧x)	y : y ∈ I and c ∈M \P1}. First,
we show that S is ∧-closed. Let (c1 ∧ x)	 y1, (c2 ∧ x)	 y2 ∈ S, where c1, c2 ∈M \P1

and y1, y2 ∈ I. By Lemma 3.1 (j) and (i),

((c1 ∧ x)	 y1) ∧ ((c2 ∧ x)	 y2) = ((c1 ∧ x)	 y1) ∧ (c2 ∧ x))	 y2

= ((c2 ∧ x) ∧ ((c1 ∧ x)	 y1))	 y2,

= (((c2 ∧ x) ∧ (c1 ∧ x))	 y1)	 y2

= y′2 ∧ (((c1 ∧ c2) ∧ x)	 y1),

= (y′2 ∧ ((c1 ∧ c2) ∧ x))	 y1

= ((y′2 ∧ c1 ∧ c2) ∧ x)	 y1.

Now, we show that y′2∧c1∧c2 ∈M\P1. Let y′2∧c1∧c2 ∈ P1. Since c1∧c2 /∈ P1, y′2 ∈ P1

and so 1 ∈ P1. Since x ≤ 1 ∈ P1, we get x ∈ P1, for every x ∈ M and so P1 = M ,
which is a contradiction. Hence, y′2∧c1∧c2 ∈M \P1 and so ((y′2∧c1∧c2)∧x)	y1 ∈ S.
It means that((c1 ∧x)	 y1)∧ ((c2 ∧x)	 y2) ∈ S and so S is ∧-closed. Now, we prove
that S ∩ I = ∅. If S ∩ I 6= ∅, then there exist c′ ∈ M \ P1 and y′ ∈ I such that
(c′ ∧x)	 y′ ∈ I. It results that c′ ∧x ∈ I. But, by definition of S, c∧x /∈ I, for every
c ∈ M \ P1, which is a contradiction. Then S ∩ I = ∅ and so by Lemma 3.2, there
exists P2 ∈ PII(M) such that P2 ∩ S = ∅. Since (c ∧ x) 	 x = 0 ∈ P and x ∈ P ,
c∧x ∈ P , for every c ∈M \P and for every P ∈ PII(M). Then (c∧x) ∈ P2. On the
other hand, c ∧ x = (c ∧ x)	 0 ∈ S. Hence, c ∧ x ∈ P2 ∩ S, which is a contradiction.
It implies that x ∈ T . Therefore, rad(I) ⊆ T .
Now, let x ∈ T . Hence, for every P ∈ PII(M) there exists c ∈ M \ P such that
c ∧ x ∈ I ⊆ P . Since c /∈ P , we get x ∈ P , for every P ∈ PII(M). It means that
x ∈ rad(I) and so T ⊆ rad(I). Therefore, T = rad(I). �

Proposition 3.4. Let M be implicative and I ∈ I(M). If for every P ∈ PI(M),
P ∩ I 6= {0} implies that I ⊆ P , then

rad(I) = {x ∈ X : ∀ P ∈ PI(M) with P ∩I 6= {0}, ∃c ∈M \P such that c∧x ∈ I}.

Proof. By Theorem 3.3, the proof is clear. �

Theorem 3.5. Let M be an MV -algebra and I, J, I1, · · · , In be ideals of M . Then
(i) I ⊆ rad(I),
(ii) I ⊆ J implies rad(I) ⊆ rad(J),
(iii) rad(I) ∪ rad(J) ⊆ rad(I ∪ J).
Moreover, if M is implicative and P ∩ Ik 6= {0} implies that Ik ⊆ P , for every
P ∈ PI(M) and 1 ≤ k ≤ n, then
(iv) rad(rad(I)) = rad(I),
(v) rad(

⋂n
k=1 Ik) =

⋂n
k=1 rad(Ik).
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Proof. The proofs of (i), (ii) and (iii) are easy.
(iv) By (i), rad(I) ⊆ rad(rad(I)). Now, let x ∈ rad(rad(I)) and P ∈ PI(M) with
P∩I 6= {0}. Then by (i), P∩rad(I) 6= {0}. Since x ∈ rad(rad(I)), by Proposition 3.4,
there exists c1 ∈M\P such that c1∧x ∈ rad(I). Since c1∧x ∈ rad(I) and P∩I 6= {0},
by Proposition 3.4, there exists c2 ∈M \P such that (c2 ∧ c1)∧ x = c2 ∧ (c1 ∧ x) ∈ I.
It is clear that c = c1∧ c2 ∈M \P . Similarly, for every P ∈ PI(M) with P ∩ I 6= {0}
there is c ∈ M \ P such that c ∧ x ∈ I. Hence, by Proposition 3.4, x ∈ rad(I).
Therefore, rad(rad(I)) ⊆ rad(I).
(v) Let x ∈ rad(

⋂n
k=1 Ik) and P ∈ PIIt(M), for 1 ≤ t ≤ n. Since It ⊆ P , we get⋂n

k=1 Ik ⊆ It ⊆ P . Since x ∈ rad(
⋂n

k=1 Ik), by Theorem 3.3, there exists c ∈ M \ P
such that c ∧ x ∈

⋂n
k=1 Ik ⊆ It and so c ∧ x ∈ It. Hence, x ∈ rad(It). Similarly,

x ∈ rad(Ik), for every 1 ≤ k ≤ n and so x ∈
⋂n

k=1 rad(Ik). Hence, rad(
⋂n

k=1 Ik) ⊆⋂n
k=1 rad(Ik).

Now, let x ∈
⋂n

k=1 rad(Ik) and P ∈ PI(M) with P ∩ (
⋂n

k=1 Ik) 6= {0}. Then
P ∩ Ik 6= {0}, for every 1 ≤ k ≤ n. Since x ∈ rad(Ik), by Proposition 3.4, there is
ck ∈M \P such that ck ∧x ∈ Ik, for every 1 ≤ k ≤ n. Let c = c1∧ · · ·∧ cn. It is clear
that c /∈ P . On the other hand, since (c ∧ x) ≤ (ck ∧ x) ∈ Ik, c ∧ x ∈ Ik, for every
1 ≤ k ≤ n. Then c ∧ x ∈

⋂n
k=1 Ik. Therefore, by Proposition 3.4, x ∈ rad(

⋂n
k=1 Ik)

and so
⋂n

k=1 rad(Ik) ⊆ rad(
⋂n

k=1 Ik) �

Definition 3.4. Let Q be a proper ideal of M . Then Q is called a primary ideal of
M if a∧ b ∈ Q, then there exists c ∈M \P such that c∧ b ∈ Q or a∧ c ∈ Q, for every
P ∈ PIQ(M) and a, b ∈M .

Example 3.4. In Example 3.2, I = {0, 1} and J = {0, 2} are primary ideals of M1.

Proposition 3.6. Let M be implicative and Q be an ideal of M . Then Q is a primary
ideal of M if and only if a ∧ b ∈ Q implies that a ∈ rad(Q) or b ∈ rad(Q), for any
a, b ∈M .

Proof. (⇒) Let Q be a primary ideal of M and a ∧ b ∈ Q, for a, b ∈ M . If a ∈ Q,
then a ∈ rad(Q). Let a /∈ Q. Then there exits c ∈ M \ P such that c ∧ b ∈ Q or
a∧c ∈ Q, for every P ∈ PIQ(M). If c∧b ∈ Q, then c∧b ∈ P , for every P ∈ PIQ(M).
Since c /∈ P , b ∈ P , for every P ∈ PIQ(M). It results that b ∈

⋂
Q⊆P P = rad(Q).

Similarly, if a ∧ c ∈ Q, then a ∈ rad(Q).
(⇐) Let Q ∈ I(M). If a∧ b ∈ Q, then a ∈ rad(Q) or b ∈ rad(Q), for a, b ∈M and so
by Theorem 3.3, there exists c ∈ M \ P such that c ∧ b ∈ Q or a ∧ c ∈ Q, for every
P ∈ PIQ(M). It means that Q is a primary ideal of M . �

Theorem 3.7. In an MV -algebra, every prime ideal is a primary ideal.

Proof. Let M be an MV -algebra, Q be a prime ideal of M , a ∧ b ∈ Q and a /∈ Q,
for a, b ∈ M . Then by considering c = 1 ∈ M \ P , for every P ∈ PIQ(M), we have
c ∧ b = b ∈ Q. Hence, P is a primary ideal of M . �

Example 3.5. In Example 3.1 (ii), I = {0} is a primary ideal of M , but it is not a
prime ideal of M .

Theorem 3.8. Let M be implicative and I ∩ P 6= {0} implies that I ⊆ P , for every
I ∈ I(M) and P ∈ PI(M). Then the radical of every primary ideal of M is a prime
ideal of M .
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Proof. Let Q be a primary ideal of M . If rad(Q) = M , then 1 ∈ rad(Q). Hence,
by Theorem 3.3, for every P ∈ PIQ(M), there exists c ∈ M \ P such that c ∧ 1 =
c ∈ Q ⊆ P and so c ∈ P , which is a contradiction. Now, let a ∧ b ∈ rad(Q), for
a, b ∈M . Then there exists c ∈M \P such that (c∧a)∧ b = c∧ (a∧ b) ∈ Q, for every
P ∈ PIQ(M). If a /∈ rad(Q), then by Theorem 3.3, there is P ∈ PIQ(M) such that
c ∧ a /∈ Q, for every c ∈M \ P . Since Q is a primary ideal of M and (c ∧ a) ∧ b ∈ Q,
there is c′ ∈ M \ P such that c′ ∧ b ∈ Q, for every P ∈ PIQ(M) and so b ∈ rad(Q).
Therefore, rad(Q) is a prime ideal of M . �

4. Primary decomposition of A-ideals in MV -modules

In this section, we define the notions of primary and P -primary A-ideals of an MV -
module. As a fundamental result, we introduce an MV -module that all its proper
A-ideals have reduced primary decomposition.

Proposition 4.1. Let M be an A-module and N be an A-ideal of M . Then QN =
{x ∈ A : xM ⊆ N} is an ideal of A.

Proof. Let x, y ∈ QN , for x, y ∈ A. Then xm, ym ∈ N and so xm ⊕ ym ∈ N , for
every m ∈ M . Since by Lemma 2.8, (x ⊕ y)m ≤ xm ⊕ ym ∈ N , (x ⊕ y)m ∈ N , for
every m ∈ M . Hence, x ⊕ y ∈ QN . Now, let x ≤ y and y ∈ QN , for x, y ∈ A. By
Lemma 2.7 (g), xm ≤ ym ∈ N and so xm ∈ N , for every m ∈M . Therefore, x ∈ QN

and so QN is an ideal of A. �

Definition 4.1. Let M be an A-module and N be a proper A-ideal of M . Then N
is called a primary A-ideal of M , if for any x ∈ A and m ∈M , xm ∈ N implies that
m ∈ N or ∃c ∈ A \ P such that (c ∧ x)M ⊆ N , for every P ∈ PIQN

(A).

Example 4.1. Let A = {0, 1, 2, 3} and the operations “⊕ ” and “.” on A are defined
as follows:

⊕ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

. 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

Consider 0′ = 3, 1′ = 2, 2′ = 1 and 3′ = 0. Then it is easy to show that (A,⊕,′ , ., 0)
is a PMV -algebra and (A,⊕,′ , 0) is an MV -algebra. Now, let the operation • :
A × A −→ A be defined by a • b = a.b, for every a, b ∈ A. It is easy to show that A
is an MV -module on A and I = {0, 1}, J = {0, 2} are primary A-ideals of A.

Proposition 4.2. Let M be a unitary A-module and N be a prime A-ideal of M .
Then N is a primary A-ideal of M .

Proof. Let xm ∈ N and m /∈ N , for x ∈ A and m ∈ M . Then we consider c = 1 ∈
A \ P and so (c ∧ x)M = xM ⊆ N , for every P ∈ PIQN

(A). �

Theorem 4.3. Let M be a unitary A-module and N be a primary A-ideal of M .
Then QN is a primary ideal of A.
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Proof. If QN = A, then 1 ∈ QN and so M = N , which is a contradiction. Let
a ∧ b ∈ QN and a /∈ QN , for a, b ∈ A. Then by Lemmas 2.5 and 2.7 (g), (b.a)m ≤
(b ∧ a)m ∈ N and so b(am) = (b.a)m ∈ N , for every m ∈ M . Since a /∈ QN , there
exists m′ ∈ M such that am′ /∈ N . Moreover, since b(am′) ∈ N and am′ /∈ N , there
exists c ∈ A \ P such that (c ∧ b)M ⊆ N , for every P ∈ PIQN

(A). It results that
c ∧ b ∈ QN . Therefore, QN is a primary ideal of A. �

Note. In Theorem 4.3, if A is implicative such that I ∩ P 6= {0} implies that
I ⊆ P , then by Theorem 3.8, rad(QN ) is a prime ideal of A and

rad(QN ) = {x ∈ A : ∀P ∈ PIQN
(A),∃c ∈ A \ P such that (c ∧ x)M ⊆ N}.

Definition 4.2. Let M be an A-module and N be a proper A-ideal of M . Then N is
called a P-primary A-ideal of M , if N is a primary A-ideal of M and rad(QN ) = P .

Lemma 4.4. Let A be implicative, M be an A-module, N1, · · · , Nk be P ′-primary
A-ideal of M such that Q⋂k

i=1 Ni
6= 0. If P ∩ I 6= {0} implies that I ⊆ P , for every

ideal I ∈ I(A) and P ∈ PI(A), then
⋂k

i=1 Ni is a P ′-primary A-ideal of M .

Proof. It is clear that
⋂k

i=1 Ni 6= M . Let xm ∈
⋂k

i=1 Ni and m /∈
⋂k

i=1 Ni, for x ∈ A
and m ∈M . Then xm ∈ Ni, for every 1 ≤ i ≤ k and there exists 1 ≤ j ≤ k such that
m /∈ Nj . Since xm ∈ Nj and m /∈ Nj , there exists cj ∈ A\P such that (cj∧x)M ⊆ Nj ,
for every P ∈ PIQNj

(A). It results that x ∈ rad(QNj ) = P ′ = rad(QNi), for every

1 ≤ i ≤ k. Hence, there exists ci ∈ A \ P such that (ci ∧ x)M ⊆ N , for every
P ∈ PIQNi

(A). Now, we show that rad(Q⋂k
i=1 Ni

) = P ′. For every 1 ≤ i ≤ k,

x ∈ Q⋂k
i=1 Ni

⇔ xM ⊆
k⋂

i=1

Ni ⇔ xM ⊆ Ni ⇔ x ∈ QNi
⇔ x ∈

k⋂
i=1

QNi
.

Then Q⋂k
i=1 Ni

=
⋂k

i=1 QNi
and so by Theorem 3.5 (v),

rad(Q⋂k
i=1 Ni

) = rad(

k⋂
i=1

QNi
) =

k⋂
i=1

rad(QNi
) =

k⋂
i=1

P ′ = P ′.

Let c = c1∧c2 · · ·∧ck and there exists P ∈ PIQ⋂k
i=1

Ni
(A) such that c ∈ P . Then there

is 1 ≤ i ≤ k such that ci ∈ P . Since {0} 6= Q⋂k
i=1 Ni

⊆ QNi
, we get QNi

∩ P 6= {0}
and so QNi

⊆ P , for every 1 ≤ i ≤ k. It results that ci /∈ P , for every 1 ≤ i ≤ k,
which is a contradiction. Hence, c ∈ A \ P , for every P ∈ PIQN⋂k

i=1
Ni

(A). On the

other hand, since (ci ∧ x).m ∈ Ni,

(c ∧ x)m = (c1 ∧ · · · ∧ ci ∧ x)m = (ci ∧ x)m ∈ Ni

and so (c ∧ x)m ∈
⋂k

i=1 Ni, for every m ∈ M . Therefore,
⋂k

i=1 Ni is a P ′-primary
A-ideal of M . �

Definition 4.3. Let M be an A-module, N be a proper A-ideal of M and there
exist proper A-ideals A1, A2, · · · , An of M such that Ai is a Pi-primary of M , for
every 1 ≤ i ≤ n and N = A1 ∩ A2 ∩ · · · ∩ An. Then we say A1 ∩ A2 ∩ · · · ∩ An is a
primary decomposition of N and so N has a primary decomposition. Furthermore,
this decomposition is reduced if
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(i) Ai +
⋂

i 6=j Aj ,

(ii) rad(QAi
) 6= rad(QAj

), for every 1 ≤ i, j ≤ n.

Example 4.2. (i) Let A be unital and finite. If we consider A as A-module, where
xy = x.y, for every x, y ∈ A, then since ax ≤ 1x = x, for every a, x ∈ A, any ideal of
A is an A-ideal of A and by Lemma 2.6, every prime ideal of A is a prime A-ideal of A.
Hence, by Proposition 2.2, every proper A-ideal of A has a primary decomposition.
(ii) In Example 4.1, {0, 2} ∩ {0, 1} is a primary decomposition of {0}. This decom-
position is reduced, too.

Theorem 4.5. Let A be implicative, M be an A-module, N be an A-ideal of M that
has a primary decomposition and I ∩P 6= {0} implies that I ⊆ P , for every I ∈ I(A)
and P ∈ PI(A). Then N has a reduced primary decomposition.

Proof. Let N = A1∩· · ·∩An, where Ai is a primary ideal of M , for every 1 ≤ i ≤ n. If
Aj ⊇

⋂n
i=1 Ai, where i 6= j, then we set N = A1∩· · ·∩Aj−1∩Aj+1∩· · ·∩An, for every

1 ≤ j ≤ n and so by renumbering, N =
⋂k

i=1 A
′
i, where k ≤ n and A′j +

⋂k
i=1 A

′
i,

for every 1 ≤ j ≤ k. Let T = {P1, · · · , Pm}, where Pi 6= Pj and m ≤ k, for every
1 ≤ i, j ≤ m and rad(QA′

i
) = Pi, for some 1 ≤ i ≤ k. Now, we resume

N = (A′i1 ∩ · · · ∩A′it) ∩ (A′j1 ∩ · · · ∩A′jl) ∩ · · · ∩ (A′s1 ∩ · · · ∩A′sw),

where by Lemma 4.4,

rad(Q⋂t
h=1 A′

ih

) =

t⋂
h=1

rad(QA′
ih

) =

t⋂
h=1

p1 = p1, · · · ,

rad(Q⋂w
h=1 A′

sh
) =

w⋂
h=1

rad(QA′
sh

) =

w⋂
h=1

pm = pm.

Therefore, I has a reduced primary decomposition. �

Definition 4.4. Let M be an A-module. Then
(i) M is called Noetherian if M satisfies the ascending chain condition (ACC): that
is any chain N1 ⊆ N2 ⊆ · · · of A-ideal of M is stationary.
(ii) We say M satisfies the maximum condition, if every non-empty family of sub-
modules of M has a maximum element.

Example 4.3. Every finite A-module is a Noetherian A-module.

Theorem 4.6. Let M be an A-module. Then M is Noetherian if and only if M has
maximum condition.

Proof. The proof is routine. �

Definition 4.5. Let M be an A-module. Then M is called a Boolean A-module if
ax⊕ ay ≤ a(x⊕ y), for every a ∈ A and x, y ∈M .

Example 4.4. If M is a Boolean-algebra, then every A-module M is a Boolean
A-module. Since x ≤ x ⊕ y and y ≤ x ⊕ y, by Lemma 2.7 (f), ax ≤ a(x ⊕ y)
and ay ≤ a(x ⊕ y), for every a ∈ A and x, y ∈ M and so by Lemma 2.1 (ii),
ax⊕ ay ≤ a(x⊕ y)⊕ ay and a(x⊕ y)⊕ ay ≤ a(x⊕ y)⊕ a(x⊕ y) = a(x⊕ y). Hence,
ax⊕ ay ≤ a(x⊕ y), for every a ∈ A and x, y ∈M .
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Theorem 4.7. Let A be finite and M be a Boolean Noetherian A-module. Then
every proper A-ideal of M has a reduced primary decomposition.

Proof. Let

T = {N : N is a proper A-ideal of M such that N has no any reduced

primary decomposition} .

We show that T = ∅. Let T 6= ∅. Since M is Noetherian, by Theorem 4.6, T has
a maximum element G. It is clear that G is not a primary A-ideal of M . So there
exists x ∈ A and m ∈ M such that xm ∈ G, m /∈ G and for every c ∈ A \ P ,
(c ∧ x)M * G, where P ∈ PIQG

(A). We give an index i ≥ 1 to every c ∈ A \ P . Let
Bi = {m ∈M : (c1 ∧ c2 · · · ∧ ci ∧ x)m ∈ G}, for every i ≥ 1 and m ∈ Bi. Then

(c1 ∧ c2 ∧ · · · ∧ ci ∧ ci+1 ∧ x)m ≤ (c1 ∧ · · · ∧ ci ∧ x)m ∈ G

and so (c1 ∧ c2 ∧ · · · ∧ ci ∧ ci+1 ∧ x)m ∈ G. Hence, m ∈ Bi+1 and so Bi ⊆ Bi+1,
for every i ≥ 1. Since M is Noetherian, there exists k ∈ N such that Bk = Bn,
for every n ≥ k. We show that Bk is an A-ideal of M . Let m1,m2 ∈ Bk. Then
(c1 ∧ · · · ∧ ck ∧ x)m1, (c1 ∧ · · · ∧ ck ∧ x)m2 ∈ G. By Lemma 2.7 (h),

(c1 ∧ · · · ∧ ck ∧ x).(m1 ⊕m2) ≤ (c1 ∧ · · · ∧ ck ∧ x)m1 ⊕ (c1 ∧ · · · ∧ ck ∧ x)m2 ∈ G

and so (c1∧· · ·∧ ck ∧x).(m1⊕m2) ∈ G. Hence, m1⊕m2 ∈ BK . Now, let m1 ≤ m2 ∈
Bk. Since (c1 ∧ · · · ∧ ck ∧ x)m1 ≤ (c1 ∧ · · · ∧ ck ∧ x)m2 ∈ G, (c1 ∧ · · · ∧ ck ∧ x)m1 ∈ G
and so m1 ∈ Bk. On the other hand,

(c1 ∧ · · · ∧ ck ∧ x)(am) = ((c1 ∧ · · · ∧ ck ∧ x).a)m

≤ (c1 ∧ · · · ∧ ck ∧ x ∧ a)m ≤ (c1 ∧ · · · ∧ ck ∧ x)m ∈ G

and so am ∈ Bk, for every a ∈ A and m ∈ Bk. Hence, Bk is an A-ideal of M .
Let D = {(c1 ∧ · · · ∧ ck ∧ x)m′ ⊕ g : m′ ∈ M and g ∈ G}. We show that D is an
A-ideal of M . Let d1, d2 ∈ D. It is easy to show that d1 ⊕ d2 ∈ D. Let d ∈ D and
a ∈ A. So there exist m′ ∈M and g ∈ G such that

ad = a((c1 ∧ · · · ∧ ck ∧ x)m′ ⊕ g) ≤ a((c1 ∧ · · · ∧ ck ∧ x)m′)⊕ ag

= (a.(c1 ∧ · · · ∧ ck ∧ x))m′ ⊕ ag

≤ (a ∧ c1 ∧ · · · ∧ ck ∧ x)m′ ⊕ ag ≤ (c1 ∧ · · · ∧ ck ∧ x)m′ ⊕ ag ∈ D

Hence, D is an A-ideal of M . Now, we prove that G = D ∩ Bk, G ( D and G (
Bk. Let g ∈ G. Then g = (c1 ∧ · · · ∧ ck ∧ x)0 ⊕ g ∈ D. On the other hand,
(c1 ∧ · · · ∧ ck ∧ x)g ∈ G. So g ∈ Bk and so G ⊆ D ∩ Bk. Let m ∈ D ∩ Bk. Since
m ∈ Bk, (c1 ∧ · · · ∧ ck ∧ x)m ∈ G and since m ∈ D, there exist m′ ∈ M and g ∈ G
such that m = (c1 ∧ · · · ∧ ck ∧ x)m′ ⊕ g. Since

((c1 ∧ · · · ∧ ck ∧ x).(c1 ∧ · · · ∧ ck ∧ x))m′ ⊕ (c1 ∧ · · · ∧ ck ∧ x)g

= (c1 ∧ · · · ∧ ck ∧ x)((c1 ∧ · · · ∧ ck ∧ x)m′)⊕ (c1 ∧ · · · ∧ ck ∧ x)g

= (c1 ∧ · · · ∧ ck ∧ x)((c1 ∧ · · · ∧ ck ∧ x)m′ ⊕ g) = (c1 ∧ · · · ∧ ck ∧ x)m ∈ G,

by Lemma 2.6,

(c1 ∧ · · · ∧ ck ∧ x)m′ = ((c1 ∧ · · · ∧ ck ∧ x) ∧ (c1 ∧ · · · ∧ ck ∧ x))m′

= ((c1 ∧ · · · ∧ ck ∧ x).(c1 ∧ · · · ∧ ck ∧ x))m′ ∈ G



DECOMPOSITION OF A-IDEALS IN MV -MODULES 77

and so m ∈ G. Hence, D ∩ Bk ⊆ G. It is enough to show that G ( D and G ( Bk.
We have (c ∧ x)M * G, for every c ∈ A \ P , where P ∈ PIQG

(A). Then there exists
t ∈M such that (c∧x)t /∈ G. But if c = c1 ∧ · · · ∧ ck, then (c∧x)t = (c∧x)t+ 0 ∈ D
and so G ( D. On the other hand, there existed m ∈M and x ∈ A such that xm ∈ G
and m /∈ G, but (c1∧· · ·∧ck∧x)m = ((c1∧· · ·∧ck).x)m = (c1∧· · ·∧ck)(xm) ∈ G. It
means that m ∈ Bk and so G ( Bk. By the maximality of G, D and Bk have primary
decomposition. It results that G has primary decomposition, which is a contradiction.
Therefore, T = ∅.

�

5. Conclusion

The equivalence between the category of lu-modules over (R, v) and the category
of MV -modules over Γ(R, v) was proved by Di Nola, where (R, v) is an lu-ring [6].
We studied ideals in MV -algebras and presented definition of radical of an ideal in
MV -algebras by prime ideals that it was defined by maximal ideals in [9]. Also, we
introduced the notion of primary ideals in MV -algebras. Then we studied A-ideals in
MV -modules and defined the notions of primary and P -primary A-ideals of an MV -
module in order to define primary decomposition of A-ideals. Also, we introduced
MV -modules that their proper A-ideals have reduced primary decomposition. In
fact, we opened new fields to anyone that is interested to studying and development
of MV -modules.
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